Nilpotence in Finitary Linear Groups
B. A. F. WEHRFRITZ

1. Results and Examples

Throughout this paper F denotes a field and V' a vector space over F. The
finitary general linear group FGL(V)=F Autg V over V is the subgroup
of Autg V of F-automorphisms g of V such that [V, g] =V{(g—1) is finite-
dimensional over F. A finitary linear group is a subgroup of FGL(V') for
some F and V. We can always choose F as large as we please, algebraically
closed for example; for if E is an extension field of F then there is an obvious
embedding of F Auty V into F Autg(EQfgV).

There has been much interest of late in the group-theoretic structure of
finitary linear groups, with works of Hall [4] and Meierfrankenfeld, Phil-
lips, and Puglisi [5] especially of note. In particular, [5] analyses the solubil-
ity structure of such groups. Here we carry out an analogous exercise for
nilpotence, except that we are interested not just in nilpotent and locally nil-
potent groups, but also in the various canonical locally nilpotent and hyper-
central normal subgroups and the four canonical Engel sets of an arbitrary
finitary linear group.

The following theorem summarizes our main positive conclusions. Our
notation, which we explain in detail immediately after the statement of the
theorem, is standard (with the exception of the introduction of 5,(G)), fol-
lowing [9] or [10] for example.

THEOREM. Let F be a field of characteristic p=0, V a vector space over F,
and G any subgroup of FGL(V).

(@) L(G)=1(G)=0(G)=n(G) ={MAG: M= r,(M))=
M<aG:la<w2, M=, ,(M)).

(b) L(G)=35(G)=mn2(G)=n(G).

(c) R(G)=p(G)={(G). For each finite subset X of G there is a normal
subgroup K of G with K2 X and R(G)NK = {,,(K).

(d) R(G)=p(G)=¢,(G). For each finite subset X of G there is a normal
subgroup K of G with K2 X and R(G)NK < {,(X).

(e) Modulo its unipotent radical, G has central height at most 2.

Received November 18, 1991. Revision received April 3, 1992,
Michigan Math. J. 40 (1993).

419



420 B. A. F. WEHRFRITZ

(f) If p>0then [R(G), G] and R(G)/(R(G)N{(G)) are locally finite
groups. If the unipotent radical of R(G) is trivial then [R(G), G) end
R(G)/(R(G)YNEW(G)) are locally finite p’-groups.

Noration. Commutators are all left-normed. Let G be any group.

L(G) denotes the set of left Engel elements of G,

L(G) the set of bounded left Engel elements of G;

R(G) denotes the set of right Engel elements of G,

R(G) the set of bounded right Engel elements of G;

7(G) is the Hirsch-Plotkin radical of G,

11(G) the Fitting subgroup of G, and

72(G) the subgroup of G generated by all normal subgroups of G that are
hypercentral groups (see [4, Sect. 2.1] for the only published discussion
of this subgroup known to me);

o(G) denotes the Gruenberg radical of G ={x e G:{x) asc G},

(G) the Baer radical of G={xe G:{x)sn G};

p(G)={xeG:VgeG, gea(g,x},

p(G)={xeG:(3k e N)(Vg € G), {(g) is subnormal in (g, x°) in k steps};

¢(G) is the hypercentre of G,

{o(G) the ath term of the upper central series of G, and so

¢1(G) denotes the centre of G.

For the general theory of these objects, with the exception of %,(G), see [8].
Note that while the first four above are usually only subsets of G, the rest
are always subgroups of G. This remark is occasionally important in the
proofs that follow. For an arbitrary group G, the following are true (see[8,
vol. 2, p. 63]):

L(G)=21(G)zo(G)=n2(G),  R(G)=2p(6G)=(G);
L(G)28(@) zqm(G)=zm(G),  R(G)25(G)={,(G).

(The point of introducing 5;7(G) is that in certain skew linear situations it is
possible to identify »,;%9(G) even when one cannot identify %;(G); for exam-
ple, see [9, 3.5.7] and [11, Thm. C].)

If G is a subgroup of some FGL(V') then u(G) denotes the unipotent
radical of G, that is, the unique maximal unipotent normal subgroup of G.
This always exists (see [5, Thm. B(v)]. Further, there is an obvious com-
pletely reducible faithful finitary action of G/u(G) on the direct sum of the
factors in a composition series of V' as FG-module. That this gives a well-
defined G/u(G)-action follows from [5, Thm. B(iv)]; the fact that it is faith-
ful comes from [5, Thm. B(iii)].

ExampLES. Except for the equalities mentioned in the Theorem, the ca-
nonical subgroups listed above are distinct in general for finitary groups. In
most cases this is already the case for linear groups. The group G below is
assumed to be finitary linear. The numbering mirrors that of the Theorem.



Nilpotence in Finitary Linear Groups 421

(a) In general, y(G) does not equal 1,(G), 11n(G), or {y(G). First, n(G)
and %,(G) can differ even in the linear case. The simplest example is prob-
ably the infinite locally dihedral 2-group G. This G is isomorphic to a linear
group of degree 2 over any algebraically closed field of characteristic not 2
and satisfies '

$u(G)=mn(G) =m(G) < G=9(G) =, +1(G).

The reader should have no difficulty in constructing a similar example that
is isomorphic to a linear group of characteristic 2 and degree 3 (but not 2).

For any totally ordered set A the McLain group M(A, F) is by definition a
unipotent finitary linear group over F (see [8, vol. 2, p. 14]). For a suitable
infinite A the group G = M(A, F) is characteristically simple [8, vol. 2, p. 15]
and so

G =4(G) > (G) = {(G) =<1).

A highly non-unipotent example of this kind is given by a suitable g-sub-
group, for g # p a prime, of an infinite finitary symmetric group embedded
into FGL(V') via permutations of a fixed basis of V. For an example, the
wreath power (see [8, vol. 2, p. 18]) over N of the cyclic group of order g
would do.

(b) In general, 7/(G) and {n,(G) differ. A characteristically simple Mc-
Lain group is again a suitable example. Incidentally, G = 5;(G) for every
unipotent finitary linear group (see [5, Thm. B(vi)]). Also, any locally nil-
potent finitary permutation group is a Fitting group [6, Thm. 3], so the pre-
ceding non-unipotent example would also do.

(c), (d) In general p(G)>¢(G) and p(G)>{,(G). The same examples
work here, too. In the statements of (c) and (d) in the Theorem, the normal-
ity of K is important. Without this restriction on X the results become very
simple.

(e) There exist finitary linear groups of arbitrary central height. There
exist hypercentral finitary linear d-groups of central height o for all ordinals
a satisfying 0 < a < w?2. There is no bound on the central height of a hyper-
central unipotent finitary linear group. We start with the third claim. It is
easy to construct unipotent groups of unbounded central height. It is less
easy to make them also hypercentral. With care the techniques below would
probably show the existence of hypercentral unipotent finitary linear groups
of arbitrary central height.

Let V be a vector space over the field F and set V*=Homg(V, F). Let
H be a hypercentral unipotent subgroup of FGL(V). Then H acts faith-
fully, finitarily, and unipotently on V* with the natural left action. If z €
$(H)\(1) then (1—z)V*=][z,V?*] is a finite-dimensional FH-submodule
of V*. A simple induction shows that V' * (and for that matter V') is H-hyper-
central.

Set W=F®V. Then W*=Homg(W, F)=F®V* in the obvious way. Let
H act on W via the trivial action on F and the given action on V. Then H
becomes a hypercentral unipotent subgroup of FGL(W). The natural action
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of H on W* is then given by the trivial action on F and the natural action
on V*, In particular, H < FGL(W*).

U=1y+V* is an abelian unipotent subgroup of FGL(W). Here, if y=
ly+¢elU, aeF, and veV, then u:a+v~(a+vep)+v. If also beF and
v*e V* then the action of ¥ on W* is given by u: b+ v*—=b+ (v*+ bp).
Hence (u—1)V*=F¢<V* and so U<FGL(W*). If he H then huh™'=
1y +heé € U. Hence H normalizes U and U=, V™.

Set G=(H, U). Then G is a hypercentral unipotent subgroup of FGL(W)
and of FGL(W*). Just as with V* and H above, so W* is G-hypercentral.
Clearly .

central height (G) = G-central height (U)... (1)
= H-central height (V'*).

We claim that G-central height (W *) = H-central height (V*) +1.

Suppose X< V*< F@®V*=W™*is an FG-submodule of W*. In the nota-
tion above, assume that b+ v*e W* is fixed by U modulo X. Then for all
¢ € V* we have

bo=(u—-1D(b+vHeX<V*

Hence b= 0. Conversely, U centralizes V*< W™, Let {{,(V*: H)} denote the
upper H-central series of V* and similarly define {{ (W *: G)}. The above
shows that ¢, (W*:G)=¢,(V*: H) for all « <+, the H-central height of V*.
Therefore

VS G)=V*<W*={ (W*: G)

and W* has G-central height v +1 as claimed.

Suppose A is a limit ordinal and assume that for each u <A there is a vec-
tor space V, over F and a hypercentral unipotent subgroup H, of FGL(V))
such that H, < FGL(V,*) and V,* has H,-central height u. Let V=@, ,V,.
The direct product H= X, H, acts as a faithful hypercentral unipotent
finitary linear group on both V and V*, and V*=[1 ., V,*. Clearly the cen-
tral height of H is the supremum of the central heights of the H,. A simple
calculation, depending on H being only the direct product, shows that

GV H)=T11 §V' H)y)

n<A

for all nonlimit ordinals o. However, if o <A is a limit ordinal then

GV HY< T GV Hy).
n<A

In particular, V'* has H-central height of exactly A+1.

We have now shown the following: given a field F and a nonlimit ordinal
o, there exists a vector space V over F and a hypercentral unipotent sub-
group H of FGL(V)NFGL(V*) such that V'* has H-central height «. Then
(*1) yields that FGL(F®V') contains a hypercentral unipotent subgroup G
with central height at least .
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Continue the notation above and let ¢ be any ordinal. Choose V and H
as before with VV'* of H-central height o = 0. If E is an extension field of F
of sufficient cardinality then there is a free subgroup L of GL(2,E) and a
homomorphism ¢ of L onto H. Set A=¢{,(U:G) and

K ={(diag(x¢-a, x): xe L and a € A).

Then K is a finitary linear group over E with central height exactly ¢. The
hypercentre of K is {diag(a, 1): ae€ A}, K/{(K)=L, and K/Cx({(K)) = H.

Finally, there exist hypercentral linear d-groups of given characteristic
and central height o for all ordinals « satisfying 0 <o < w2 and o # w (see
[10, 8.3 and its proof]). The two ordinals w and w2 can be achieved in the
finitary case by taking suitable direct products of linear d-groups.

(f) Even in the linear case, the groups [R(G), G] and R(G)/(R(G)N {(G))
need not be periodic if p =0 and need not be p’-groups if u(G) # {1). (Note
that if p =0 then by a 0’-group we mean a periodic group.)

Let N<J be normal subgroups of the subgroup G of FGL(V'). Suppose
that NeJ (resp. Ne|J); that is, assume that for all x in N and y in J there is
an integer k (resp. an integer k independent of the choice of y in J) such that
[x, xy]1=1[x,2,,...,¥]1=1 (k y’s). It seems possible that

for each finite subset X of G there is a normal subgroup K (+2)
of Gwith K2 Xand NNK = ¢,,(JNK) (resp. {,(JNK)).

If (¥2) is true then the left and right Engel cases of the Theorem could be
handled simultaneously, N =J being the left Engel case and J= G being the
right Engel case. Although we have proved special cases of (x2), the full
result has eluded us. The problem seems to reside entirely within the uni-
potent elements.

2. Generalities

Consider a finitely generated subgroup H of FGL(V'). There exist finite-
dimensional subspaces U of V with [V, H]<U and V=U+ Cy(H). Then
V=U®C for some subspace C of Cy(H), and relative to this direct de-
composition we have

h=diag(h|y,1c) forall heH. (*3)

H acts faithfully on U and so U defines a Zariski topology on H. This
topology on H is independent of the choice of U by (*3) and so we call it the
Zariski topology on H. This holds for any subgroup H of FGL(V), finitely
generated or not, for which such a finite-dimensional subspace U exists.

If K is any subgroup of H then [V,K]=<[V,H] and Cy(K)=Cy(H).
Thus U also defines the Zariski topology on K, and the Zariski topology on
H induces that topology on K. Now H=<GL(U)=<FGL(V) via (*3). Let
H be the Zariski closure of H in GL(U), regarded via (+3) as a subgroup
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of FGL(V). Then H is independent of the choice of U and we call A the
closure of H in FGL(V).

Now suppose that G is any subgroup of FGL(V). Set Gt = Uy (GNY)?,
where Y ranges over the finitely generated subgroups of FGL(V) and H°
denotes the connected component of the identity in the Zariski topology
on H=GNY. If X<Y then (GNX)°<(GNY)? and the following is im-
mediate.

2.1. G%is a normal subgroup of G such that G/G™ is locally finite.

2.2. IfGisalocally soluble subgroup of FGL(V) then (G") is unipotent.

In particular, G is locally nilpotent by abelian by locally finite (cf. [5, Thm.
A(vi)]).

Proof. IfY is a finitely generated subgroup of FGL(V), then GNY is solu-
ble [10, 3.8] and (GNY)° is triangularizable by the Lie-Kolchin theorem
[10, 5.8]. Consequently ((GNY)?)’ is unipotent. The claim follows. 1

Suppose that the field F is algebraically closed. An element g of FGL(V) is
called diagonalizable or a d-element if V is a direct sum of 1-dimensional
{g)-invariant subspaces. This happens if and only if g is diagonalizable in
the usual sense on any finite-dimensional subspace U with [V, g]<U and V=
U+Cy(g). Let ge FGL(V) and pick such a subspace U. There is a Jordan
decomposition of g | in GL(U). Hence via (*3) there is a diagonalizable ele-
ment g; of FGL(V') and a unipotent element g, of FGL(V) with g=g,2,=
g, 84. Since Jordan decomposition is unique in the finite-dimensional case,
the same applies here; that is, g; and g, are uniquely determined by g and
the preceding equality. In particular they do not depend upon the choice of
U. Of course we call g =g, g, the Jordan decomposition of g in FGL(V).

2.3. Let G be a locally nilpotent subgroup of FGL(V'). Then g~ g; and
g+ g, are homomorphisms of G onto subgroups G, and G, of FGL(V).
Also [Gy, G,1=(1) and GG;=GG,=G; X G,.

Proof. This follows easily from the linear case; see [10, 7.14f and 7.11].
(Note that G, in [10] denotes not the G, of 2.3 above but GN G, in our nota-
tion; a similar remark applies to G,,.) EI

2.4. Let G be any subgroup of FGL(V). Set K={(G) and G=K,;G=
K,G. Then ¢(G)=K;x K, and {:(G)= GNAG) for all i < w.

Proof. Modify the proof of [9, 3.1.8]. ]

Using 2.3 and 2.4 we split our problems into consideration of unipotent
groups, the G, and K,,, and d-groups, that is, groups consisting only of
diagonalizable elements, the G; and K,;. Unipotent finitary linear groups are
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unitriangularizable in the obvious sense, like their linear compatriots (see
[5, Thm. B(iii)]). With d-groups more care is needed. For example, the
linear case would suggest that abelian d-groups should be diagonalizable.
However this is not the case, as the following easy example shows.

2.5. Let V be the Cartesian product of the 1-dimensional subspaces Fuv;
fori=1,2,..., set v,=(vy, Uy, ..., U}, ...) and let V=D, ¢ Fv; be the F-sub-
space of V spanned by the v; for i = 0. Suppose F+ GF(2) and pick a € F
with «#0, 1. Let a; € End (V) be given by
a;: (ojv;) =1~ (Bjv))j=1

where sza_] if l’-'/:‘] and B,’=C¢C¥f. Then V;ia; =y, and vja;=v; for l,jZl
with i # j, and v,aq; = v, 4+ (a—1)v; € V. Thus V is an F{a;)-module. Also, g;
acts diagonally and finitarily on V; specifically, v, —v;, v;: j = 1 is an g;-basis
of V.

Set A={a;:i=1). Then A is an abelian d-subgroup of FGL(V) but A is
not diagonalizable. In a linear group, commuting d-elements generate a
diagonalizable group [10, 7.1]. Clearly A is an abelian subgroup of FGL(V)
generated by d-elements, so A is a d-group. (This is also easy to see by writ-
ing down suitable bases of V.) Suppose A is diagonalizable. Then V' contains
an A-invariant 1-dimensional subspace, say Fuv, with v ¢ EI—)jlevj. Let v=
(ajv;) € V. There exist k # I with oy # 0 # «;. Then vay — v = oy (o — 1) vy & Fo.
This contradicts the invariance of Fv. The proof is complete. O

3. Unipotent Subgroups

3.1. Let F be an algebraically closed field and G a (Zariski) closed sub-
group of GL(n, F). Suppose U is a maximal unipotent subgroup of G and
N is a closed normal subgroup of G containing every diagonalizable ele-
ment of G. Then G =UN.

Proof. The Jordan decomposition of the elements of G takes place in G;
that is, if g e G then g4, g, € G (see [10, 7.3]). Thus G/N is isomorphic to a
unipotent linear group [10, 6.4 and 6.6] and as such is nilpotent. Suppose
UN < G. Then there is a normal subgroup L of G with UN<L <G. Let
g € G\ L. The maximal unipotent subgroups of G are all conjugate [1, 1.3;
7, 4.6]. Hence there exists x € G with g, e U*. Then

g=g,84€UN=(UN)Y'<L*=L,

a contradiction. The result follows. 1

3.2. Let G be a group such that every countable subgroup of G is a Fitting
group. Then G is a Fitting group.

Proof. Certainly G is locally nilpotent. Let g € G. It suffices to prove that
{g©) is nilpotent, so assume otherwise. Then for each i >1 there is a finite
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subset X; of G such that G;=(g”: x € X;) is nilpotent of class exceeding i.
Set X =(g, X;:i=1). Then X is countable, so X is by hypothesis a Fitting
group. Therefore (g%} is nilpotent, say of class at most ¢. Then so is G,,
which is a contradiction. ]

3.3. Let N be a unipotent normal subgroup of the subgroup G of FGL(V')
such that NeG. Then:

(@) G/Cg(N) is a Fitting group; and

(b) for every finite subset X of G there is a normal subgroup K of G such
that K2 X and NNK lies in some finitely suffixed term of the upper
central series of K.

Proof. We may assume that F'is algebraically closed. Let P be the (Zariski)
closure in FGL(V) of a finitely generated subgroup of G (see Section 2) and
let M be the closure of NN P in P. Then M is a unipotent normal subgroup
of P with [M, ,P]=<(1) for some positive integer n; see [10, 4.13, 5.9, 5.10
and 1.21]. If x € P then (M, x) is nilpotent; (M, x) <{( M, x); X{M, x), by
2.3, and so x, centralizes M.

Let Q be the closure of a finitely generated subgroup of PNG. The pre-
vious paragraph shows that (y,;: y € Q) < Cy(M). Hence

(Ya:yedd= [ Co(NNP)=Cy(N).
P,P=Q

Therefore Q =U-Cy(N) by 3.1 for any maximal unipotent subgroup U of Q.

Now suppose that H is any countable subgroup of G. Then H is a union
of a chain { H;};- of finitely generated subgroups H;. Let Q; denote the clo-
sure of H; in FGL(V'). For each i pick inductively a maximal unipotent sub-
group U; of Q; with U;<U;,, for each i and set U=J;-U;. Then U is a
unipotent subgroup of FGL (V') and in particular is a Fitting group [5, Thm.
B(vi)]. Also, if 0= UJ; Q; then

H=Q= U(/}-CQE(N)=U-CQ(N).

Thus H-Cg(N)/Cg(N) is isomorphic to a section of the Fitting group U
and therefore is a Fitting group. Part (a) now follows from 3.2.

Suppose H2 X, where H=Q=U-Cy(N) is as above, and let J denote
the normal closure of NNQ in Q. From [10, 5.10] it follows that Co(N) =<
Co(J). Also, U is a Fitting group containing J. Hence there is a nilpotent
normal subgroup W of U with L=W-Cyp(N)2 X and JNCy(N)=W.
Clearly L is normal in Q. Suppose W is nilpotent of class c. Then

INNL, L]1=[JNL, L1=JNLNCy(N)=JNW.
Thus
[INOL,; L1 = [JOW, W-Co(N)1=[W, W]=(D).

Therefore NNHNL <& (HNL).
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Consider K =¢(X°) and suppose that [NNK, ;K]#(1) for i=1,2,....
Then for each i =1 there exists x;e NNK and y;,..., y; € K with [x;, y;1,
..., i1 #1. Choose a countable subset ¥ of G with (X")2{x;, y;:1=</j=<
[ <oo}. Then H={X,Y) is countable. By the above there is a normal sub-
group HNL of H and a positive integer m =2c such that HNL2 X and
[INNHNL, ,HNL]=(1). But then (XY <(X*y<HNL, x,,e NNHNL,
and the y,,;€ HNL. Consequently [X,;, ¥m1» -+ Ymm] =1. This contradic-
tion proves that NNK < {;(K) for some positive integer i. Part (b) is now
proved. O

3.4. Let G be any subgroup of FGL(V). If X is any finite subset of G then
there exists a normal subgroup K of G with K2 X and u(K) nilpotent.

The case | X |=1is Theorem B(vi) of [5]; we modify the proof there.

Proof. Let{(A,,V,): o €} beacomposition series of V as FG-module (see
[8, vol. 1] for definition). Now [V, {X)] is finite-dimensional, so there ex-
ists a finite subset «(0),..., a(r) of @ such that Vo, =V, V,;N[V,{X)] =
Ayivys and Ay ={0}. Then [V, ), (XD = Agity-

Set K =¢(X°) and U=u(K). Trivially X is a normal subgroup of G con-
taining X. Further, [V,;), K1= A, 41 since the series is G-invariant. Also U
is normal in G, so [A,,U] =<V, for every « in by [5, Thm. B(iv)]. Conse-
quently U stabilizes the series

V=Vyoy=AsyZVoy= - = Vor—1y = A = {04,

and therefore U is nilpotent (of class at most 2r —2). U]

4. d-Subgroups

4.1. Let G be a group such that N={(L(G), R(G)) is generated by soluble
normal subgroups of G. Then

L(G)=9(G)=0(G), L(G)=5(G), R(G)=p(G), R(G)=5(G).

In particular, the four Engel sets are normal subgroups of G.

This slightly generalizes Theorem 1.5 of Gruenberg’s paper [3]; the conclu-
sion there being the same as 4.1 above, but the hypothesis being that N is
soluble. In 4.1 the group N is certainly locally soluble. It would be interest-
ing if 4.1 held whenever N is just locally soluble. Certainly L(G) =5(G) and
R(G) =7(G) are always subgroups under this hypothesis.

Proof. Since N is locally soluble (and hence locally nilpotent by [2, Thm.
4]), L(G)=%(G) and R(G) are subgroups of G by [2, Lemma 14]. Let
a € L(G). Then {a®) < N is soluble by hypothesis. Consequently

aeL(a®y)=0(a®) <0o(G)
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by [2, Thm. 4] and it follows that L(G)=¢(G). A similar argument yields
that L(G) = 6(G) and further R(G) = 5(G) is an immediate consequence of
[3, Thm. 1.6].

Let a € R(G). Since we have shown that R(G) is a normal subgroup of
G, we have (a®) < R(G). Consequently (a®Ye(x,a®) for any x e G. But
(x,a%) = (x)}a%), so {x,aC) is a soluble Engel group; [2, Thm. 4] again
yields that

xeL(x,a%)=a(x,aCy).

Thus {x) is an ascendent subgroup of (x,a®) and ae p(G). Therefore
R(G) =p(G). O

* 4.2. Let G be any subgroup of FGL(V). Then N=(L(G), R(G)) is gen-
erated by soluble normal subgroups of G. In particular, the conclusions of
4.1 hold.

Proof. Since G is locally linear, the linear case yields that N is locally nil-
potent and in particular locally soluble. Let x € N. Then (x%) < N is locally
soluble and hence soluble by Proposition 1 of [5]. The proof is complete.

O
Neumann [6, p. 563] divides transitive finitary permutation groups into two
kinds, which he calls almost primitive and totally imprimitive. We refer the
reader to [6] for details. Note that in 4.3(b) below the group J acts finitarily
on {2 as a set since it acts finitarily on V as a vector space.

4.3. Let N<J be normal subgroups of the subgroup G of FGL(V) such
that NeJ and u(N) =(1). Then:

(@) [N,J] and N/(NN§(J)) are locally finite p’-groups for p =char F=
0. Also Nt < (J).

(b) Suppose V=@, .qV, is a system of imprimitivity for J in V, where Q
is infinite and J acts transitively and almost primitively on Q. Then
N=(1).

(c) Assume u(G)=/<{1). For every finite subset X of G there is a normal
subgroup K of G with K2 X, R(JNK)={,,(JNK), and R(JNK)=
{(JNK).

(d) For every finite subset X of G there exists a normal subgroup K of
G with K2 X and NNK < { ,(JNK). If in fact Ne|J then NNK <
$u(JNK).

(e) Assume u(G)=<{1). For every finite subset X of G there is a normal
subgroup K of G with K2 X and

L(K)=n(K)={u2(n(K)),  R(K)={,2(K);
L(K)=mn(K) is nilpotent,  R(K)={,(K).

Proof. (a) By 4.2 the group N is locally nilpotent, and so (see 2.3) u(N) is
exactly the set of unipotent elements of N and u(N;) = (1) for every subgroup
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Nj of N. Clearly [N,J]=Ux[NNX, X], where X ranges over the finitely
generated subgroups of J. Each [NN X, X] is a locally finite p’-group by the
linear case [9, 3.4.5]. Therefore [N, J] is a locally finite p’-group.

Now consider finitely generated subgroups X <Y of FGL(V'). By the lin-
ear case (NNY)’°=&(JNY) and (NNY)/(NNYN§(JNY)) is a (finite) p'-
group [9, 3.4.5]. Now

(NNX)’= MINNY)Y’= N (NNYNLHINY))=NNXNE ().
Y=X Y=X
First, this shows that NT=U,(NNX)°=<¢{(J). Second, it implies that
(NN X)/(NNXN¢E(J)) is finite and residually a p’-group. Therefore it is a
finite p’-group and so N/(NN¢(J)) is a locally finite p’-group.

(b) By factoring Q by a suitable congruence we may assume that J acts
primitively on Q. Set K = () ,eq Ny(w). Then J/K is FSym(Q) or Alt({)
(see [6, 2.3]). By 4.2 the group N is locally nilpotent, so certainly N< K. By
replacing J by a subgroup of index 2 if necessary we may assume that J/K =
Alt(Q).

If an element of {;(J) acts nontrivially on some ¥V, then by transitivity it
would act nontrivially on every V,,. But J is finitary and  is infinite. Therefore
¢1(J) =<(1). In particular part (a) implies that N is locally finite. Also, each
V,, is finite-dimensional since J is finitary and transitive on © and |2|> 1. Ap-
ply the linear case [10, 8.15] to the action of K on V,,. Then Nmod Cg(V,,) <
{(Kmod Ck(V,)). By finitariness K embeds into Xq K/Ck(V,,) and so N<
¢(K). Hence, assuming that N+ (1), we can pick xe NN{(K) of prime
order, g say.

Pick yK € J/K = Alt(Q) of order » > 1 and prime to q. Consider Y ={x, y).
By the linear case again x e NNY < {(Y) and so Y is nilpotent. Clearly (x¥) <
{1(K), the latter being normal in J, so {xY) is a finite (recall Y is finitely gen-
erated nilpotent) g-group centralized by y" € K. But Y stabilizes a series
in {(xY), so Y/Cy(xY) is also a g-group. Therefore y € Cy(xY) and hence
[x, y]=1. We have now proved that

C;(x)/K={ze€J/K:(|z|,q)=1).

The latter is J/K since J/K = Alt(Q2) and Q is infinite. Therefore x € {;(J).
But we saw earlier that {;(J)=(1). This contradiction completes the proof
of (b).

(¢) Since u(G) = (1) we may assume that G is completely reducible. Then
finitariness enables us to assume that G is actually irreducible. Set N= R(J).
If N=(1) or if V is finite-dimensional, choose K = G for every choice of the
subset X. Henceforth assume that neither of these degenerate cases hold.

Let X be any finite subset of G and x a nontrivial element of N. Set Y =
(x, X). Now H ={(x%) < Nis soluble by 4.2 and [5, Prop. 1]. Moreover, V is
a direct sum of finite-dimensional irreducible FH-submodules by [5, Prop.
3(ii)] and a version of Clifford’s theorem, which, in our situation, follows
from [5, Prop. 3(i)]. Now G permutes transitively the (nonzero) homoge-
neous components of V, say the V,, for w € 2, as FH-module. In particular
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the V,, are finite-dimensional, for if V=V, then H = (1) or dim V' < c. Then
Q is infinite, G acts on { via its permutation of the ¥, and G actson Q@ asa
transitive group of finitary permutations.

Suppose G acts almost primitively on Q. If J also acts almost primitively
(and transitively) on Q then N=(1) by part (b), which we have assumed is
not the case. Hence by [6, Thm. 2.3] there is a G-congruence on ) whose
blocks are all finite and fixed by J. In this case set K = G. Trivially K 2 X. By
finitariness and the linear case R(J) = {,(J) and R(J)=¢,(J).

We are left with the case where G acts totally imprimitively on €. Since Y
is finitely generated, dim[V, Y] is finite and so [V, Y] < @, V,, for some finite
subset A of Q. By [6, Thm. 2.4(i)] there is a G-congruence q on { with all its
blocks finite such that A lies in a block of q. Let K be the kernel of the action
of G on the set of q-blocks. Certainly K is a normal subgroup of G. Also, V'
is a direct sum of finite-dimensional FK-modules, so by finitariness and the
linear case again R(JNK)=¢{,,(JNK) and R(JNK)={,(JNK). Finally,
Y permutes the V,, since G does and Y acts trivially on V/[V, Y] and hence
also on Y/@, V,,. Therefore V, y=V,, for all w in 2\ A and all y in Y. It fol-
lows that Y normalizes each block of q and consequently K2Y. But Y2 X.
Therefore 4.3(c) follows.

(d) Apply part (c) to G/u(G) and use NNu(G) ={1).

(e) Since X is finite, we may assume that G is irreducible (cf. the proof of
(c)). Consider the proof of (c) with J=5(G). If N=(1) then trivially K=G
suffices. In cases where K is chosen as a subdirect product of linear groups
permuted transitively by G, the linear case yields that K has the properties
required by (e). This leaves the case where G acts almost primitively on .
Here 7(G) is a subdirect product of linear groups permuted transitively by
G. Apply part (c¢) again, but this time with /= G. For the so-constructed K
the sets R(K) and R(K) are as required. But 4(G) 2 L(K)UL(K), so the
linear case again shows that L(K) and L(K) also satisfy the requirements
of (e). O

5. Proof of the Theorem

5.1. Let N be a normal subgroup of the subgroup G of FGL(V) with
NeG, and let X be a finite subset of G. Then there exists a normal subgroup
Kof Gwith K2 Xand NNK < ¢,,(K). If in fact Ne |G then we can choose
such a K with NNK < {(K).

Proof. By 3.3(b) there is a normal subgroup L of G and a positive integer /
such that L2 X and u(N)NL =< (L). Apply 4.3(d) to the standard com-
pletely reducible faithful representation of G/u(G). Hence there is a normal
subgroup M of G with M2 u(G)UX and

(N-u(G)NM)/u(G) =< . (M/u(G)),

where « either is w2 or, if Ne|G, is w. But
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(N-u(GYNM)/u(G)=g(NNM)/u(N).

Set K=LNM. Then K is a normal subgroup of G with K2 X and NNK of
K-central height at most /+ « = « in both cases. That is, NN K =< {,(K), and
the proof is complete. |l

5.2. Let G be a subgroup of FGL(V).

(@) If G is irreducible and dimV = oo, then {(G)=/{1).

(b) G/u(G) has central height at most »2.

(c) The central height of G is bounded by the maximum of w2 and the G-
central height of {(G),=(G)/(L(G)NE(G),).

Proof. (a) Let ze€ &(G)\1). Then [V, z] is a finite-dimensional FG-sub-
module of V. Hence if {;(G) #<1) and G is irreducible then dim V' < oo,

(b) G/u(G) is isomorphic to a completely reducible group. By part (a)
and the linear case, each irreducible constituent of this group has central
height less than w2. By finitariness it follows that G/u(G) has central height
at most w?2.

(c) Set K=¢(G) and G=K,;-G. Then K;-K,={(G) by 2.4. Now, by
5.2(b) the G-central height of K, is at most w2. But K; < {(G), so the G-
central height of K is at most the G-central height of K; and so is at most
w2. Thus the central height of G is the G-central height of K, which is at
most the G-central height of K; X K,,, which is at most the maximum of w2
and the G-central height of K,,. [

Note that in the preceding proof the central height of G bounds the G-
central height of K,,. Thus part (c) implies that either G has central height
at most w2 or the central height of G is equal to the G-central height of
$(G)y.

5.3. The proof of part (a) of the theorem proceeds as follows. By 4.2 we
have L(G) = 9(G) = ¢(G). Let N=9(G)4 X 7(G), and G =GN. Then N <
7(G) by 2.3. Apply 4.3(d) to G/u(G) with J=N,-u(G)/u(G). Thus Ny is
covered by normal subgroups M of G with M =¢,_,(M). By Theorem B(vi)
of [5], we have N,<7,(G). Hence if x € 7(G) then there is a normal sub-
group M of G in N such that x =x; x, € M and M = {,(M). It follows that
NG)=(MAG: M =¢,,(M)) <n,(G) <9(G). The result now follows. [l

5.4. For the proof of part (b) of the theorem, note that by 4.2 we have
L(G) = (G). Repeat the proof of 5.3 with N=L(G),;x L(G),. We obtain
that N, <#,(G), while N; <5(G). If xe N, then {xC) is soluble (4.2) and
hence is isomorphic to a subdirect product of irreducible linear groups [5,
Prop. 3(ii)]. Each of the latter is nilpotent, so (x%y=¢,(x%)). But each
£({x%)y) is normal in G. Hence (x%) = {;({(x)) for some i < w and (x°) is
nilpotent. It follows that N, < 5,(G) and hence that

L(G) = 9(G)NG = ,(G) = L(G). O
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5.5. The proof of parts (c), (d), (e), and (f) of the theorem is as follows.
That R(G) = p(G) = {(G) and R(G) = 5(G) = {,(G) come from 4.2. The re-
mainder of parts (c) and (d) is given by 5.1. Part (e) is simply 5.2 (b). For
Part (f), set G= G-R(G),. The local linearity of G yields R(G), eG, so by
4.3(a) the groups [R(G)4, G] and R(G),;/(R(G)sN ¢ (G)) are locally finite
p’-groups. If p >0 then R(G), is a locally finite p-group [5, Thm. B(i)] and
so [R(G), G] and R(G)/(R(G)N&(G)) are locally finite groups. Alterna-
tively, if uR(G) =(1) then these two groups are locally finite p’-groups di-
rectly by 4.3(a). Cl
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