On the Fourier Series of a Step Function

T. SHEIL-SMALL

Introduction

In recent years there has been a growth of interest in the interplay between
Fourier series and harmonic mappings of the disc, with particular emphasis
on connections with the topology of curves. Examples of this are:

(1) Hall’s work [3] establishing the correct value of the Heinz constant
concerning the Fourier coefficients of a circle mapping;

(2) the paper by Clunie and the author [2] taking the first steps towards
establishing a general theory of univalent harmonic functions;

(3) several papers by Hengartner and Schober, including one containing
a harmonic version of the Riemann mapping theorem [4] and a sec-
ond studying a class of open harmonic mappings and their boundary
behaviour [5]; and

(4) the author’s paper [7] proving Shapiro’s conjecture on the Fourier co-
efficients of an N-fold mapping of the circle and the discovery of an
unexpected connection with certain classically defined multivalent ana-
lytic functions.

A result which continues to dominate this theory, and which has received a
number of new proofs, is that due to Kneser [6], Rado, and (independently)
Choquet [1] concerning the univalence of the harmonic extension into the
disc of a homeomorphism of the circle onto a convex curve. Indeed, much
of the current work either uses this result in a direct way or develops a vari-
ety of generalizations and analogous ideas. This function-theoretic develop-
ment of harmonic mappings in the plane leads naturally to a variety of ex-
tremal problems. In a number of cases the extremal functions turn out to
have boundary values which are step functions on the unit circle. For exam-
ple, the extremal function giving the sharp value for the Heinz constant is

f()=w, @mk/3<t<2m(k+1)/3, k=0,1,2),

where w; =exp(2wik/3) [3]. The harmonic extension of this function is a ho-
meomorphism of the disc onto the interior of the triangle formed by the ver-
tices w;. Furthermore, Hengartner and Schober [5] show that step-function
solutions arise naturally as a class of solutions of their differential equation
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and, moreover, that certain geometrical hypotheses force such solutions.
All this makes it desirable to study in detail the connection between a step
function and its harmonic extension.

In this paper I will show that there is a correspondence between step func-
tions on the circle and rational functions which are ratios of finite Blaschke
products. Furthermore, the degrees of these Blaschke products depend in
general on the number of values attained by the step function and, more
interestingly, on the geometry of the distribution of these values —at least in
certain interesting cases. The general correspondence, proved in Section 1, is
essentially algebraic. However, the geometric connection lies deeper and is
proved in Section 2 as an application of the Kneser-Rado-Choquet theorem
and more generally of the author’s results on N-fold mappings [7]. However
the density of suitable classes of step functions implies that the result we ob-
tain is essentially equivalent to these earlier results. Therefore it would be
of considerable interest to explore more deeply the interaction between the
geometry of the step values and the zero-pole distribution of the associated
Blaschke products. Also, since finite Blaschke products and their ratios oc-
cur in a number of function-theoretic situations, their association with step
functions and harmonic mappings takes on an added significance.

1. The Harmonic Extension of a Step Function

Let T denote the unit circle and U the unit disc. We consider a step function
S+ T— C defined by

a.n fle"y=c, (ty_ <t<ty,1<k=<n),
where ty <t <t, < .-+ <t, =ty + 2n. The harmonic extension of f to U is

given by )
_ 1 1+ze™ it
e [ (e v

and takes the form f(z) =g(z)+ h(z), where g and /4 are analytic in U and
£2(0) =0. We obtain

2 f(e') 1 & t dt
So 1—ze— di = 27 ,;::IC"S:,(_I 1—ze—it’

h(z)=
Differentiating, we have
o it

h’(z)—z— g S _° __a

tey (1—ze~i1)2

——Lic( 11 )
owi (2, M\ z—6 72—t/

where ¢, =e’* (0 <k <n), so that {,=¢,. Writing c,,; = ¢;, we obtain

1.2) W)=y 2

——’
k=1 2— Sk
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where

1
(1.3) ak=§—,(ck—-ck+1) (I1=k=n).
wl

We deduce that
R
1.4) g =0

Similarly, we have

1 (2 ze " ”
27 So l—ze"’f( ety dt,

g(z)=

from which we obtain

(1.5) g'z)=— E
k=12~ §'k
In the case n =1, f is constant and g’=h’=0. For n =2 we have, from (1.2)

and (1.4),
-1

, _n—l oy —n oy
h(Z)—E 2—S$k k=12—$n
E fk g-n

21 = @—)

From this we obtain, since |{;|=1 (1=k<n),
(1.6) R'(1/2)=z%g"(z).
Let
5= I (z— ).
Then
2"5(1/2)=5(2) T1 (=i,

Furthermore, we can write

oo P(Z) ooy Q(2)
h'(z)= 55) and g'(z)= S
where P and Q are polynomials of degree at most #—1. We have
ou/z) _ _, .. 5., » P(z)
S(/2) =g'(1/2)=z%h"(z) =722 5@
Hence
1.7 2"720(1/2) = P(2) I =80

Hence P and Q are polynomials of degree at most n— 2. If Q has degree g
with g, zeros at the origin and g, zeros away from the origin, then P has de-
gree p, where p = n—2—q,. Furthermore, P has n—2 — g zeros at the origin
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and g, zeros away from the origin. The g, zeros of P are the conjugates
relative to the unit circle of the g, zeros of Q. This means that

g'(z) _ 0)
1.8 = =R(z),
(1.8) W) Pl &)
where R(z) is a rational function of degree at most n—2 such that
(1.9) R@)|=1 (z]|=1).

R(z) takes the form of a Blaschke product formed with the g, zeros of Q
away from the origin, together with a zero-pole term z?+91="+2: zero or
pole depending on the sign of g+¢g,—n+2.

Let us now show that we can reconstruct the step function f(e’*) up to an
arbitrary additive constant from the following two pieces of information:

(1) an arbitrary polynomial Q of degree at most n—2;
(2) a polynomial S(z) =11%-(z— &) with n distinct zeros ¢ on the unit

circle.

We define
(1.10) P(z)=z""2Q(1/7) kl__Il(—fk)
and set -

_ Q) _ P(2)
(1.11) G(z)= 5@’ H(z)= 5@
Then we can write

n &k

1.12 G(z)=— ,
(1.12) (2) kgl p—

where —&; = Q(&)/S'(¢x) (1<k<n). Now the coefficient of z”~! in the
polynomial S(z)G(z) is —X T &, and so we deduce, since SG = Q has degree

at most n—2, that
n

(1.13) 3 a; =0.
k=1

With the help of this and some simple algebra we easily obtain

n ak
(1.14) H(z)= Y, .
k=1 2—$k

However, even without this calculation we can now define c¢; by solving the
equations

1.15) Cr —Cpo=2mic;, (1<k=n)

with ¢, ; =c;. The solution is ¢;=pu and
k—1
(1.16) ck=p—2w Y o (2=k=n+l),
i=1
where y is an arbitrary constant. With the {; assumed to be ordered on the
unit circle, so that ¢, =e", where t(<t; < --- <t,=to+2w, we find by the
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earlier algebra that the step function
(1.17) fley=c, (tyo1<t<ty,1<k=n)

extends harmonically into U as g+ A, where g'=G and h’= H. Thus, up
to an arbitrary additive constant, f is uniquely determined in U from (1)
and (2).

Notice that the relations g’= G and 4’ = H imply that the functions G and
H defined by (1.11) are automatically primitives in U. This is true in a larger
domain than U. Let I';, denote the arc of the unit circle ({4 _1, {&) and Dy
the domain

(1.18) Dy =UUT U{|z|>1},

so that D, is the plane cut along the closed complementary circular arc to
I'y. Let v be a rectifiable loop in D;. Then

1 o

57 ). G()dz= =3 &nn ) =0,

since n(y, ;) has the same value for each j, as all the {; lic on a connected
set in the complement of . Hence G is a primitive in D, and similarly H.
Thus f has a harmonic extension across I';, into D,.. This is unique (up to the
additive constant) in U, but may vary in {|z|>1} depending across which
arc I', we continue f. In fact, if we denote by f} the continuation of f into
{|z|> 1} across I', it is easily shown that f — f; = 2(c, —¢;). Summarising,
we have the following.

THEOREM 1. Let f(z)=g(z)+h(z) (ze€U) denote the harmonic exten-
sion into U of a step function on T given by

(1.19) fle™y=c, (o <t<ty, 1<k=<n),
where o <t;<--- <t,=to+2xn. Then, writing

(1.20) S() =1 z—e™),
k=1

we have for n=?2 that

Q(z) P(z)
1.21 ! == 4 —_——
(1.21) g'(z) S@) and h'(z) 5@
where P and Q are polynomials of degree at most n—2. Furthermore,

g'z) _Qk) _
(1.22) "2 - P@) =R(z)
satisfies
(1.23) |R(z)|=1 (|z|=1),

and so takes the form of a Blaschke product of degree at most n—2. Con-
versely, if Q(z) is an arbitrary polynomial of degree at most n—2 and if
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S(z) has the form (1.20), then there exists a polynomial P(z) of degree at
most n—2 and a step function of the form (1.19) unique up to an addi-
tive constant such that (1.21), (1.22), and (1.23) are satisfied. The harmonic
function f in U can be continued across any one of the arcs (e''k-1, e’) into
{|z|>1} to give a function harmonic in the domain Dy, of (1.18).

2. Convex Polygons

Let ¢y, C5, ..., C, be n=2 points in C lying on a convex curve J and assumed
arranged in counter-clockwise order on J. Equivalently, the polygon [c;, ¢,,
..., Cy, 1] is convex. We assume that c; # c¢,, but for greater generality we do
not assume that all the points are distinct. We consider a step function of
the form

2.1 fe)=cpy (tro1=<t<ty)

for 1=k=<n, where t() <t <-:--<t,=ty+27 and where k- r(k) is a per-
mutation of {1, 2, ..., n}. Thus f attains all the values ¢;, but not necessarily
in the order of the polygon.

LEMMA 1. Let F: T—J be a positively oriented homeomorphism. Then
there exist a nondecreasing step function ¢: R — R and a nonincreasing step
function y: R — R such that

(2.2) fle"y=F(e'*)=F(e"").
Proof. We extend r(k) to the set of integers Z by the rule
2.3) r(k)=r(j) if k=j (mod n).

Then r(k) is periodic of period n and r: Z - {1, 2, ..., n} is surjective. No-
tice that r(k+1) # r(k) for any k. We define a function p(k) inductively by
the following recursion relationship. With p(1) = r(1) set
p(k)+r(k+1)—r(k) if r(k+1)>r(k),
p(K)+rk+1)—rk)+n if r(k+1)<r(k).

Then p(k) is strictly increasing and p(k) = r(k) (mod n). Also note that
p(n+1)=p(1)+pun, where 1 <pu <n—1. We can write

Q.4  p(k+1) ={

(2.5) ck=F(e®) (<k=n+1),
where s, <85, <--+ <5, =s51+27. We define
(2.6) p(t)=S,k) (L1 =t<Uly)

for 1<k =<n, and ¢(t,) =S,(,+1y, Where, in general, if j = k (mod n) and
1 <k <n, we have set

ik
@.7) s;=sp+2m2
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Then ¢(¢) is increasing on R and f(e”) = F(e'*")). Furthermore, we note
that

(2.8) p(to+2m)— (L) =Spn+1) —Sp) = 2TH.
Next we define
2.9) (k) = p(k)—(k—1)n.

Then o(k) is strictly decreasing and o(k)=r(k) (mod n). Also, o(n+1)=
o(1)+(u—n)n=0(1)—vn, where 1 =y <n—1. We set

(2.10) V()=S0 (G 1=t<Uy)

for 1=k =n and ¥(¢,) =S,(,+1)- Then ¥ (¢) is decreasing and
fle")y=F(e").

Furthermore,

(2.11) V(o +2m) —Y(ty) = —2mv. O

REMARK 1. Lemma 1is a detailed formulation of a simple but important
fact concerning the jumps of a step function (where the step values are
taken to lie on a closed curve): namely, a jump can be interpreted either as a
forward jump along one arc of the curve or as a backward jump along the
complementary arc. This observation was made to the author in conversa-
tions with R. R. Hall. The important numbers to arise out of the lemma are
the periodic factors u and » related by u+» = n. These numbers control the
zero-pole distribution of the Blaschke products g’/h’ arising in Theorem 1.
With the convexity hypothesis of this section we reformulate Theorem 1 to
include this additional information.

THEOREM 2. Let f be a step function on T given by (2.1), where the c,, sat-
isfy the hypotheses of that paragraph. Then the harmonic extension to U of
f =g+ h satisfies, for a real constant \,

g'(z) _pir B,(z)
h'(z) Bi(z)’

where B, and B, are Blaschke products with zeros in U. B, has degree at
most p—1 and B, has degree at most v —1, where p. and v are the periods sat-
isfying (2.8) and (2.11) respectively. In particular, g’ has at most v —1 zeros
in U and h' has at most p—1 zeros in U.

2.12)

Proof. Since the curve J is convex and f(e) = F(e’*\"), where ¢ is increas-
ing and satisfies (2.8), we can apply Theorem A of [7] to deduce that 4’ has
at most p—1 zeros in U and that

h'
lg'(z)lsl (é))] (zeU),

B,
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where B, is the Blaschke product formed with these zeros. Since f(e*) =
F(e™“), where ¢ is decreasing and satisfies (2.11), we can apply the same
theorem to the function z — f(Z) to deduce that g’ has at most » —1 zeros in
U and that

8'(z)

B;(z)

where B, is the Blaschke product formed with these zeros. An invariant form
of Schwarz’s lemma applied to these two inequalities gives

]h’(z)ls’ (zeU),

g'(z) h'(z) g'(z)
B,(2) S'Bl(z) =|By| #<Y)
We immediately deduce (2.12). O

3. Topological Properties of the Harmonic Extension

In this section we shall assume that the points ¢, (1 <k < n, n=2) are distinct
but otherwise arbitrary points of C, and denote by II the polygon [¢y, c5, ...,
¢,, ¢1]. With f defined by (1.1) on 7 and denoting the harmonic extension in
U, we shall be concerned with the range f(U), its closure, and the valence of
fin U.

THEOREM 3. Il is the set of limit points of f(z) as z approaches T from
inside U.

Proof. Since f is continuous on 7 except for jump discontinuities at the
points ¢, it follows from a well-known result on angular limits [8, p. 131]
that every point of ITis a limiting value of f(z) as z approaches T. It is there-
fore sufficient to show that as z — {; from inside U, then f(z) approaches
only points on the segment [cy, ¢;;]. This follows easily from the Poisson
integral representation as follows: We have

&1 1=z
G.1) f@)=3 ¢35 S dt

oy [1—ze =2

and hence, as z — e'’, all terms in the sum tend to zero except the terms j =k
and j=k+1. Thus

(3.2) J@) > croy+cpyapyy  as z—e'lk,

where oy, ay . are respectively the limiting values of

dt

3.3 - .
3-3) w i—ze-Tp

¢ 1— 2 1— 2
LK k _Izl__dt’ 1 S"‘“ |z]
21 Joy_, |[1—ze #|? 2w

We see that 0 < oy <1, 0 <oy, <1. Furthermore,
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1 e 1—|z)?
op+ap = lim —Skﬂ 2]

zoeit 2T Jy_y |1—ze |2
. t_q+2 1—|(z 2
(34) =]1— lim —I—Sk ! W——-Lidt
zoeitk 2T gy [1—ze~"|
=1.
So the limiting values of f(z) as z — e“k are cj oy +Cp 41 (1—ag) € [Ck, Crp1],
as required. O

It is a well-known topological result that if IT has a nonzero winding number
about a point w, and if F is a continuous parametrisation of Il, then we
F(U) for every continuous extension of F on T to U. Even though f is not
continuous on 7, this result remains valid for the harmonic extension.

THEOREM 4. f(U) contains all points w about which I1 has nonzero wind-

ing number.

Proof. First, we consider the following parametrisation of Il given by

Le—)Cp+(E—t_1)Crqn
b=tk

(3.5) F(e") = ( (L <t<ty)

for 1 <k < n. Writing

(3.6) e(t)=tr_y (p1=St<ty,l1=k=n),
we see that ¢(¢) is nondecreasing and that

3.7) F"*My=c, (tr_1<t<ty, 1<k=n),

so F(e'*D)= f(e™) except possibly at the 7,. We now choose a sequence
{¢;(?)} of continuous approximations to ¢ by

Tk (L1 SE=<1,—6;),
3.8 (1) ={ ‘ ‘ ’
1/6))(tx—tx—) (=t )+t (L—0;<t=<1y)
for 1<k =<n, where {6;} is a sequence such that
6;—~0 asj—ooo and 0<d;<maxf{fy—i;_;:1=k=nj.
We define {fj(e")} by
_f}(eit)=F(ei¢j(t))
(39) ={Ck (tk._lsl‘ﬁtk—(sj),
[(t =) (ckp1—Cr)]/djFCran (B —0; <t <i).
The harmonic extensions to U of f; are then given by
—5; —it
1 Stk ’Re _____1+ze .
27!' (1 I—Ze"'t

1 (% 1+ze™ ( (£ —t;) (Cry1—Ck)
+— S R . ,
21 Jty—5; © l—ze"’< 0, +ck+l) dt]

f@=3 [ck dt
k=1

(3.10)
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and we can see directly that
(3.11) Ji(z)—> f(z) as j— oo locally uniformly in U.

Furthermore, the functions f;(z) are continuous in U.
We require the following lemma.

LEMMA 2. Suppose that we C—I1. Then 3R (0<R<1) and j, such that
Ji(z)#w for R<|z|<1and j = j,.

Proof. If not, then 3{z;} with |z;/]<1and |z;| -1 as i > co, and also 3{,(i)}
with j(i) - oo as i — o0, such that f;;(z;) = w. Thus, without loss of gener-
ality we may assume that

f](zj)=w (j=1329'“)’

where z; — e’ as j —»c0. Then 3k (1 < k < n) such that tp_1<s<t;. Weeasily
deduce that

. =8 l+ze”™
w= lim [cklsk "Re —L—dt

1 (% 1+z;e " [ t—1t,
+—S Re Al Cri1—Cx)+C dt
b, l—zje—”< 5 (Ck41—Ck) +Ch iy

tes1—8  1+z;e
+Ck+1-—l—g kel jReﬁdt .
tk I_ZJe

If s < ¢, then the second and third terms tend to zero. Hence

. 1 (%9 14+z;e7%
w= lim ck———S- "Re ——
L1 I_Zje_l

dt =cy.

Then well, contradicting the hypothesis. So we may assume that z; — e'lk
as j — . We then see that

w= lim (Ajck +Bjck+1),

Jj—oe
where
=8 1+z;e” " e te—t . 1+z;e7H
A,=l§" ’ReLdHiS" £l Re —Y° gt
27(' tk—l l—z_je_” 27[' tk——éj 6] l—ZJe 1
and
thear=8  1+zie™" ‘ t—t 1+z;e™ "
Bj=—£—§k+l JRC +Zj — dt+ I Sk 1+ k) RC'L_.-dt.
27i' tk l*zje i 27r ’k—5j 61 I—Zje it

Then clearly 4; =0 and B; = 0. Furthermore,

—it
1 S’k+l—5jRe 1+zje !

A4+B=— .
4 4 fr_1 I_Zje_lt

dt—>1 as j—o oo,
27

Hence, choosing a suitable sequence of j so that A; — A, we have
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w=Ac,+(1—A)cr,1s
where 0 <A <1. This gives w €I, contradicting the hypothesis. d

Consider now a point w € C—II and suppose that f(z) #w (z € U). Choose
R (0 <R <1) and j, such that, for j = j,, fj(z) #w for R < |z| <1. Since
fj(z) = f(z) uniformly on |z| =R as j — o, we have

Jfi(z)—w

S@z)—w
uniformly on |z| = R. Writing 7, = {z = re’’, 0 < 6 < 27}, we deduce that
3j,=jo such that, for j=j,

d(f,'_ws TR) = d(f_ w, TR) = O’

where d(g,T") is the degree of the continuous mapping g on the curve I'.
The second equality follows from the degree principle, since f—w#0 in-
side and on T. However, taking j = j;, fj(z) —w is continuous and # 0 for
R =|z|=1. Hence, by the degree principle,

(3.12) d(fi—w,T)=d(f;—w,Tz)=0.
But from (3.9), f; on T is a parametrisation of the polygon I1, so (3.12) gives
n(II,w)=0.

Hence f(U) contains all points w about which IT has nonzero winding num-
ber. This completes the proof of Theorem 4. O

-] as j—o o

THEOREM 5. Suppose that the polygon I1=]c,,...,c,, ] is a positively
oriented Jordan curve bounding a domain D. Then D C f(U). Furthermore,
fis a homeomorphism of U onto D if and only if one of the following con-
ditions holds:

(i) h'(z)#0 forzeU;

(ii) O(z) has degree n—2 and all its zeros in U;
(iii) P(z)#0 forzeU;

(iv) |R(z)|=1 for zeU;

) |R(z)|<1 for zeU.

Proof. DC f(U) is immediate from Theorem 4. Furthermore, Theorem 4
implies that f is a homeomorphism of U onto D if and only if (A) f is uni-
valent in U. Now (A) = (i) (see, e.g., [2]) = (iii) = that R(z) has no poles in
U, which implies (iv). Now if (iv) holds and if R(z) is a constant of modulus
1, then f takes only values on a line segment for z € U and therefore Il is not
a Jordan curve. Hence (iv) = (v). Since the equivalence of (ii) and (iii) fol-
lows easily from (1.7) and (1.10), it remains to show that (v) = (A). Assume
that (v) holds and let @ € U. Then either |g’(a)| <|h’(a)|, or g’ and A’ have a
common zero at a, say
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g'(z)=(z-a)"G(z), h()=(z—a)"H(z),
where |G(a)|<|H(a)|. We then obtain

S(z)—f(a) G(a) _y
(m+1)p™+1H (a)ei(m+10 =1+ H(a) g Hm+D0 4 o(1)
for z=a+pe® and p >0 small. Thus d(f—f(a),C,)=m+1, where C, is
the positively oriented circle with centre ¢ and radius p. Hence the function
f—f(a) has a zero of multiplicity m+1 at a.

Consider now the notations of Theorem 4 and choose w e C—1I1. By Lem-
ma 2, 3R (0<R<1) and j, such that f;(z) #w for R=<|z|<1 and j = j,.
Arguing similarly as in the proof of Theorem 4, we obtain

n(Il, w)=d(f—w,Tg) for R near to 1.

Now from the above we see that f—w has at most isolated zeros a in U with
multiplicities m(a)+ 1, where m(a) is the multiplicity of the zero of 4’ at a.
By the general argument principle, if R is chosen near to 1 then

d(f—w,Tg) =2 (m(a)+1),
the sum being taken over all zeros @ in U of f—w. We obtain
2 (m(a)+1) =n(I1, w),

and so there is exactly one simple zero ¢ of f—w in U for each we D, and
no zeros in U of f—w for those w exterior to II. Finally, as f is an open
mapping on U, there are no zeros in U of f—w for w e Il. Thus f is a homeo-
morphism of U onto D. This completes the proof. L]

COROLLARY. Suppose that the polygon 11 is a convex polygon bounding
the domain D. Then f is a homeomorphism from U onto D.

Proof. Applying Lemma 1 we see that p(k) =r(k) =k and so p=1. There-
fore (by Theorem 2) /4’(z) # 0 for z € U, and so the result follows from Theo-
rem 5. ]

EXAMPLE 1. The following example shows that the corollary need not
hold for a nonconvex Jordan polygon II. Let IT=[1, i, —1, %i, 1]. If we take
$re =exp(2wi(k—1)/4) (1 <k <4) then we obtain

1 & 1 & 3.
(3.13) JO)=-= 2 q(ti—tr_))=—F 2 =4l
2T K=y 4 y=q 8

Hence f(0) lies outside the domain bounded by IT and so f is not one-to-one.

4. The Mapping Problem for Schlicht Polygons

In this section we shall assume that the polygon IT=[cy, ..., c,, c;] is a posi-
tively oriented Jordan curve with distinct vertices ¢, bounding a domain D.
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The mapping problem for Il is to find {, =e"k e T (1 < k < n) distinct points
appearing in positive cyclic order on 7, such that the harmonic extension to
U of the mapping f defined by (1.1) on 7 gives a homeomorphism of U onto
D. By Theorem 5 the condition for this is that

n

4.1) h'(z)=2

k=1<—$k

Ok

#0 (zel).

We shall discuss this problem in general terms and conjecture that for some
polygons there may be no solutions at all. For a convex polygon there are
many solutions, as any such set of {{}} will do. Therefore we shall also con-
sider the more special problem of whether we may pre-assign the zeros of
Q—or, less stringently, choose in advance the zeros of the Blaschke product
g'/h’. Surprisingly, this is not always possible even for convex polygons. On
the other hand, we shall solve the problem in a particular case for the non-
convex polygon of Example 1.

Given that we have found a set of {{}} to solve the schlicht problem for the
polygon IT, the following equation will hold identically:

% o P(z)+a,Q(z)
D =
k=1 Z—
where P and Q are related by (1.7) and where P(z) #0 (z € U). On the other
hand, the existence of such {, distinct and appearing in positive cyclic order

on 7, clearly provides a solution to the problem. We observe immediately
that each point {; must satisfy the equation

@.3) @ P(2)+ 0, 0(z)=0 (<k=<n).

Furthermore, no {; can be one of the (say) g, common zeros on 7 of P and
Q. For otherwise the pole of 4’ at {; would be deleted, which implies that
ay =0, contradicting the distinctness of the vertices ¢, of II. Thus each {;
lies among the n—2 — g, roots of the equation

4.2)

0,

4.4 B(z)=—Z—Z (<k=<n),

where B(z) = Q(z)/P(z) is a Blaschke product with its n—2 — g, zeros in U.
Writing

4.5) o =|agle*, w=—e %% (1<k=<n),

the general mapping problem for IT may be formulated as follows: We seek

{x occurring in positive cyclic order on 7, and a Blaschke product B(z) of
degree at most #— 2 with all its zeros in U, so that

“ B(z)—wy

4.6) o —————— =
/El G

If this is possible then we obtain 4’(z)B(z) = g’(z), and so by Theorem 5 the

mapping f is schlicht in U.

0.
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Let us consider the case B(z) = cz, where c is a constant satisfying |c|=1.
Then we require {; on the unit circle so that we have identically

& Optcopz

0.
k=1 Z—Sk
For distinct {; this is possible only if
Se=—p—% (Isk=n)
127

On the other hand, since Y o, =0, the identity holds with these {;. The n—3
common zeros of P and Q on T are now determined after choosing the value
of ¢ (|c|=1) and so cannot be pre-assigned, a fact first noted by Hengartner
and Schober [5]. If this only possible solution is to work, the points ¢; must
appear in positive cyclic order on 7. Thus the numbers w; must appear in
positive cyclic order; that is, they must form a convex polygon. If they do,
then we have by Theorem 5 a univalent solution. Summarising, we have the
following theorem.

THEOREM 6. Let II = (¢, Cy, ..., Cy, C1) be a positively oriented Jordan
polygon with distinct vertices ¢, bounding a domain D. We can find points
$k (1 =<k <n) occurring in positive cyclic order on T such that the mapping
f=g+h given by (1.1) is a homeomorphism of U onto D with v'/y’ = ¢X,
where c is a constant with |c|=1, if and only if the points v, = —ay /oy Oc-
cur in positive cyclic order on T. We then have

e=Cwp (I1<sk=n).
This condition is quite restrictive, as the following considerations will show.
Writing o, = | o | exp(ia), we may assume (on the basis that IT is a Jordan

polygon) that |a; ., —a;| <= and a, | =a;+2x. Then the condition can be
written

4.7) 2mym =24, <2mym—20, < -+ <2M, | T—20,4
for suitable integers m,. We easily deduce that
(4.8) mg =m; and m, =m;+3,

the latter condition following from 2m, .\« — 2a,,,1 = 2mw — 2a; + 2«.
Therefore, if k> j then we obtain

4.9 2myw—2a,<2my, T—2a,4=2m7—2a,+ 27 <2m;w—2a; +2m,
and so
(4.10) ay—a; >w(my—m;)—n = —m.

We thus deduce the following.

THEOREM 7. Ifg’/h’=cz (|c|=1) for a Jordan polygon I1, then Il is close-
to-convex.
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We give two examples which show that the condition of convexity of ITis
neither necessary nor sufficient for the criterion to hold.

EXAMPLE 2. Let II be a Jordan polygon having two sides parallel to each
other. Then there is no mapping f of the form (1.1) mapping U one-to-one
onto the interior of Il for which g'/h’ =cz. For example, there is no map-
ping of this form if Il is a rectangle.

Proof. If IT has two parallel sides then, for some j and k (j #Kk), aj/oy is
real and so w; = w; and the criterion of Theorem 6 does not hold. L]

EXAMPLE 3. Let II be the nonconvex polygon (1,i,—1,1i,1). Then there
exists a mapping f of the form (1.1), giving a homeomorphism of U onto the
interior of 11, for which g'/h’ = —z.

Proof. We obtain w;=—i, wy, =1, w3=(—3+4i)/5, and wys=—(3+4i)/5;
these are in cyclic order on 7. The result follows from Theorem 6. Explicit
calculations give

6z(z+1) ih(z) = —6(z+1)
Z2+1)(522+62+5) Y= 2 1) (5221 6245)

wig'(z) =

REMARK 2. Hengartner and Schober [5] have shown that the mapping
problem can be solved for a triangle with g’/h’ having just one simple zero
in U, a fact which is easily deduced from the above considerations. Further-
more, they have proved the remarkable fact that if f is any convex harmonic
function with g’/h’ equal to a product of N Blaschke factors and with f(U)
bounded, then f(U) is a polygon with at most N+2 vertices and f(e') a
step function with N+ 2 values. In particular, if g’/h’ has one simple zero,
then ftakes three values on 7"and f(U) is a triangle. On the assumption that
f is a step function on 7, the conclusion that f(U) is a triangle can be sezn
by observing that, from Theorem 6, if ITis convex then a; ; —a; =0 and we
deduce that my ;—m; = 1. Since m,, ,; =m;+ 3, we obtain n = 3. More gen-
erally, we have the following result.

THEOREM 8. Let Il be a convex polygon with n vertices. Then f is a ho-
meomorphism of U onto D such that g’/h’ is a Blaschke product with its
zeros in U and of exact degree n—2.

Proof. Only the exactness of the degree requires proof, and this follows
from Hengartner and Schober’s result. In fact, essentially their method is to
proceed similarly to the argument of (4.7) and (4.8), making use of the fact
that arg B(e'’) is increasing. Here is a second proof. We need to show that
QO has no zeros on 7, so that g’ and 4’ have no common zeros. It is therefore
sufficient to show that |4’(z)| is bounded below as |z| -1 in U. For convex
harmonic f, it is shown in [2] that for each e (|e| =1), the function Z+eg is
univalent in U. Hence
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|h'(z)|—|g’(z)|=c(1—]|z|]) (zeU),
where c is a positive constant. We deduce that
1-|z|
1—-|B(z)|
Now for a Blaschke product B(z) of degree N we can write

1+B(Z) _ § p X +2
T Doy k

1-B(z) x=1 " Xx—2

|h'(z)|=c

+w,

where |x;| =1, p; >0, and Rew = 0. Taking real parts we obtain

1-|B(z)]> _ § b |B(z)—1)?

1-z|2 &, « |7 =X |2

As B(x;) =1, the right-hand expression clearly remains continuous on U,
and therefore bounded. The results follows. O

EXAMPLE 4. The case when II is a quadrilateral and B(z) =z2. We are
required to find ¢, (1 <k <4) appearing in positive cyclic order on 7 so that

24: o Zz-wk _
k —
k=1 22— Sk

For this to hold, each ¢{; is one of the two square roots of w;, and we obtain

S =xilag| /oy (1=k=<4);

0.

4
D oy =0.
k=1

Thus the problem can be solved if and only if these two conditions hold with
the ¢ appearing in positive cyclic order on 7. The two conditions reduce to

4

Crp1—C
€ €1 =] and ¥ elci1—]=0,
k=1

Sk =€k
Ck+1—Ck
where ¢, = +1 (1 =k <4). Note that, for the second condition to hold, ¢, =1
for exactly two values of k. Thus the sum of the lengths of two sides of
the quadrilateral must equal the sum of the lengths of the remaining two
sides. To explore the first condition, we again write oy =|oy | exp(iay), so
that |a; ., —ay|<w and a5 =a;+2n. We then have
Cmi+y)m—a<Cmy+y)rm—a; <(2mz+y3)w—a;s
<Cmyty)m—as<2ms+ys)w—as,
where m, are integers and v, =0 or 1 depending on whether ¢, =1or —1. We
deduce that m; . =my. Also y5=1y; and

(2m5 +75)’I['—'(15 = (2m1+71)7r—a1+27r,

and we obtain ms=m;+2. We obtain a solution with
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my=m,=0, my=my=1, ms=2; y;=73=v5=0, y,=v4=1

Thus, with B(z) =z2, the mapping problem can be solved for II provided
that the sum of the lengths of two nonadjacent sides is equal to the sum of
the lengths of the remaining two nonadjacent sides of II. We leave it as an
exercise to show that this condition is also necessary. Notice that by Theo-
rem 8 the only solutions for any convex polygon IT are for convex quadri-
laterals satisfying this property.

(.
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