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1. Introduction

Let 3C be a separable, infinite dimensional, complex Hilbert space, and let
£(3C) be the algebra of all bounded linear operators on JC. A dual algebra
is a subalgebra of £(3C) that contains the identity operator 75 and is closed
in the ultraweak operator topology on £(3C). Note that the weak* topology
on £(3C) coincides with the ultraweak operator topology on £(J3C). The
theory of dual algebras is closely related to the study of the classes A, ,, (t0
be defined below), where m and » are any cardinal numbers such that 1<
m, n < X,. The structures of the classes A, , have been applied to the topics
of invariant subspaces, dilation theory, and reflexivity (cf. [6]). In particu-
lar, the study of these classes has been focused in the last five years on suffi-
cient conditions that a contraction 7€ £(JC) belongs to some A, .. An ab-
stract geometric criterion for membership in Ay x was first given in [1]. Ina
sequel to this study, Brown-Chevreau-Exner-Pearcy (cf. [8], [11], [12], [13])
obtained some relationships between dual algebras and Fredholm theory,
and established topological criteria for membership in Ay x or A; y,. Re-
cently many authors have studied sufficient conditions.for membership in
the class Ay g, Ag,, x, OF A (cf. [10], [14], [15], [18]). In particular, in [11]
Chevreau-Exner-Pearcy obtained some surprising and unexpected charac-
terizations of the class Al,xo- As a sequel to these studies, in this note we
define a certain hereditary property concerning the minimal isometric dila-
tion of a contraction operator 7 in A, namely property (H), and show that
T e A(3C) has property (H) if and only if Te A, ..

2. Notation and Preliminaries
The notation and terminology employed herein agree with that in [2], [6],

and [19]. The class @,(JC) is the Banach space of trace-class operators on JC
equipped with the trace norm. The dual algebra @ can be identified with the
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dual space of Q4= C;(3C)/*@, where *@ is the preannihilator in G;(3C) of
@ under the pairing

(2.1) (T,[L]lg)=tr(TL), TeQ, [LleQq-

We write [L] for [L]s when there is no possibility of confusion. If x and y
are vectors in JC, we denote by x®y the rank 1 operator whose action is
(x®@y)(u)=(u,y)x for all 4 in 3C.

DEFINITION 2.1 (cf. [6]). Suppose m and » are cardinal numbers such
that 1 =m, n<R,. A dual algebra @ will be said to have property (A,, ,) if
every m X n system of simultaneous equations of the form

2.2) [%;®y1=[L;l, 0<i<m, 0<j<n,

where {[L;;1}0<i<m,0<j<n 1S an arbitrary m X n array from Q, has a solu-
tion {X;}o<;<m» {Vj}o<j<n consisting of a pair of sequences of vectors from
JC. We usually shorten (A, ;) to (A,).

We write D for the open unit disc in the complex plane and T for the bound-
ary of D. The space L? =L?(T), 1 < p <o, is the usual Lebesgue function
space relative to normalized Lebesgue measure m on T. The space H?” =
H?(T) is the usual Hardy space. It is well known (cf. [6]) that the space H*®
is the Banach dual of L'/H], where Hj is the subspace of H' consisting of
those functions whose zeroth Fourier coefficient vanishes.

A contraction operator T is absolutely continuous if in the canonical de-
composition T=T,@T,, where T; is a unitary operator and 7 is a com-
pletely nonunitary contraction, 7; is either absolutely continuous or acts on
the space (0). For 7T in £(3C) we denote by @ the (unital) dual algebra gen-
erated by 7, and by Q7 the predual of @;. It is well known that an abso-
lutely continuous contraction 7 has a Sz.-Nagy-Foias functional calculus
®,: H® - Qp defined by ®+(f) = f(T) for each fin H*. (A full exposition
may be found in [6].) We denote by A = A(JC) the class of all absolutely
continuous contractions 7 in £(3C) for which &4 is an isometry (in which
case 7 maps H* onto G). For any m and n we denoteby A, , = A, ,(3C)
the class of 7' in A for which @y has property (A, ,).

For T in £(3C) we let Lat(7T") denote the lattice of subspaces invariant for
T. If M e Lat(T) we write T | N for the restriction of 7 to IN. A subspace X
is semi-invariant for 7T if there exist 9 and 9T in Lat(7T) with M D N such
that X =MOIN. If X is semi-invariant for 7, we write Ty =Py T|X for
the compression of 7 to X, where Py is the orthogonal projection whose
range is X.

We say that an operator B is an extension of T if there exists O in Lat(B)
such that 7= B|9W; B is a dilation of T if there is a semi-invariant subspace
X for B such that T'= By. It is well known from [19] that an absolutely con-
tinuous contraction 7" has a minimal isometric dilation and a minimal co-
isometric extension, where minimality is defined in a natural way.
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3. Property (H) and the Class A, y,

Let T be a contraction operator in £(JC). We denote by By e £(X) a min-
imal isometric dilation of 7. Then it follows from the Wold decomposition
theorem (cf. [19, Thm. 1.1.1]) that

(3.1 Br=Ur®Ryr,

where Ure £(Uy) is a (forward) unilateral shift operator and Ry e £(Ry)
is a unitary operator. Furthermore, it follows from (3.1) that

(3.2) B = U ®ORy

is a minimal co-isometric extension of 7°*.

Suppose T € £(3C) has an invariant subspace 9 with M = (0). Then a
minimal isometric dilation B € £(X) is an isometric dilation of 7" | M. Hence
T|9M has a minimal isometric dilation Br|gy € £(X) such that MC K C XK
with & in Lat(By) and Br g = B | K. We use this notation throughout the
following definitions.

DEFINITION 3.1. Let T be a contraction operator in £(3C). We say T has
property (H) if, for any O e Lat(T") with 9 # (0), the minimal isometric di-
lation Brqy € £(X) of T'| 9 obtained as a restriction By | & with K € Lat(Br)
satisfies Uz gz C U7

DEFINITION 3.2. A contraction operator 7 € A has property (H) if there
exists O € Lat(7") such that 7|9 e A(M) and 7 |9 has property (H).

If T e Co(3C) (i.e., if |T*"x| — O for all x € IC), then it is easy to show that T
has property (H) (cf. [2, Cor. 1.2.11]). Hence a unilateral shift U of any
multiplicity has property (H). Let W be a bilateral shift of some multiplic-
ity. It is easy to show that W does not have property (H) but does have prop-
erty (H).

Recall that a completely nonunitary contraction 7" e £(J3C) is said to be of
class C if there exists u e H®, u #0, such that u(7T)=0.

PROPOSITION 3.3. If Uis a unilateral shift of multiplicity 1, then U* dces
not have property (H). But U* |0 has property (H) for any nontrivial in-
variant subspace M for U*.

Proof. Let us take a nontrivial invariant subspace 9T for U*, and let 7=
U*| 9. Since T e CyC C,, by [2, Cor. 1.2.11] By is a unilateral shift oper-
ator of multiplicity 1. But By is a bilateral shift of multiplicity 1; hence U*
cannot have property (H). For the second statement, let 91T be a nontrivial
invariant subspace for U*. Again, U*|9M € C.,. Hence U* |9 has property
(H), and the proof is complete. |

The following is the main theorem in this paper. The study of A,y in [11]
used heavily the minimal co-isometric extension of an operator 7. We give
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a characterization of the class founded instead on the minimal isometric
dilation.

THEOREM 3.4. Suppose T € A(3C). Then the following statements are
equivalent:
(1) Te Ay x,(3C);
(2) there exists an invariant subspace I for T such that T | M e AN C.y;
(3) T has property (H).

The proof of Theorem 3.4 will appear in the next section.

4. Proof of the Main Theorem

Let T be a contraction in £(JC) and suppose that M e Lat(7T"). Recall (cf.
[71, [11], and [17]) that I is an analytic invariant subspace for T if there
exists a nonzero conjugate analytic function e: A — e, from D into 9 such
that (7| M —N)*e, =0, Ae D. If in addition to those conditions the function
e satisfies Vy cp e\, =M, then M is said to be a full analytic invariant sub-
space for T. It follows from [11, Thm. 6.2] that if T e Ay, x,(3C) then T has a
full analytic invariant subspace 9. In particular, we have
4.1) M=V Ker(T|M—N)*

AeD
The following lemma is [12, Prop. 2.8]. Recall that T'e C,. if |T"x|— 0 for
all x in JC.

LEMMA 4.1. Let T be a contraction in £(3C). Let % ACD and let M be
a nonempty set of natural numbers. Suppose

“4.2) M= V Ker(T—-N)".
AeA
neM

Then T|M e C,..

The following proposition shows (1) = (2), and follows easily from the above
remarks and Lemma 4.1.

PROPOSITION 4.2. If Te A, 3,(3C), then there exists an invariant sub-
space M for T such that T|Me ANC,.

Let 7€ A(3C). Recall that there is, for each X\ in D, an element [C,] of Q1
of norm 1 and satisfying, for all f in H*,

4.3 . (A(T),[C\D=FN),

where f is the analytic extension of f to D (see [6, §IV]).
The next lemma is a useful tool from [16]; see [6, proof of Thm. 6.6] for
the sketch of an essentially similar result.
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LEMMA 4.3. IfTe A(3C), then for any positive integer n there exist an in-
variant subspace M, for T and an orthonormal set {e{™}" _ in M, such that

(4.4a) e e Ker(T |9, )** ©OKer(T | M,,)** !
and
(4.4b) [e"®eM],.=[Cyl;, k=1,2,...,n.

The following lemma is the key step in the proof that (3) = (1).

LEMMA 4.4. Suppose T € A(3C) has property (H). Then there exists a
sequence { f;}7-1 of unit vectors in 3C satisfying

(4.5a) [f;®f1=[Colr, j=1,2,...,

and

(4.5b) lim|[f;®z]7]=0 forall zeJC.
J

Proof. Let By e £(X) be a minimal isometric dilation of 7. Then B7 is a min-
imal co-isometric extension of 7* Suppose B} = U@ R}, where Ur € £(U)
is a unilateral shift operator and R € £(®) is a unitary operator. By Lemma
4.3 we may produce, for each positive integer n, a subspace 9, € Lat(T)
and an orthonormal set {e{}?_, in 9M,, such that

(4.6a) e eKer(T|M,)*, k=1,2,...,n,
and
(4.6b) e ®elM]1,.=[Cyly, k=1,2,...,n.

Let B, € £(X,) be the minimal isometric dilation of 7|9, obtained as
By | &, for some &, in Lat(B7). Then B} is a minimal co-isometric exten-
sion of (7|91,)*. Suppose

4.7) By =U; @Ry,

where U, e £(U,) is a unilateral shift operator and R,e £(®,) is a uni-
tary operator. From (4.6a) and (4.7) it is easy to show that e{” e U,, k=
1,2,...,n. Since T has property (H) we have U, C U for all », and thus
ef™ e U for all pairs k and 7 with n a positive integer and 1<k <n.

As in the proof of [6, Thm. 6.6], from the finite orthonormal sets {e{}? _ ,
n=1,2,..., we may extract a sequence {f;};-; of unit vectors weakly con-
vergent to zero and satisfying [f;®f;]1=[Cylr for all j (where each f; is
some e{™). Briefly, if {w;}{, is an orthonormal basis for 3C then it suffices to
choose the sequence {f;}%- from among the e{" so that |(w;, f;)| <1/V/ for
all 1 </ =< j. This may be achieved by considering, for n=j2, the 8, X n rec-
tangular array whose (i, k)th entry is |(w;, e{™)|?, and noting that there must
exist some column for which the sum of the first j entries is less than or
equal to 1/;.
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Let Pq be the orthogonal projection from X onto U. Observe finally that
for each j, and for any z € JC,
IL;®z]7] = [z ®f;17+
(4.8) =|[z®fi1s;l since ICe Lat(B7)
=|[Puz® 15,
where the last equality follows from f; € U and ‘U reducing for Bf. But since

Ji € U we also have that |[Pqy z® fi1p:] = [Po 2®f;1y;zl- Then, since { £;}7-
is weakly convergent to zero, we have

4.9) lim| [Py 2® f; 13| =0,
J

using U7 € Cy. and citing [12, Prop. 2.7]. Thus from (4.8) we have

(4.10) lim| [f;®z]7]=0,
J
and since each f; is some el we have, for each j,
@4.11) [fi®fi1=[Colr
from (4.6b). Therefore the sequence {f;}7-; satisfies (4.5a) and (4.5b) as
desired. L]

Suppose @ C £(JIC) is a dual algebra and 0 < <y =<1. Asin [13], we denote
by &3(Q) the set of all [L] in Q4 for which there exist sequences {x;};%~; and
{¥:i}i= from the closed unit ball of JC satisfying

(4.122) lim sup|[L] - [x;®y;]|=0
and T
(4.12b) I[x;®2z]] =0 (i > ), forall zeJC.

The dual algebra @ is said to have property Ej ., (for some 0<f0<vy=<1)
if the smallest closed absolutely convex set containing &)(®) contains the
closed ball By ., of radius  centered at the origin in Qg:

(4.13) aco(&p(@)) D {[L]1€ Qq: |[L]]|=v].

It follows from [11, Thm. 6.2] that 7€ A, x if and only if T€ A and QG has
property Eg ;.
Now we are ready to show that (3) =(1).

PROPOSITION 4.5. Suppose T'e€ A(3C). If T has property (H), then T e
AI,NO(JC)-

Proof. Without loss of generality we may assume that 7" has property (H).
For according to [16, Lemma 3.14], if for some 9N € Lat(7) we have T'|M €
Al’xo, then T € Al,xo. Furthermore, by [11, Thm. 6.2] it is sufficient to show
that G has property Ej ;. Moreover, according to [6, Prop. 1.21] it is enough
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to show that for each A in D we have [C, ] in §3(Q7). Finally, as in the proof
of [6, Prop. 6.1], it is sufficient to construct a sequence {x;}7=, of unit vec-
tors from JC such that

(4.14&) [xk®xk]T=[CO]T: k=1,23---s

and

(4.14b) lim|[x,®z]|=0 forall ze€JC.
k

But the existence of such a sequence is exactly the conclusion of Lemma 4.4,
and the proof is complete. Ol

Since we have observed before that [2, Cor. 1.2.11] shows (2) = (3), the proof
of Theorem 3.4 is complete.

REMARK. One might consider a property (H,) analogous to (H) but con-
cerning instead the shift parts of the minimal co-isometric extensions of T’
and 7' |9N. It is not too hard to show, however, that every contraction has
this property (H,) (the reason is essentially that a unitary operator is very
far from being C,.).
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