Dual Operator Algebras and a Hereditary Property of Minimal Isometric Dilations

GEORGE R. EXNER & IL BONG JUNG

1. Introduction

Let 3C be a separable, infinite dimensional, complex Hilbert space, and let $\mathfrak{L}(\mathfrak{IC})$ be the algebra of all bounded linear operators on \mathfrak{IC} . A dual algebra is a subalgebra of $\mathfrak{L}(\mathfrak{K})$ that contains the identity operator $I_{\mathfrak{K}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{K})$. Note that the weak* topology on $\mathfrak{L}(\mathfrak{K})$ coincides with the ultraweak operator topology on $\mathfrak{L}(\mathfrak{K})$. The theory of dual algebras is closely related to the study of the classes $A_{m,n}$ (to be defined below), where m and n are any cardinal numbers such that $1 \le$ $m, n \leq \aleph_0$. The structures of the classes $\mathbf{A}_{m,n}$ have been applied to the topics of invariant subspaces, dilation theory, and reflexivity (cf. [6]). In particular, the study of these classes has been focused in the last five years on sufficient conditions that a contraction $T \in \mathcal{L}(\mathcal{K})$ belongs to some $\mathbf{A}_{m,n}$. An abstract geometric criterion for membership in A_{\aleph_0, \aleph_0} was first given in [1]. In a sequel to this study, Brown-Chevreau-Exner-Pearcy (cf. [8], [11], [12], [13]) obtained some relationships between dual algebras and Fredholm theory, and established topological criteria for membership in A_{\aleph_0, \aleph_0} or A_{1, \aleph_0} . Recently many authors have studied sufficient conditions for membership in the class A_{1,\aleph_0} , A_{\aleph_0,\aleph_0} , or A (cf. [10], [14], [15], [18]). In particular, in [11] Chevreau-Exner-Pearcy obtained some surprising and unexpected characterizations of the class $A_{1,80}$. As a sequel to these studies, in this note we define a certain hereditary property concerning the minimal isometric dilation of a contraction operator T in A, namely property $(\hat{\mathbf{H}})$, and show that $T \in \mathbf{A}(\mathfrak{IC})$ has property $(\tilde{\mathbf{H}})$ if and only if $T \in \mathbf{A}_{1,\aleph_0}$.

2. Notation and Preliminaries

The notation and terminology employed herein agree with that in [2], [6], and [19]. The class $\mathcal{C}_1(\mathcal{K})$ is the Banach space of trace-class operators on \mathcal{K} equipped with the trace norm. The dual algebra \mathcal{C} can be identified with the

Received September 7, 1990. Revision received September 9, 1991.

The second author was partially supported by a grant from TGRC-KOSEF and Korea Research Foundation, Ministry of Education, 1990–1991. Michigan Math. J. 39 (1992).

dual space of $\mathbb{Q}_{\alpha} = \mathbb{C}_1(\mathcal{K})/^{\perp}\Omega$, where $^{\perp}\Omega$ is the preannihilator in $\mathbb{C}_1(\mathcal{K})$ of Ω under the pairing

(2.1)
$$\langle T, [L]_{\alpha} \rangle = \operatorname{tr}(TL), \quad T \in \mathfrak{A}, \quad [L] \in \mathfrak{Q}_{\alpha}.$$

We write [L] for $[L]_{\alpha}$ when there is no possibility of confusion. If x and y are vectors in \mathcal{K} , we denote by $x \otimes y$ the rank 1 operator whose action is $(x \otimes y)(u) = (u, y)x$ for all u in \mathcal{K} .

DEFINITION 2.1 (cf. [6]). Suppose m and n are cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra α will be said to have property $(\mathbf{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

$$[x_i \otimes y_i] = [L_{ij}], \quad 0 \le i < m, \ 0 \le j < n,$$

where $\{[L_{ij}]\}_{0 \le i < m, 0 \le j < n}$ is an arbitrary $m \times n$ array from $\mathbb{Q}_{\mathfrak{A}}$, has a solution $\{x_i\}_{0 \le i < m}, \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathfrak{F} . We usually shorten $(\mathbf{A}_{n,n})$ to (\mathbf{A}_n) .

We write **D** for the open unit disc in the complex plane and **T** for the boundary of **D**. The space $L^p = L^p(\mathbf{T})$, $1 \le p \le \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on **T**. The space $H^p = H^p(\mathbf{T})$ is the usual Hardy space. It is well known (cf. [6]) that the space H^∞ is the Banach dual of L^1/H_0^1 , where H_0^1 is the subspace of H^1 consisting of those functions whose zeroth Fourier coefficient vanishes.

A contraction operator T is absolutely continuous if in the canonical decomposition $T = T_1 \oplus T_2$, where T_1 is a unitary operator and T_2 is a completely nonunitary contraction, T_1 is either absolutely continuous or acts on the space (0). For T in $\mathcal{L}(\mathcal{C})$ we denote by \mathcal{C}_T the (unital) dual algebra generated by T, and by Q_T the predual of \mathcal{C}_T . It is well known that an absolutely continuous contraction T has a Sz.-Nagy-Foiaş functional calculus $\Phi_T \colon H^\infty \to \mathcal{C}_T$ defined by $\Phi_T(f) = f(T)$ for each f in H^∞ . (A full exposition may be found in [6].) We denote by $\mathbf{A} = \mathbf{A}(\mathcal{C})$ the class of all absolutely continuous contractions T in $\mathcal{L}(\mathcal{C})$ for which Φ_T is an isometry (in which case Φ_T maps H^∞ onto \mathcal{C}_T). For any m and n we denote by $\mathbf{A}_{m,n} = \mathbf{A}_{m,n}(\mathcal{C})$ the class of T in \mathbf{A} for which \mathcal{C}_T has property $(\mathbf{A}_{m,n})$.

For T in $\mathfrak{L}(\mathfrak{K})$ we let $\operatorname{Lat}(T)$ denote the lattice of subspaces invariant for T. If $\mathfrak{M} \in \operatorname{Lat}(T)$ we write $T \mid \mathfrak{M}$ for the restriction of T to \mathfrak{M} . A subspace \mathfrak{K} is semi-invariant for T if there exist \mathfrak{M} and \mathfrak{N} in $\operatorname{Lat}(T)$ with $\mathfrak{M} \supset \mathfrak{N}$ such that $\mathfrak{K} = \mathfrak{M} \bigcirc \mathfrak{N}$. If \mathfrak{K} is semi-invariant for T, we write $T_{\mathfrak{K}} = P_{\mathfrak{K}}T \mid \mathfrak{K}$ for the compression of T to \mathfrak{K} , where $P_{\mathfrak{K}}$ is the orthogonal projection whose range is \mathfrak{K} .

We say that an operator B is an extension of T if there exists \mathfrak{M} in Lat(B) such that $T = B \mid \mathfrak{M}$; B is a dilation of T if there is a semi-invariant subspace \mathcal{K} for B such that $T = B_{\mathcal{K}}$. It is well known from [19] that an absolutely continuous contraction T has a minimal isometric dilation and a minimal coisometric extension, where minimality is defined in a natural way.

3. Property ($\tilde{\mathbf{H}}$) and the Class \mathbf{A}_{1,\aleph_0}

Let T be a contraction operator in $\mathfrak{L}(\mathfrak{K})$. We denote by $B_T \in \mathfrak{L}(\mathfrak{K})$ a minimal isometric dilation of T. Then it follows from the Wold decomposition theorem (cf. [19, Thm. I.1.1]) that

$$(3.1) B_T = U_T \oplus R_T,$$

where $U_T \in \mathfrak{L}(\mathfrak{A}_T)$ is a (forward) unilateral shift operator and $R_T \in \mathfrak{L}(\mathfrak{R}_T)$ is a unitary operator. Furthermore, it follows from (3.1) that

$$(3.2) B_T^* = U_T^* \oplus R_T^*$$

is a minimal co-isometric extension of T^* .

Suppose $T \in \mathfrak{L}(\mathfrak{K})$ has an invariant subspace \mathfrak{M} with $\mathfrak{M} \neq (0)$. Then a minimal isometric dilation $B_T \in \mathfrak{L}(\mathfrak{K})$ is an isometric dilation of $T \mid \mathfrak{M}$. Hence $T \mid \mathfrak{M}$ has a minimal isometric dilation $B_{T \mid \mathfrak{M}} \in \mathfrak{L}(\tilde{\mathfrak{K}})$ such that $\mathfrak{M} \subset \tilde{\mathfrak{K}} \subset \mathfrak{K}$ with $\tilde{\mathfrak{K}}$ in $\text{Lat}(B_T)$ and $B_{T \mid \mathfrak{M}} = B_T \mid \tilde{\mathfrak{K}}$. We use this notation throughout the following definitions.

DEFINITION 3.1. Let T be a contraction operator in $\mathfrak{L}(\mathfrak{IC})$. We say T has property (\mathbf{H}) if, for any $\mathfrak{M} \in \operatorname{Lat}(T)$ with $\mathfrak{M} \neq (0)$, the minimal isometric dilation $B_{T|\mathfrak{M}} \in \mathfrak{L}(\tilde{K})$ of $T|\mathfrak{M}$ obtained as a restriction $B_T|\tilde{K}$ with $\tilde{K} \in \operatorname{Lat}(B_T)$ satisfies $\mathfrak{U}_{T|\mathfrak{M}} \subset \mathfrak{U}_T$.

DEFINITION 3.2. A contraction operator $T \in A$ has property (\overline{H}) if there exists $\mathfrak{M} \in \text{Lat}(T)$ such that $T \mid \mathfrak{M} \in A(\mathfrak{M})$ and $T \mid \mathfrak{M}$ has property (H).

If $T \in C_{.0}(\mathfrak{IC})$ (i.e., if $||T^{*n}x|| \to 0$ for all $x \in \mathfrak{IC}$), then it is easy to show that T has property (**H**) (cf. [2, Cor. I.2.11]). Hence a unilateral shift U of any multiplicity has property (**H**). Let W be a bilateral shift of some multiplicity. It is easy to show that W does not have property (**H**) but does have property ($\tilde{\mathbf{H}}$).

Recall that a completely nonunitary contraction $T \in \mathcal{L}(\mathcal{K})$ is said to be of class C_0 if there exists $u \in H^{\infty}$, $u \not\equiv 0$, such that u(T) = 0.

PROPOSITION 3.3. If U is a unilateral shift of multiplicity 1, then U^* does not have property (\mathbf{H}) . But $U^* \mid \mathfrak{M}$ has property (\mathbf{H}) for any nontrivial invariant subspace \mathfrak{M} for U^* .

Proof. Let us take a nontrivial invariant subspace \mathfrak{N} for U^* , and let $\tilde{T} = U^* | \mathfrak{N}$. Since $\tilde{T} \in C_0 \subset C_{.0}$, by [2, Cor. I.2.11] $B_{\tilde{T}}$ is a unilateral shift operator of multiplicity 1. But B_{U^*} is a bilateral shift of multiplicity 1; hence U^* cannot have property (**H**). For the second statement, let \mathfrak{M} be a nontrivial invariant subspace for U^* . Again, $U^* | \mathfrak{M} \in C_{.0}$. Hence $U^* | \mathfrak{M}$ has property (**H**), and the proof is complete.

The following is the main theorem in this paper. The study of A_{1,\aleph_0} in [11] used heavily the minimal co-isometric extension of an operator T. We give

a characterization of the class founded instead on the minimal isometric dilation.

THEOREM 3.4. Suppose $T \in \mathbf{A}(\mathfrak{IC})$. Then the following statements are equivalent:

- (1) $T \in \mathbf{A}_{1, \aleph_0}(\mathfrak{H});$
- (2) there exists an invariant subspace \mathfrak{M} for T such that $T \mid \mathfrak{M} \in \mathbf{A} \cap C_{\cdot 0}$;
- (3) T has property $(\tilde{\mathbf{H}})$.

The proof of Theorem 3.4 will appear in the next section.

4. Proof of the Main Theorem

Let T be a contraction in $\mathfrak{L}(\mathfrak{IC})$ and suppose that $\mathfrak{M} \in \operatorname{Lat}(T)$. Recall (cf. [7], [11], and [17]) that \mathfrak{M} is an analytic invariant subspace for T if there exists a nonzero conjugate analytic function $e: \lambda \to e_{\lambda}$ from \mathbf{D} into \mathfrak{M} such that $(T | \mathfrak{M} - \lambda)^* e_{\lambda} = 0$, $\lambda \in \mathbf{D}$. If in addition to those conditions the function e satisfies $V_{\lambda \in \mathbf{D}} e_{\lambda} = \mathfrak{M}$, then \mathfrak{M} is said to be a full analytic invariant subspace for T. It follows from [11, Thm. 6.2] that if $T \in \mathbf{A}_{1, \aleph_0}(\mathfrak{IC})$ then T has a full analytic invariant subspace \mathfrak{M} . In particular, we have

(4.1)
$$\mathfrak{M} = \bigvee_{\lambda \in \mathbf{D}} \operatorname{Ker}(T \mid \mathfrak{M} - \lambda)^*.$$

The following lemma is [12, Prop. 2.8]. Recall that $T \in C_0$. if $||T^n x|| \to 0$ for all x in $\Im C$.

LEMMA 4.1. Let T be a contraction in $\mathfrak{L}(\mathfrak{IC})$. Let $\emptyset \neq \Lambda \subset \mathbf{D}$ and let M be a nonempty set of natural numbers. Suppose

(4.2)
$$\mathfrak{M} = \bigvee_{\substack{\lambda \in \Lambda \\ n \in M}} \operatorname{Ker}(T - \lambda)^{n}.$$

Then $T \mid \mathfrak{M} \in C_0$.

The following proposition shows (1) \Rightarrow (2), and follows easily from the above remarks and Lemma 4.1.

PROPOSITION 4.2. If $T \in \mathbf{A}_{1, \aleph_0}(\mathfrak{F})$, then there exists an invariant subspace \mathfrak{M} for T such that $T \mid \mathfrak{M} \in \mathbf{A} \cap C_{.0}$.

Let $T \in \mathbf{A}(\mathfrak{IC})$. Recall that there is, for each λ in \mathbf{D} , an element $[C_{\lambda}]$ of \mathbb{Q}_T of norm 1 and satisfying, for all f in H^{∞} ,

$$(4.3) \qquad \langle f(T), [C_{\lambda}] \rangle = \tilde{f}(\lambda),$$

where \tilde{f} is the analytic extension of f to **D** (see [6, §IV]).

The next lemma is a useful tool from [16]; see [6, proof of Thm. 6.6] for the sketch of an essentially similar result.

LEMMA 4.3. If $T \in \mathbf{A}(\mathfrak{K})$, then for any positive integer n there exist an invariant subspace \mathfrak{M}_n for T and an orthonormal set $\{e_k^{(n)}\}_{k=1}^n$ in \mathfrak{M}_n such that

(4.4a)
$$e_k^{(n)} \in \operatorname{Ker}(T \mid \mathfrak{M}_n)^{*k} \ominus \operatorname{Ker}(T \mid \mathfrak{M}_n)^{*k-1}$$

and

(4.4b)
$$[e_k^{(n)} \otimes e_k^{(n)}]_T = [C_0]_T, \quad k = 1, 2, ..., n.$$

The following lemma is the key step in the proof that $(3) \Rightarrow (1)$.

LEMMA 4.4. Suppose $T \in \mathbf{A}(\mathfrak{IC})$ has property (**H**). Then there exists a sequence $\{f_i\}_{i=1}^{\infty}$ of unit vectors in \mathfrak{IC} satisfying

$$[f_j \otimes f_j] = [C_0]_T, \quad j = 1, 2, ...,$$

and

(4.5b)
$$\lim_{j} ||f_{j} \otimes z|_{T}|| = 0 \quad \text{for all } z \in \mathcal{K}.$$

Proof. Let $B_T \in \mathcal{L}(\mathcal{K})$ be a minimal isometric dilation of T. Then B_T^* is a minimal co-isometric extension of T^* . Suppose $B_T^* = U_T^* \oplus R_T^*$, where $U_T \in \mathcal{L}(\mathcal{U})$ is a unilateral shift operator and $R_T \in \mathcal{L}(\mathcal{R})$ is a unitary operator. By Lemma 4.3 we may produce, for each positive integer n, a subspace $\mathfrak{M}_n \in \text{Lat}(T)$ and an orthonormal set $\{e_k^{(n)}\}_{k=1}^n$ in \mathfrak{M}_n such that

(4.6a)
$$e_k^{(n)} \in \text{Ker}(T \mid \mathfrak{M}_n)^{*k}, \quad k = 1, 2, ..., n,$$

and

(4.6b)
$$[e_k^{(n)} \otimes e_k^{(n)}]_T = [C_0]_T, \quad k = 1, 2, ..., n.$$

Let $B_n \in \mathfrak{L}(\tilde{\mathcal{K}}_n)$ be the minimal isometric dilation of $T \mid \mathfrak{M}_n$ obtained as $B_T \mid \tilde{\mathcal{K}}_n$ for some $\tilde{\mathcal{K}}_n$ in Lat (B_T) . Then B_n^* is a minimal co-isometric extension of $(T \mid \mathfrak{M}_n)^*$. Suppose

$$(4.7) B_n^* = U_n^* \oplus R_n^*,$$

where $U_n \in \mathfrak{L}(\mathfrak{A}_n)$ is a unilateral shift operator and $R_n \in \mathfrak{L}(\mathfrak{R}_n)$ is a unitary operator. From (4.6a) and (4.7) it is easy to show that $e_k^{(n)} \in \mathfrak{A}_n$, k = 1, 2, ..., n. Since T has property (**H**) we have $\mathfrak{A}_n \subset \mathfrak{A}$ for all n, and thus $e_k^{(n)} \in \mathfrak{A}$ for all pairs k and n with n a positive integer and $1 \le k \le n$.

As in the proof of [6, Thm. 6.6], from the finite orthonormal sets $\{e_k^{(n)}\}_{k=1}^n$, n=1,2,..., we may extract a sequence $\{f_j\}_{j=1}^\infty$ of unit vectors weakly convergent to zero and satisfying $[f_j \otimes f_j] = [C_0]_T$ for all j (where each f_j is some $e_k^{(n)}$). Briefly, if $\{w_i\}_{i=1}^\infty$ is an orthonormal basis for 3C then it suffices to choose the sequence $\{f_j\}_{j=1}^\infty$ from among the $e_k^{(n)}$ so that $|(w_i, f_j)| \le 1/\sqrt{j}$ for all $1 \le i \le j$. This may be achieved by considering, for $n = j^2$, the $\aleph_0 \times n$ rectangular array whose (i, k)th entry is $|(w_i, e_k^{(n)})|^2$, and noting that there must exist some column for which the sum of the first j entries is less than or equal to 1/j.

Let $P_{\mathfrak{U}}$ be the orthogonal projection from \mathfrak{K} onto \mathfrak{U} . Observe finally that for each j, and for any $z \in \mathfrak{K}$,

(4.8)
$$\begin{aligned} \|[f_j \otimes z]_T\| &= \|[z \otimes f_j]_{T^*}\| \\ &= \|[z \otimes f_j]_{B_T^*}\| \quad \text{since } \Im \mathbb{C} \in \text{Lat}(B_T^*) \\ &= \|[P_{\mathfrak{A}} z \otimes f_j]_{B_T^*}\|, \end{aligned}$$

where the last equality follows from $f_j \in \mathfrak{U}$ and \mathfrak{U} reducing for B_T^* . But since $f_j \in \mathfrak{U}$ we also have that $\|[P_{\mathfrak{U}}z \otimes f_j]_{B_T^*}\| = \|[P_{\mathfrak{U}}z \otimes f_j]_{U_T^*}\|$. Then, since $\{f_j\}_{j=1}^{\infty}$ is weakly convergent to zero, we have

(4.9)
$$\lim_{j} ||P_{\mathfrak{U}}z \otimes f_{j}||_{U_{T}^{*}}|| = 0,$$

using $U_T^* \in C_0$ and citing [12, Prop. 2.7]. Thus from (4.8) we have

$$\lim_{j} \|[f_j \otimes z]_T\| = 0,$$

and since each f_j is some $e_k^{(n)}$ we have, for each j,

$$(4.11) [f_j \otimes f_j] = [C_0]_T$$

from (4.6b). Therefore the sequence $\{f_j\}_{j=1}^{\infty}$ satisfies (4.5a) and (4.5b) as desired.

Suppose $\alpha \subset \mathcal{L}(\mathcal{C})$ is a dual algebra and $0 \le \theta < \gamma \le 1$. As in [13], we denote by $\mathcal{E}'_{\theta}(\alpha)$ the set of all [L] in \mathbb{Q}_{α} for which there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ from the closed unit ball of \mathcal{L} satisfying

(4.12a)
$$\limsup_{i \to \infty} ||[L] - [x_i \otimes y_i]|| \le \theta$$

and

$$(4.12b) ||[x_i \otimes z]|| \to 0 (i \to \infty), for all z \in 3\mathbb{C}.$$

The dual algebra \mathfrak{A} is said to have property $E'_{\theta,\gamma}$ (for some $0 \le \theta < \gamma \le 1$) if the smallest closed absolutely convex set containing $E'_{\theta}(\mathfrak{A})$ contains the closed ball $B_{0,\gamma}$ of radius γ centered at the origin in $\mathfrak{Q}_{\mathfrak{A}}$:

$$(4.13) \overline{\operatorname{aco}}(\mathcal{E}'_0(\alpha)) \supset \{[L] \in \mathcal{Q}_\alpha \colon ||[L]|| \leq \gamma\}.$$

It follows from [11, Thm. 6.2] that $T \in \mathbf{A}_{1, \aleph_0}$ if and only if $T \in \mathbf{A}$ and α_T has property $E'_{0,1}$.

Now we are ready to show that $(3) \Rightarrow (1)$.

PROPOSITION 4.5. Suppose $T \in \mathbf{A}(\mathfrak{K})$. If T has property $(\tilde{\mathbf{H}})$, then $T \in \mathbf{A}_{1,\aleph_0}(\mathfrak{K})$.

Proof. Without loss of generality we may assume that T has property (**H**). For according to [16, Lemma 3.14], if for some $\mathfrak{M} \in \text{Lat}(T)$ we have $T \mid \mathfrak{M} \in \mathbf{A}_{1, \aleph_0}$, then $T \in \mathbf{A}_{1, \aleph_0}$. Furthermore, by [11, Thm. 6.2] it is sufficient to show that \mathfrak{A}_T has property $E_{0, 1}^r$. Moreover, according to [6, Prop. 1.21] it is enough

to show that for each λ in **D** we have $[C_{\lambda}]$ in $\mathcal{E}'_0(\mathfrak{A}_T)$. Finally, as in the proof of [6, Prop. 6.1], it is sufficient to construct a sequence $\{x_j\}_{j=1}^{\infty}$ of unit vectors from \mathcal{K} such that

$$(4.14a) [x_k \otimes x_k]_T = [C_0]_T, k = 1, 2, ...,$$

and

(4.14b)
$$\lim_{k} ||[x_k \otimes z]|| = 0 \quad \text{for all } z \in \mathfrak{IC}.$$

But the existence of such a sequence is exactly the conclusion of Lemma 4.4, and the proof is complete. \Box

Since we have observed before that [2, Cor. I.2.11] shows (2) \Rightarrow (3), the proof of Theorem 3.4 is complete.

REMARK. One might consider a property (\mathbf{H}_*) analogous to (\mathbf{H}) but concerning instead the shift parts of the minimal co-isometric extensions of T and $T \mid \mathfrak{M}$. It is not too hard to show, however, that every contraction has this property (\mathbf{H}_*) (the reason is essentially that a unitary operator is very far from being $C_{0\cdot}$).

ACKNOWLEDGMENTS. The authors wish to thank Professor Carl Pearcy for his support and encouragement, and the referee of an earlier version of this paper for valuable comments.

References

- 1. C. Apostol, H. Bercovici, C. Foiaş, and C. Pearcy, *Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra*. I, J. Funct. Anal. 63 (1985), 369-404.
- 2. H. Bercovici, *Operator theory and arithmetic in* H^{∞} , Math. Surveys Monographs, 26, Amer. Math. Soc., Providence, RI, 1988.
- 3. ——, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math. (2) 128 (1988), 399–413.
- 4. ——, A contribution to the structure theory of the class A, J. Funct. Anal. 78 (1988), 197–207.
- 5. H. Bercovici, C. Foiaş, and C. Pearcy, *Dilation theory and systems of simultaneous equations in the predual of an operator algebra*. I, Michigan Math. J. 30 (1983), 335–354.
- 6. ——, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., 56, Amer. Math. Soc., Providence, RI, 1985.
- 7. S. Brown, *Full analytic subspaces for contractions with rich spectrum*, Pacific J. Math. 132 (1988), 1–10.
- 8. S. Brown, B. Chevreau, and C. Pearcy, *On the structure of contraction operators*. II, J. Funct. Anal. 76 (1988), 30–55.
- 9. A. Brown and C. Pearcy, *Introduction to operator theory. I, Elements of functional analysis*, Springer, New York, 1977.

- 10. B. Chevreau, Sur les contractions à calcul fontionnel isométrique. II, J. Operator Theory 20 (1988), 269-293.
- 11. B. Chevreau, G. Exner, and C. Pearcy, *On the structure of contraction operators*. III, Michigan Math. J. 36 (1989), 29-62.
- 12. B. Chevreau and C. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal. 67 (1986), 360-379.
- 13. ——, On the structure of contraction operators. I, J. Funct. Anal. 76 (1988), 1–29.
- 14. G. Exner and P. Sullivan, Normal operator and the classes A_n , J. Operator Theory 19 (1988), 81-94.
- 15. I. Jung, Dual operator algebras and the classes $A_{m,n}$. I, J. Operator Theory (to appear).
- 16. ——, Dual operator algebras and the classes $A_{m,n}$, Thesis, Univ. of Michigan, 1989.
- 17. R. Olin and J. Thompson, *Algebras of subnormal operators*, J. Funct. Anal. 37 (1980), 271–301.
- 18. P. Sullivan, Subnormal operators in A, J. Operator Theory 18 (1987), 237-248.
- 19. B. Sz.-Nagy and C. Foiaş, *Harmonic analysis of operators on the Hilbert space*, North-Holland, Amsterdam, 1970.

G. Exner
Department of Mathematics
Bucknell University
Lewisburg, PA 17837

I. Jung
Department of Mathematics
College of Natural Sciences
Kyungpook National University
Taegu 702-701
Korea