Extension Domains for A, Weights

PETER J. HOLDEN

1. Introduction

In this paper we determine conditions on a bounded domain D in RN (N = 2)
so that every A, weight on D can be extended to an 4, weight on RYN. We
also give boundary conditions on a Jordan domain D in R? so that D is an
extension domain for A4,,.

Let D be a connected open set in RY, N > 2. A positive, locally integrable
function w on D is said to belong to the class A,(D), 1< p <oo, if

| 1 1 \V/(p=1 p—1
e TR A1 N

where §, denotes the set of all cubes contained in D. The class A,(D) has
been extensively studied in the case D= R¥; they are precisely the class of
weights for which, for example, the Hardy-Littlewood maximal function

Mf(x)=sup —

s IQI S | £(D)]

satisfies

g(Mf(x))Pw(x) dx=<C, S] F0)|Pw(x) dx.

There is a close connection between A,(D) and the space of functions of
bounded mean oscillation, abbreviated BMO(D). We say f € BMO(D) if

& ot o
where fo = (1/|Q|) [ fdt denotes the average of f on Q. This connecticn is
as follows. If we A4,(D) then log w e BMO(D), while if fe BMO(D) then
(by the theorem of John and Nirenberg) e® € 4,(D) for some §> 0.

We say that the domain D is an extension domain for A,(D) if whenever
we A,(D) there exists We Ap(RN) such that W=w a.e. on D. Extension
domains for BMO are defined analogously and have been characterized in
[6], where it is shown that D is an extension domain for BMO if and only if

| f—Sol <o,
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D is a uniform domain. Before defining a uniform domain, we introduce
two metrics on D. For any points x, y e D we define

. 1
k(x,y)=inf\ ——ds,
0% S'Y 6(X)
where the infimum is taken over all rectifiable arcs v in D connecting x
and y. (Here 6(x) =dist(x, dD).) The metric k is called the quasihyperbolic
metric on D. If E|, E, € D we define k(E}, E,) = infye g, yer, K(X, ). In [4]
it is shown that

o(x)
1.2 k(x,y)=|log ——
(1.2) (x,y) = |log 5(7)
and
k(x,y)zlog(1+'x_y|>, x,yeD,
o(x)

and hence k(x,y)=j(x,y) where

PR | lx=y| |x—y|
J(x’y)—2l°g<l+ 5(x) X” 5(7) >

A domain D is then said to be uniform if there exist constants a,  such that

k(x,y)<aj(x,y)+b, x,yeD.

(An equivalent description of uniform domains is given in [3].) The above
metrics can be interpreted through a Whitney decomposition of D, by which
we mean a decomposition of D into cubes {Q;} with U Q; = D satisfying:

o'NQY=0, j#k;

l<1(Qf) 1 . .
5T =4 1 oNe=
dist(Q;, D) ]
1< S <4+/N, =12,....
=Tung,y oV

We will denote the collection of Whitney subcubes of D by E. If Qi OkeE
we say
Qi=0(0)-» Q) > - > Q(m)=Q

is a Whitney chain connecting Q; to Q if Q(i) e E, Q(i)NQ(i+1) # @, and
we define the length of this chain to be m. We denote the length of the short-
est chain conn~ecting Q; and Qy by IE(QJ-, Qy); then it is easy to show k is
equivalent to k on E. Likewise, j is equivalent to j on E, where

)|, { d(0;, Op) }
100 | ) +1ico T3

Here d(, ) denotes the Euclidean metric.

1.3) J(Q;, Ox) = |log
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The proof of Theorem 1 in [6] consists of relating the average of a BMO(D)
function on small Whitney cubes to the average on some large Whitney
cube, the differences in the averages being bounded by the lengths of the
corresponding shortest Whitney chain which is then controlled by (1.3) in a
uniform domain. This method does not work for A, weights; the lengths of
the Whitney chains are too long for the 4, condition, even in the case when
D is the upper half-plane. Furthermore, easy examples show that not every
uniform domain is an extension domain for 4,,. To circumvent this we in-
troduce certain large cubes into the domain, through which to connect the
Whitney cubes. The precise statement of our theorem is as follows.

THEOREM 1. Let D be a bounded uniform domain in RY satisfying the
Jollowing property: There exist MeN, a,b,ro>0, K >1, and a positive
bounded increasing function e(r) with lim, _, , e(r) =0 such that, for all 0 <
r<roand peaD, there exist M cubes Q,, ..., Qs S B(p, Kr) with I(Q:) =
(1/K)r such that for all xe B(p,r)ND

(1.4) min k(x, Q) <alog (1 + ‘;((2; )+ b.

Then D is an extension domain for A,.

We note that in a uniform domain, the extra condition in Theorem I holds
with e(r) replaced by some € > 0. Indeed, the proof of Lemma 2.3 in [7]
shows that B(p,r) contains a Whitney cube Q with /(Q)=(1/K)r. It is
straightforward to show that (1.4) holds for this cube.

The proof of Theorem I in Section 2 utilizes the following theorem of
Wolff [9].

THEOREM 1. Let ECRY, |E|>0. Then, for 1< p <, the following are
equivalent:

(1) there exists WeAp(RN) such that W=w a.e. on E;
(2) there exists e >0 such that

1 e g 1 1 1/(P—1)d p-1
sup{ — w Tqdx )| — X < oo,
QE%(IQI Jone )(IQI SQnE(wa) )

Here F denotes the set of all cubes in RY. A proof of this result may be found
in [5]. The proof of Theorem I consists of showing that to each Qe &, QO
small, there exists Q’e F, with Q” approximately the same length as Q and
such that

1 \//(p=D 1 \//(p=1)
wdx<C S wdx and S (-—) dx=<C S (—) dx.
Qo onbD Q'

SQOD w w

In the case where Q € & is large, we subdivide Q into small cubes and apply
the above to each of these small cubes.
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In Section 3 of this paper we consider boundary conditions on a Jordan
domain in R? so that D is an extension domain for A,. Let vy be a (closed)
Jordan curve in R? and let y(p,, p,) denote the subarc of v of smaller Eu-
clidean diameter connecting p, and p,. We say that vy is quasiconformal if
the quantity

— + —_
max [P P[P
pPeY(py,p2) lpl—pzl

y P1sPr2€7,

is bounded. In [6], it is shown that a Jordan domain D is uniform if and
only if dD is quasiconformal. We say v is asymptotically conformal if v is
quasiconformal and

—_— + —_
hax |p—pi|+|p—p,)]

-1 as |py—p,|—0.
pev(p,p2) Ipl—pzl

Asymptotically conformal curves have been studied previously in [1] and
[8]. The theorem we obtain as a direct consequence of Theorem I is the
following.

THEOREM IlI. Let D be the region interior to an asymptotically conformal
curve v in R%. Then D is an extension domain for A,.

2

Let we A,(D). Then wlte € A, (D) for some e >0 (the proof of this fact is
entirely analogous to the proof of the corresponding result in R"; see [2,
§VI.6]). Hence, according to Theorem 1, in order to prove Theorem I it
suffices to establish

1 1 1/(p-1) r—1
weAp(D)=>Z:1;(IQ| S wdx)(I—Q—] SQnD(W) dx) < 0,

Throughout the remainder of this section w will denote a fixed A4 » Weight on
D, and C will denote various constants which will depend only on |w|,, N.
and the constants M, K, a, b, ry occurring in the statement of Theorem I.
Furthermore, we will assume that diam(D) <1.

LEMMA 1.

(1) we A,(D) implies (1/w)/?=Ve A (D), g=p/(p—1).
(2) If Q€ 5, then

1
@S wdx = CCXP(IQIX logwdx).
(3) If Q1, Q2 € E then

wdx < Cexp(Ck(Q;, Q,)) —— wdx.

1
IEI_ sQl IQZI S
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(4) There exists 0 < a <1 such that if Q € F and E is a measurable subset

of Q, then
_ (B
SEde._C(—IQ—I) SQ wdx.

(5) If Qla Qzego, ng Ql, then

1 IQII)""1 1
— dx<C dx.
o Jo, "% <|Q2| 0] SQK *

Proof. The proofs of (1), (2), and (4) are analogous to the proofs of the cor-
responding results in RY (see [2, §V1.6]). (3) follows from (2) and Lemma
2.2 in [6]. To prove (5), we have

1 1 1 1/(p-1) p—1
ol =l la) )
|Q2|>p—-l( 1 (1 )1/(.0—1) )p—l
C - —_
/(IQll |0, SQz w dx
|Q1|)p_l( 1 )
C d.
(IQzI Iy Jo,

by Hoélder’s inequality. O]

IA

IA

LEMMA 2. Let Q,, Q,€F, satisfy
1 dist(Q;,dD)

M) gs =gy SCi=12
(2) k(Q, Q) =C.
Then

%SQ wdszQ wdstSQ wdx.
2 1 2

Proof. Let Qi, Q3 be cubes in E that contain the centers of Q,, Q, respec-
tively. Then (1) implies

I(O!
isi@sc, i=1,2.
Cc Q)

(1) also implies that there are at most C cubes in E that intersect each of Q,
and Q,. Together with (2), this easily implies k(Qj, Q3) < C. In particular,
by (1.3),

2.1

1 1(Q1)
— =< <C
C =10y
and hence
1 _ Q)
2.2) C =< 0,) =<C.
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Since Qj contains the center of Q;, Q; N Q; contains a cube Q7 with /(Q}) =
(1/2+/N ) min(/(Q;), /(Q})). Together with (2.1) we also have /(Q;) <
Cl(Q/) and I(Q}) = CI(Q)), i =1, 2. Hence, by Lemma 1(5),

1 1
- dx<(C——
101] SQI W =Cron Sgr"’dx

Q1] 1
<C wdx
1] 10i] iga
1
=C wdx
|01l SQi
1
|03
IQEI)"‘I 1
Cl—== — wdx by Lemma 1(5)
<‘Q2 |03 SQE

i |
wdx
103 Jos .

1 .
wdx.
|Q2| §Q2

Together with (2.2) we thus have

=C

S “wdx by Lemma1(3)
Q2

IA

=C

=<C

SQ wdx < CSQ wdx.
1 2

The proof of {5, wdx < C o, wdx is the same. W]

We will also require the following lemma, the proof of which is contained
in the proof of Lemma 2.8 in [6].

LEMMA 3. There exists k € N such that if Q €T then there exists a dyadic
subcube Q' of Q with I(Q’) =2"%I(Q) such that dist(Q’, dD) = [(Q’).

We now set various constants. Choose m € N and m > k with 2~ < 1/32K2.
Choose §; so that e(10KN2"6,) <1/20KN and let 6, =min(ry/20KN, 6,,1).
Now let Q, € F,. We want to establish

1 1 11/(P—1) p-1 .
e (g fono ") (ay o) @) <©

clearly it suffices to assume 0 <|Q,ND|<|Qy|, for otherwise (2.3) is trivial.
We will first assume /(Qy) < 6. Let Qp denote the cube with the same center as
Qo and of length 2K+/N I(Q,). Then Qj contains a cube Q € E with /(Q) =
(1/32K2)1(Q}). Indeed, if pe QyNAD then QyND < B(p, /N I(Qp)). The
hypothesis of the theorem implies there exists Q'S B(p, K~/N I(Qy))ND
with /(Q’) = (\/N/K)1(Q,); in particular, Q’ < Qf. Now Q’ contains a cube
Qe E with 1(Q)=(1/16)1(Q’). Hence Q< Q} and 1(Q) = (1/32K2)1(Q}).
We will denote Qf, by Q, and note now that /(Q,) < 2K~/N &,, and we will
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establish (2.3) for this cube. By redefining the grid of dyadic cubes we can
assume that Q, is dyadic.

We now apply Lemma 3 to obtain a dyadic decomposition of QyND. Let
Go={Q,} and subdivide Q, into 2" cubes [Q}} of equal length, and let

Fi={Q]cQ€E};
G,=(Qj:|QjND|>0}.
Since Q, contains a cube Q € E with /(Q) = (1/32K?%)I(Q,), F; ##. Thus
SUQjl: 0} € G\ Fi} < (1-2"N)|Q|.
Subdivide each Q} € G|\ F; into 2" cubes {Q}} of equal length, and let
F,={0}: 0} QeE};
G,=(Q}:|Q}ND|>0}.

Then F, # @, since some cube Q] € F is adjacent to a cube O} € G;\ F;. Be-
cause Q} is contained in a cube Q € £ and each dyadic cube of length él (Q)
adjacent to Q is contained in some Q'€ E, it follows that Q} contains a cube
Q7 that is contained in some Q”€ E. In particular, Q? € F,. By Lemma 3,
each Q] € G|\ F] contains either a cube Q7 € F, or a cube Q? ¢ G,. Thus if
0O} € G|\ F, we have

SHUQ7: OF < Ok, O € G\ R} =< (1-2"M)|Q}|

and hence
S0} |: OF € G\ R} < (1-2"N)| Q.
Continue forming {Q}}, {QJ‘-‘}, s F3, Fy, ..., Gy, Gy, ... . A cube QF satisfies
I(Q})=2"""1(Qp) and QF < Qf~! for some Of~'e G,_,\ F,_,. Define
F,=1Q}: Q] S QeL};
G,=(Qr:|Q/ND|>0).
The above arguments show that F), # @ and

SHQf|: 9f € G\ F,} < (1-2"%)"|Qy|,

and hence QoND=U5;_,{Q: Qe F,}.
Now, for each k=0, let A\, =5+/N27™%-Dj(Q,) and define a sequence
{nk] by g = 0 and

1 1
(2.4 ng=ny_ +[——10 (———)]+2, k=1,
=M1 g2 Eo‘nk_l)

where [ ] denotes the greatest integer function.
Now if Qe G, then Q < Q, for some Q, € G,_;\ F,,_;. This implies
dist(Q, aD) =+/N I(Q,) +dist(Q,, D)
< (N +1)I(Qy)
= 2JN27m0=Dy(Q,),
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and hence there exists p € D such that QN.D < B(p, \,). The hypothesis of
Theorem I implies there exist M cubes R;(Q), ..., Ry (Q) S DNB(p,K\,)
with /(R;(Q)) = K ~'\, such that if xe QN D then

o(x)

_Now if ny <n<ng,, then to each Q} € F, we will associate a cube Q7,
Q' € R;(Q), for some Q € G, and satisfying:

) k(Q,ON=C; )

(2) (1/C)(Q)) = dist(QF, dD) = CI(Q);

3) i1: Q € G, then each point x € R;(Q) is contained in at most C cubes

Q7.

To obtain the cubes Q}’ we proceed as follows. Each Q/ € F), is contained

in some Q€ G,, . Furthermore, if x € Qf then

6(x) = 27"+11(Qy)

2—3m
= _5_\/_—]\76(>\nk))\nk by (2.4)

=n06(>‘nk))\nk’ Say’

Thus by (2.5), for some cube R;(Q), k(x, R;(Q)) < alog(l1+1/q99) + b =
an;+ b, say. Now let

oo )
J

2.5) k(x, UR;(Q))salog<1+M>+b.

and note that since
I(R = -—1 A, = —-2 / (2" / (2”

we have p=2. Subdivide R;(Q) into 27V subcubes {P;} of equal length.
Choose one such cube for which k(Q7, P;) <an;+ b and denote this cube
by Q~j-’. Then clearly (1) holds. Furthermore, by the choice of p,

1 —(an+b) n yn 1
e (O <I(QO]) =

To prove (2), let x; € QF, y € QF be such that k(x,, ¥) < an;+ b. Then by (1.2)

(2.6) e~ l@am+d(Qn).

e_(anl'*'b) < _6(x_l_) < ea"l'l'b,
o(»)

and hence if x € Q7 is such that 8(x) =dist(Q/, D) then
5()() = 5()(1)
Seam-{-b&(y)

<l
<CI(J") by (2.6).
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Also,
5(x) = 8(x)—VN I(Q})
= e~ (m+D5(y)— /N U(Q])
= e~ e+ OO — N I(T))
=NI(Q]) by(R.6),
and (2) now follows. _ _

To prove (3), suppose Q, € F,,,, Q, € F,,, n=m> n;, and Q,NQ; # 0. Then
by (1) and (2), k(Qy, Q,) < C. Thus if Qf, Q; € E contain Q;, Q, respectively
then k(Qj, Q5) < C. Hence by (1.3) we have d(Qj, Q3) = C(/[(Q1) +{(Q3))
and 1/C <1(Q5)/1(Q}) < C. Then since /(Q}) < CI(Q;), i=1,2, it follows
that /(Q,) < CI(Q,) and d(Q,, Q,) < CI(Q,) and (3) follows easily.

Properties (1) and (2) and Lemma 2 imply

SQ" wdstSw wdx.
j

Q;

Together with (3) this implies

Rry4 M
2.7 h D § wdx=C Y S wdx.
n=m+1 QleF, 9 QeG,, i=1"Ri(Q)
We now claim that, for each Qe Gy,
M
2.8 wdx=<C wdx.
9 igl SR;'(Q) SR;(Q)
To prove this, we note that if Q; € E contains the center of R;(Q) then
1 _IR(Q) _
C 1(Q;)
and hence
1" I(Q))
2.9) — =< =C,
C 1(Q)

since I(R;(Q)) = [(R,(Q)). Furthermore, Q; N R;(Q) contains a cube Q; with
I(Q])=(1/C)YI(R;(Q)). Thus, by Lemma 1(5)

S wdstE wdstj wdx,
R;(Q) O Q;
and similarly
(2.10) S wdstS wdx.
Q; R;(O)

Since the cubes R;(Q) are contained in a sphere of radius < C/(R(Q)), we
have

(2.11) dist(Q;, Q1) = CI(R(Q)) = CI(Qy).
(2.9) and (2.11) imply £(Q;, O;) = C. Hence by Lemma 1(3) and (2.10) we have
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S wdstS wdstS wdx,
Q; Q) R(QD)
and (2.8) follows. Thus (2.7) reduces to
B+
2.12) D> j wdx<C 3 S wdx.
n=ng+1 QJ"IEF,, Qj QGG R{(Q)

Now to each cube R(Q), Q€ G, , k=1, we w111 associate a cube R;(Q)
satisfying the following properties:
(1) R, (Q)<SR;(Q,) for somel<i<M, Q,eG,
(2) Sry0) wdx = C f o) wdx;
3) if Q,€ G,,_, then each point x € R;(Q,) is contained in at most C
cubes RI(Q) QeG,,

k-1°

(4) For each Q, € Gp,_»» 1<isM, let
E(Q)= U {R(Q):R(Q)SR(Q)}.
QeGnk

Then |E;(Q))| <€ |Ri(Q))|, where {e} is a positive decreasing sequence
with Iimk_,w 6k=0. _
To obtian the cube R,(Q) we proceed as follows. Fix R;(Q), Q€ Gy, Let
Q, € E contain the center of R;(Q). Then
[(Qy) =dist(Qy, aD)

</NI(R(Q)) +dist(R,(Q), 3D)
(2.13) <K~NX\, +K\,,

<20KN2"27™k[(Q,)

<27"M%=11(Qyp),

where the last inequality follows from (2.4) and the assumption e(\
1/20KN. Also,

o= %KRI(Q»

(2.14) 1
16K 1o

> 2—m(nk+N1)1(Q0)

for some N; € N. Now @, contains a cube Q, € F,, with /1(Q,)=27"1(Q,).
By (2.13) and (2.14) we have n;_; <n < n;+ N;+1. Now the same construc-
tion that was used to obtain cubes QF when Qf € F,, ny_,; <n=<n, can be
used to obtain a cube 0, contained in some R;(Q), Q€ G, «_,» and satisfying
the following properties:

(i) (1/C)I(D,) =dist(Q,,dD) < CI(D,);
(i) k(Qy, Or)=C.
We note that (i) and (ii) imply

(i )————<I(Q2)_Candhenc 1 _ I(RI(Q))_

C Q) C Q)
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We define R,(Q) to be 0,, and it remains to verify properties (2)-(4). To
prove (2), we first note that Q;NR,(Q) contains a cube Qf with /(Qf) =
(1/C) min(/(R;(Q)), I(Q;)). Thus by Lemma 1(5),

SRI(Q)

SCS~ wdx:CS_ wdyx,
Q> R1(Q)

where the last inequality follows from properties (i) and (ii) and Lemma 2,
and (2) now follows.

To prove (3), we will show that if Qy, 0, € G,, and R,(Q,)NR(Q,)# 0
then d(Q,, Q,) < CI(Q,), from which (3) will follow. Fori=1, 2let Q; € E be
the cube considered above that contains the center of R;(Q;). Then /(Q}) <
CI(Q;) and k(Qj, R(Q;)) = C (by (i1)), and d(Q;, Q;) = CI(Q;) (since R;(Q;)
is contained in a sphere of radius < C/(Q;)). Together with (i) this implies

k(Q1, Qz) = C and hence d(Qj, Q3) = C(I(Q1)+1(Q53)) = CI(Q1) = CI(Qy).

Thus d(Qy, @,) = CI(Qy). _
To prove (4), we note that if x € E;(Q,) then x € R (Q) for some Q€ G, .

Thus, by (i),
8(x) = CI(R(Q))
</(R,(Q)) by (iii)
=< CIl(Q).
Hence
|E;(Q)|= CIQ)(I(R{(Q))N !
1(Q)
= C(I(Q1)>|Ri(Ql)l
= C2"k-1=W|R(Qy)
<Ce(\,,_)|Ri(Q1)] by(2.4)
= EklRi(Ql)I:

where €, —» 0 as k — .
Returning to (2.12), we have

it

> 3 | ,waxsc

n=m+1 QleF, Qj QeGnkSRl(Q)

<C 3 S wdx by (2)

Q<G,, 'RiIQ)

M
<C wdx by (3
S 3,0 y )

QIEG”k—-Z i=1

wdx
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M
<c ¥ I

Qleo”k—l i=1
M

(LE(QLH

IR (Ql)l) SR ) wdx by Lemma 1(4)
A

IA

Cef wdx by 4)

01€Gy, _, i=1 sRi(Qﬂ
<Cef 3 S wdx by (2.8).
0i1eG,,_, “RiQD

Proceeding by induction we have

TS k o
S 3 S nwdxsck( Hej) S wdx.
n=nyp+1 QJ”EFH Q_,' Jj=1 R(Qq)
Hence
[ wax=% 'S 3
wdx = S wdx
QoND k=0 n=ni+1 leF, *Qf
ny k o
=y 3 S wdx+ 2 C"( Hfj) S wdx
n= le eF Q k=1 _[=l R](QO)
SCS wdx+C§ wdx since e, —» 0
Ri(Qy) Ri(Qop)
SCS wdx.
R1(Qo)

Applying the same arguments as above to the weight (1/w)Y?=D yields

1 \M/(p-1) 1 \M/p=1
S <—> dstS (—) dx.
QoND\ W Ri(Qp) \ W

Hence, since 1/C < I(R;(Qu))/I(Qy) = C we have

1 1 1\/P-1 p—1
(oo

and (2.3) in the case /(Qg) < 65 now follows.

Suppose now that Qo€ F, /(Qy) > 8y, and 0<|QyND|<|Qyl|- Let m be
the first positive integer for which 27/(Q,) < 8, and subdivide Q, into 2™V
cubes Q,, O, ... of equal length. Since diam(D) <1, there exist at most M
of these cubes which intersect D, where M < (2/8,)". By relabelling we can
assume these cubes are Qy,..., Q;;. By what we established above, there
exist cubes Qy, ..., Qs contained in D such that

1 Q) )
2.15) —=<——=<C, l=i=M,
( 10y
and
(2.16) S wdstS wdx, 1<i<M.
o,ND O}

Furthermore, if Q/ € E contains the center of Q; then
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1 _ Q7
. — =C
2.17) C 10)
and
(2.18) SQ; wdx=<C SQ'? wdx.
(2.16) and (2.18) imply
M
SQOHD de“,EIS ,nD
M
=C wdx.
P
Also, (2.15) and (2.17) imply
< HaN
=<C.
C l(Q

Together with the fact that diam(D) < 1 this implies k(Qy, Qf) < C. Thus, by
Lemma 1(3) we have

A_}ES ”wdstS wdx

109 Qi
Hence

wdstSQ” wdx
1

and similarly, applying the above arguments to the weight (1/w)Y/(?~1, we

have
1/(p—-1) 1/(p—-1)
S <l> dx<C g <l> dx.
QoND\ W AN

Since /(Q7) = CI(Q,) we have

1 1 1 1/(p—-1) p—1
(107 Sawro ") (@7 Soror) )
1 1/(p—-1) p—1
(g o ") (i V) )

<C,
and this establishes (2.3) in the case /(Q,) > 6, and completes the proof of
Theorem I. O

Jouno

REMARKS. (1) If in the statement of Theorem I all cubes are assumed
to have sides parallel to the axes, and if we define the 4, condition by (l.1)
where we now take the supremum over all cubes Q € D with sides parallel
to the axes, then D will be an extension domain for this class of A, weights;
the proof is the same as the proof above.
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(2) We give an example to illustrate that Theorem I is sharp. Let {«,}, >0
be a positive decreasing sequence with o, <27". Let 5,=X%_¢ ay, D, =
{(x,)is,<x=<5,,.1,0=<y=<27"}, D=int(U,,~ ¢ D,). It is straightforward
to show that if lim,, _, , «,27" = 0then D satisfies the hypothesis of Theorem
I and hence will be an extension domain for 4,. Suppose lim,, _, o, ,27" > 0.
Then it is clear that any cube contained in D can intersect at most C rec-
tangles D,. Hence w=X(1/|D,|)xp, belongs to A,(D) for all p>1 while
§p wdx = o0, and so D will not be an extension domain for A,,.

3
In this section we prove Theorem II. We will assume diam(D) = 1. Denote by
— + -—
p(6)= sup ( max |P1=psl+|P, p3l>—-1.
|p1—p2| <6 \ p3€7(P1,P2) |p1— D5

Choose ry < 1/48 and such that u(8ry) <1/32.
If r < ry we define p(r) to be the smallest positive number such that, when-
ever /1, [,, [; are three sides of a triangle which satisfy p(r)r < /; < 8r, we have

3.1 L+l=z(+pBr))l, i#j#k.
(We assume ry, is sufficiently small so that p(r) < %.) Let
e(r)=6(p(r)+4u(r))r

and note that lim, _, ; e(r) = 0. Now whenever p € dD and r < ry we will con-
struct a cube Q € DN B(p, Cr) such that if x e B(p, r)N D then there exists
y € Q such that 6(y)=8(x) and |x—y|=<e(r)r. Then, since D is uniform,
we have

k(x,Q)<k(x,y)

salog(l-i— Ix_—yl)+b

o(x)

e(r)r
Salog(l+w)+b

and so Theorem II will follow from Theorem I. To obtain the cube Q satis-
fying the above, we proceed as follows. Fix an orientation of v so that D
lies to the left of v and traverse v from p in this direction. Let p,, p, be the
first and last points in yNB(p, 2r). Then clearly p € v(p;, p»). We also note
that

|p—pi|+|p— D,

—p,|=
| p1— D3 T+ n(dr)
4r
> -
14 u(4r)

> 3r.
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Let /( pq, p,) denote the line segment connecting p,, p, and let Q;, O, be the
two cubes with sides coinciding with /(p,, p,). Translate each cube by an
amount p(r)r in a direction perpendicular to /(p;, p,) so that p, and p, are
not contained in the resulting cubes, which we again denote by Q,, Q,. We
claim Q;Ny=4#, i=1,2. We will prove this for i =1; the case i =2 is the
same. Suppose v intersects Q, in the point p;. Then p,, p,, p; are the vertices
of a triangle, the side lengths of which satisfy (3.1). Hence p; ¢ v(p;, i),
i # j# k. This means that

(3.2) Y=v(P1, P2)YUv(D2, P3)Uv(D1, P3).
Now if gy, ¢, € v(pi, pj) then

lay— 2| =< Hla1— pil + a1 —pj|+122— pi| + a2 — b} [}
= (1 +ul|pi—p;|)) | Pi—pjl
<lér<i.

Thus diam(y(p;, p;)) < 1 and hence, by (3.2), diam(y) < % which contradicts
the assumption diam(y)=1. Hence Q; N~y =@ and similarly Q,Ny=4@. Let
Q be the Q; that lies to the left of v, so that Q< D.

Now if xe B(p, r)ND and 6(x) > (p(r)+4u(r))r then we claim x € Q. In-
deed, if ye dD and |y —x|=6(x) then |y— p|=<2r and hence y € y(p;, p2)- A
calculation then gives dist(y, /(p,, p>)) < 4u(r)r and hence dist(x, /(p, p2)) =
p(r)r, which implies x € Q. Suppose 6(x) < (p(r)+4u(r))r. Then

dist(x, /(p1, p2)) < (p(r)+8u(r))r
which implies
dist(x, Q) < (2p(r)+8u(r))r
< %I(Q).

Hence there exists y € Q such that 6(y) = é(x) and

|y —x|=3(2p(r)+8u(r))r
<e(r)r,

and this completes the proof of Theorem II. U
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