Variations of
Pseudoconvex Domains over C”

HIROSHI YAMAGUCHI

Various function-theoretic quantities can be associated to a domain D over
the complex plane C. In [13]-[16] we studied how these quantities vary when
D varies over C. An important quantity among them was the Robin con-
stant which is defined as follows: Let D be an unramified covering domain
over C whose boundary, dD, consists of smooth curves. For a fixed point ¢
in D, the domain D carries the Green function g(z) for Laplace s equation
Ag =49%g/320Z =0 with pole at {. The function g is umquely determined
by the following three conditions: Ag =0 in D except at {, g is continucus
up to D and g =0 on 8D, and g differs from log(1/|z—¢{|) by a harmonic
function in a neighborhood of ¢{. We put

A= lim<g(z)—log 1 )
z—¢ IZ—§'|

Following Faber [3], we call A the Robin constant for (D, {). Now we vary
the domain D over C for ¢ in the disk B: |¢| < p; that is, we have a variation
t - D(t) (¢t e B) with the following properties: D(0) =D, each D(¢) (t €B)
is an unramified covering domain over C bounded by the smooth curves
forming dD(t), and each D(¢) contains the point {. We then have the Robin
constant \(¢) for (D(¢), ). N(¢) defines a real-valued function on B. In [15]
we obtained the following.

THEOREM 1. If the set D={(t,z)|t € B and z € D(t)} is a pseudoconvex
domain over the product space B X C, then \(t) is a superharmonic function
on B.

The definition of a pseudoconvex domain over BXx C is given in Oka (8,
p. 101]. This theorem was motivated by Nishino’s beautiful work on value
distribution of entire functions of two complex variables (see his survey [7]).
Theorem.I has been recently applied to the theory of functions by Suzuki
[10] and Fujita [4] and also to other areas by Wermer [12], Kaneko [6], and
Suzuki [11].

In this paper we study the case when D(¢) varies over the complex n-
dimensional Euclidean space C”, where n=2. Let D be an unramified cov-
ering domain D over C” bounded by smooth surfaces aD. Fix ¢ € D. Then
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D carries the Green function g(z) for Laplace’s equation Ag = 4(0%/3z,07Z; +
--++8%/0z,,0Z,)g = 0 with pole at . Since g(z) differs from 1/ |z — ¢[|?*—2 by
a harmonic function in a neighborhood of ¢, we put

) 1
A=I1lim _ ).
z—);<g‘z’ nz—s“uz"-Z)

By the maximum principle it follows that A <0. We call \ the Robin con-
stant for (D, ¢). Let D vary over C” with complex parameter ¢ in the disk B
so that D becomes an unramified covering domain D(¢) with smooth bound-
ary aD(t) over C" with D(¢)> ¢. We denote by A(¢) the Robin constant for
(D(?), £). Consequently, \(¢) defines a negative real-valued function on B.
We shall demonstrate the following theorem.

THEOREM 1I1. If the set D={(¢,z)|teB and z € D(t)} is a pseudocon-
vex domain in BX C" (n=2), then \(t) is a superharmonic function on B.
Moreover, log(—X\(t)) is a subharmonic function on B.

Theorem I and Theorem II are the same in form, but are different in con-
tent. This will be shown in Sections 6, 7, and 8 where we give some applica-
tions of Theorem II (cf. the applications of Theorem I given in [15] and [16]).
Originally the significance of the Robin constant appeared in the research
of the equilibrium distribution of electric charges on a conductor which is
placed in the real Euclidean space R3. In Section 9, after recalling Robin’s
paper [9] which was published about 100 years ago, we shall study the case
when D(¢) varies in R™ (m =3) with areal parameter . Let I: —p <t <p be
an open interval. For each 7 e, let D(¢) be a domain in R" bounded by
smooth surfaces dD(¢). Assume that each D(¢) contains a fixed point ¢ in
R™. Then D(t) carries the Green function g(¢,x) for Laplace’s equation
Ag=(0?%/dx?+---+08%/9x2)g =0 with pole at £&. We put

. 1
A1) =Ilim (g(t,x) — —————————)
Xk |x—&|m=2

and call \(¢) the Robin constant for (D(¢), £). Accordingly, A(¢) is a nega-
tive real-valued function on /. We shall show the following.
THEOREM III. If the set D={(¢,x)|tel and x € D(t)} is a convex do-
main of I XR"™, then

d2log(—)\(t))> 1 | dlog(—\(t))

dt? T m-=2 dt

Jor tel. Hence both log(—\(t)) and —\(t) are convex functions on 1.

2
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The main results in the paper have been announced in [17].

1. Robin Constants

Let R™ be real m-dimensional Euclidean space whose points are given by
m real coordinates x = (i, ..., X,,) with norm |x|? = [x;]>+ --- + |x,.]*.
Throughout this paper we assume # = 3. By an unramified covering domain
E over the space R™, or, more simply, a domain over R, we mean a triple
(E, R™, p) such that F is a connected Hausdorff space and p, the projection,
is a local homeomorphism from E to R"™. Moreover, by an open set over R™
we mean a union of at most countably many domains over R” without any
relation. We use with caution the convenient notation “x € £”, which means
precisely that x is a point of E such that p(x)=x (x e R™). As usual, for a
subset K C E we denote by dK the boundary of K in E. For K, CK,CE, if
K, is relatively compact in K, then we write K; CC K,. A complex-valued
function u(x) defined in a subdomain of E is said to be harmonic if u is of
class C? and satisfies Laplace’s equation
0%u *u

Au=— 4+
ax? ax2,

=0.

DEFINITION 1.1. An open set D over R™ is said to have smooth boundary
if there exist an open set D over R and a real-valued function y of class C*
in D such that

(a D>OD; i
(b) if we denote by aD the boundary of D in D, then D=
{xeD|y(x)<0} and D ={xeD|¢y(x)=0}; and

a4
(C) (—5)‘7)1':1,...,171()() #0

for any x in aD.
We call (D, ¢) a double which defines the open set D.

If D has smooth boundary dD, then dD is a union of (m—1)-dimensional
smooth surfaces. We always assume that dD is positively oriented with re-
spect to the domain D.

We now define the Green function g for an open set D over R™. In what
follows, £ is a fixed point in D. First, consider the case where (D, R™, p) isa
domain with smooth boundary dD. According to potential theory, D carries
the Green function g(x) with pole at £ which is uniquely determined by the
following conditions:

(1) g is harmonic in D except at &;

(2) g is continuous up to dD and g =0 on dD; and

(3) in a neighborhood of £, g differs from 1/|x—£|™~2 by a harmonic
function.
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From (3) we write, for x in a neighborhood of &,

g(x)= +A+h(x),

1
fx—g[m-2
where \ is a constant, A(x) is harmonic, and /#(£) =0. The constant term
\ is called the Robin constant for (D, £). Next, consider the case where
(D, R™, p) is a domain whose boundary is not necessarily smooth. Then
we choose any subdomain Q C D with smooth boundary such that £ € 2 and
Q CC D. We thus have the Green function gg of Q with pole at & and the
Robin constant Ao for (£, £). It follows from the maximum principle that

—)—C_-——% and —oco<Ag<Ap<O0

for any Q CC Q' CC D. Here 1/|x —£|™ 2 represents the harmonic function
1/]p(x)—p(£)|™ 2 in D (which has the same singularity as 1/|x—£|™ 2 at
all points of p~!(¢)). We obtain the limits g(x) =sup{ggq(x)|Q CcC D} for
x € D and A =sup{iq |2 CC Dj}. Consequently, g(x) is harmonic in D except
at £ and can be expressed for x in a neighborhood of £ in the form

ga(x) <va(x) < "

1
(1.1) g(x)= g2 +N+h(x),
where h(x) is harmonic and #(£) =0. Moreover,

(1.2) O<g(x)= and —oo<A=<0

1
jx—&|m-2
for x e D. The function g(x) in D and the constant term \ will be called
the Green function and the Robin constant for (D, £). Finally, consider the
case where D is an open set, not necessarily connected, over R”. We de-
note by D, the subdomain (i.e., the connected component) of D which con-
tains £. Then we have the Green function g,(x) and the Robin constant \;
for (Dy, £). By the Green function g(x) for (D, £) we mean the function
g(x)=g;(x) in D; and g(x)=0 in D—D,. Also, by the Robin constant A
for (D, £) we mean A =\;.

Take a ball V: |x—£] <r such that V' CC D,. If we integrate both sides of
(1.1) over the sphere aV: |x —£| =r, then

1 1

(1.3) A= — + Sayg(x) ds,,

-2 -1
rm rﬂl wm

where w,,, denotes the surface area of the (m —1)-dimensional unit sphere in
R™, and dS, is the surface area element of dV at x. Therefore A is determined
by the values of g(x) on a sphere centered at the pole £.

EXAMPLE 1.1. Let ¥V, be the ball |x| <r in R™ and let £ eV,. Then the
Green function g, (¢, x) for (V,, £) is given by
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3 1 _ r m-—2 1
& (& X) = [ gz (,usu) x—¢ "2

where £*=(r/|£])?¢ is the symmetric point of ¢ with respect to the sphere
aV,: | x| =r. The Robin constant A,(§¢) for (V,, &) is thus

r m—2
)\r(£)=—<r—2-:ﬂ-éF) <0.

We state the properties of the Green function which we shall need.

PRELIMINARY 1.1. Let D be a domain over R” with smooth boundary
dD. For ¢e D we denote by g (=g(&, x)) the Green function for (D, £).
Then g can be extended beyond 4D to be a function of class C3 in a domain
D—{&} with D D> D such that, for every x € aD,

ag ag 2 ag 2q1/2
1.4 —(xX)=—|{ — <0,
(.9 an, ) [( axl) ¥ +(axm)
where n, denotes the unit outer normal vector to dD at the point x, and

such that
(1.5) D={xeD|g(x)>0} and dD={xeD|g(x)=0]}.

PRELIMINARY 1.2. Let D be a domain over R"” with smooth boundary
dD. Then any harmonic function #(x) in D which is continuous on DU adD
can be written in the form

- g (£, x)
(1.6) H(E)—mSw Hx) any

for £ € D. For the special case where D is a ball V,: | x —a| <r, we have Pois-
son’s formula

.7 w@)=——{  ux

ds,

r’—|¢—al?
— T gs,.
|x—&|m-2

2. Main Theorem

Let C” be a complex n-dimensional Euclidean space whose points are given
by n complex coordinates z = (z;, ..., 2,) With norm |z|?=|z|*+--- +|z, %
If we put 2, =X,,_1+iXs, (1 <a <n) where x,,_1, X, are real and i = —1,
and if we put x = (x;, x5, ..., X»,), then C" is equal to the space R?" of 2n
real coordinates x such that |x| =|z|. We shall use the following.

NOTATION 2.1. For a complex-valued function u(z) we set

_c')_u___l( du _i6u>_ au_l( du _H,au)_
6za—2 6x2a_1 6X2a ’ B'Z"a_Z a.X'za_l axza ’
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ad d
Grad(z)u=<£,..., u>; Grad(z)u=(?—f—, ,—a_l);
1

aZn aZI h a»Zn
ou du ou
Grad =(—,— e, — ]
fale <6x1 > axy axz,,)
7 9%u 21 3%y
A = —_— A = —_—
(Z)u agl azaaz-a (X)u IEI a

We note that
Gradyu=73Grad,yu and Agu=1iA,,u.

Throughout this paper we assume #>2. Let B be a region of the com-
plex ¢ plane and consider the product space BX C" of B and C”". We de-
note by pp and by p, the canonical projections of Bx C” to B and to C”.
Let D be a domain over B X C”, that is, an unramified covering domain over
B x C" with projection p. Suppose pgep(D) = B. Given f € B, we put D(t) =
(pgep)”~!(t), which is called the fiber of D at ¢. The fiber D(¢) becomes an
open set over C” defined by the triple (D(¢), C", p,,op). We regard the do-
main D over Bx C" as a variation of open sets D(¢) over C" with complex
parameter f € B, and write

D:t—->D(t) (teB).

Let ¢:¢— {(¢) (f € B) be a holomorphic section of D defined on B; that is,
¢ is a holomorphic mapping of B into D such that pgep-¢ is the identity
mapping on B. Since {(¢) e D(t), the open set D(¢) (over R?") carries the
Green function g(#, z) and the Robin constant \(¢) for (D(¢), ¢(¢)). There-
fore g(¢,z) may be expressed in a neighborhood of ¢ (#) in the form

1
— g-(t)|l2n—2

where A(¢, z) is harmonic with respect to z and (¢, {(¢)) =0. Thus the Robin
constant A(¢) defines a nonpositive real-valued function on B. Under these
circumstances our main theorem may be stated as follows.

+Me)+h(2,2),

g(t,z)=
Iz

MAIN THEOREM. If D is a pseudoconvex domain over B X C", then
log(—\(¢)) is a subharmonic function on B.

Since the pseudoconvexity of D induces that of each fiber D(¢), our varia-
tion D: t - D(¢) (f € B) is necessarily a variation of pseudoconvex open sets
over C" with parameter . We shall prove the Main Theorem in Sections 3,
4, and 5. We now show a simple example suggesting why it should be true.

EXAMPLE 2.1. Let B be a region of C and let correspond to each re B a
ball D(7): |z| <r(¢) in C”". Consider a holomorphic mapping z = {(¢) of B
into C" such that {(¢) e D(¢) forte B.WeputD={(¢,z)e BXC"|t e Band
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ze€ D(¢)}. Suppose that D is a pseudoconvex domain in B X C”? or equiva-
lently that log r(¢) is a superharmonic function on B. By Example 1.1, the
Robin constant \(¢) for (D(¢), {(¢)) can be written in the form

B r(t) 2n-2
)\(t)__<r(t)2—l|§‘(t)||2) <0

for t € B. Hence
© 2k
10g(—)\(t))=(2n—2){—log r(t)+ Y <M> }
k=o\ ()

Since log(]§(¢)|/r(¢))* is subharmonic for ¢ in B, so is (J$(¢)|/r(£))%. It
follows that log(—X\(¢)) is a subharmonic function on B.

3. Inequalities

In order to prove the Main Theorem we begin with some inequalities. Let B
be aregion in C and let D be a domain over B x C" with projection p which
admits a holomorphic section ¢: ¢ — ¢(¢) of D defined on B. In this section
we impose the following restrictions on D and ¢.

CONDITION 3.1. The holomorphic section ¢ is constant; that is, the map-
ping p,ep-$(¢) of ¢t (€ B) is a constant (e C"). We thus write {(¢) = ¢ for
all reB.

CONDITION 3.2. There exist an~other domain D over Bx C” and a rezl-
valued function ¢ of class C* in D which satisfy:

(a) D> D and D(¢) DD D(¢) for each ¢ € B (we denote by 8D and aD(¢)
the boundary of D in D and of D(¢) in D(¢), respectively);
(b) D={(t,2)eD|¥(¢,2) <0} and D ={(¢,2) e D |Y(¢,2) =0};

O (2220

_51—, a—z;, seey azn

for any (¢,z) e aD.

CONDITION 3.3.  For each ¢ € B, the fiber D(¢) is connected, and the doutle
(D(¢), ¥(¢, z)) defines the domain D(¢): namely, Grad, ¥(¢, z) #0 for any
z€adD(t).

We denote by g(¢,z) and A(¢) the Green function and the Robin constant
for (D(¢), ¢), where ¢ is the point mentioned in Condition 3.1. Hence, in a
neighborhood of ¢, g(¢, z) can be written in the form

3.1 g(t,z)= " +A(¢)+h(t,z),

1

where Ah(¢, z) is harmonic with respect to z and A(¢, {) =0.
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DEFINITION 3.1. Let D be a domain over B x C”. If there exists a double
(D, ) which satisfies (a), (b), and (c) of Condition 3.2, then we say that D
has smooth boundary dD over Bx C”, and that the double (D, y) defines
the domain D.

NOTATION 3.1. For each subset K of D, each open set B, of B, and each
point ¢ of B, we put

(3-2) Ky, =KN(pgep)™'(B,) and K(¢)=KN(pgep)~(1).

In particular, Dp becomes an open set over B, X C" such that Dp (t)=D(t)
for teB,.

Conditions 3.2 and 3.3 imply that (D) (¢) =aD(¢) for t € B. For every e >0,
we put D, ={(¢,z) e D|¥(¢,z) <e}. Then (a) implies that DCD,.C D and
D(t)ycc D.(tyc D(t) for teB. Now let ¢,e B. In view of Conditions 3.2
and 3.3 we can find a sufficiently small ¢ >0 and a disk B,:|t—¢,|<p in B
with the following properties: (D,) B,(?) CC D(t,) for each t € B,, and there
exists a C*-diffeomorphism of (D) onto the product B, x D (f,) of the
form

T:(t,z)—> (¢, o(t,2)) with o(¢,D(t))=D(¢,) for teB,.
In other words, the variation
Dp UdDp :t > D(t)UdD(¢) (t€B,)

is diffeomorphically equivalent to the trivial one: ¢ — D(¢,) UaD(t,) (t € B,).
In these circumstances it is clear that g(¢,z) is of class C? with respect to
(¢,z) in Dg —§(B,) and can be extended beyond dDp_in f)Ba. We summar-
ize these in the next proposition.

PROPOSITION 3.1. Suppose that the triple (D, Bx C", p) satisfies Condi-
tions 3.1, 3.2, and 3.3. Then, given t, € B, we can find a disk B, of center t,,
in B with the following property: there exist a domain D over B, xC"anda
function g(t,z) defined in D which satisfy

(1) Dp, CDCDB and D(t) CCD(t)for each teBo,

2 g(t z) is of class C? with respect to (t,z) in D except at the pole
§(B,), and §(t,2) =g(t,z) in Dp ;

(3) for each teB,, Grad,, g(¢, z)#Ofor allzeaD(t), and

(4) D =1{(z, z2)eD|g(t,z)>0) and dDg = {(¢, z2)eD|g(t,2)=0}.

We will write g(¢, z) for g(¢, z) in D. Under the same conditions as in Prop-
osition 3.1, take a point (¢,z) of dD and let n, , be the unit outer normal
vector to the real (2n+1)-dimensional surface D at the point (¢,z). By
Condition 3.2(c) on ¥ and Proposition 3.1(3), we have

2]1/2

" _(c‘)u ou 3u) du 2+ ou |?
Le™\ 9’ 9z, """ oz, ot 0z,

+ ou
02,
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at (¢,z), where u =1y or u=—g. It follows that

a3 O _dg | _ _ 9g |3y _ |Gradg,g|
) ot | ot 0z, | 9% 0z, | 0z, “Grad(z) ¢|]
for all (¢, z) € aD. In the case where (dg/a¢)(¢,z) or (dg/dz,) (¢, z) is 0, then

(ay/at)(t,z) or (¥/a3z,)(t, z) is 0, and we omit this ratio in (3.3). Proposi-
tion 3.1(2) together with (1.3) implies

9
& <0

(3.4) \(?) is of class C3 on B.

We can thus differentiate each side of (3.1) with respect to ¢ and 7, obtaining
g )N oh d%g RN a%h
'a—t(f,Z)—E:(t)‘*‘—a?(f,Z) and W(f,z)—‘(%?(f)'l‘ﬁ(hz)

for z # ¢. Moreover, since (¢, {) =0 for t € B, we have

oh 0%h
—(L, ) =—=(1,¢)=0.
at( $) atat(t $)=0
If we put
g ON(?) d%g 32\ (1)
— =—" d — = ~
ot (. €) ar " G ) 0tor

then, for each ¢ € B, we see that both (dg/d¢) (¢, z) and (3°g/dtd7) (¢, z) are
harmonic functions of z in the whole domain D(¢) (although g(#,z) hasa
singularity at ¢). Also, these functions are continuous for z in D(¢)UaD(¢).
Formula (1.6) applied to u = dg/d¢ or u=03%g/dtd7 in D = D(¢t) thus yields
the following.

PROPOSITION 3.2. If the triple (D, B X C", p) satisfies Conditions 3.1,
3.2, and 3.3, then

I (?) _ —1 S ag(t,z) 0g(t,z2) ds
ot 2(n—1)w,, Jabw)y Ot an, ¢
and
*N(t) —1 § 0%g(t,z) 0g(t,z2) .
df  2(n—1)w,, Jop(e)  0tdF on, ¢
SorallteB.

This proof seems somewhat artificial. In order to understand Proposition
3.2 better, we consider a more restrictive case where ¥ (¢, z) of Condition 3.2
is real analytic with respect to (¢,z) in D, and give an intuitive proof of
the proposition. Let ¢, € B. Since dD(¢) (¢ € B) is real analytic, it is known
that g(¢, z) can be extended beyond dD(¢) to be a harmonic function of z in
D(t)—{¢}, where D(¢) DD D(¢). Moreover, in our case, we can find a disk
B,:|t—t,|<p in B such that D(¢) D> D(¢,) for each teB,. Given t€B,,
set u(t,z)=g(t,z)—g(t,,z) for ze D(t)ND(t,). Then, from (3.1), u(t,z)
is regular at ¢ and assumes the value A(#) —\(¢,) there. Consequently, u(?,z)
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is a harmonic function for z in a neighborhood of D(¢,)UdD(¢,) satisfying
u(t, $)=N1t)—X\(¢,). If we apply formula (1.6) to u(¢, z) in D(¢,), we obtain

-1 0g(%,,2)
. SVot s
2(n—1)wy, SaD(to) g(t.2) = - a5,

for all ¢ € B,. This is known as Hadamard’s variation formula, and was
proved in his paper [5, p. 519]. We differentiate each side of this formula
with respect to ¢ and 7 and then put £ =¢, in order to prove Proposition 3.2.

We emphasize that, although the Main Theorem is true for any holomor-
phic section ¢:¢— {(¢) on B, the Condition 3.1 that the section ¢ is con-
stant is indispensable for Hadamard’s variation formula and the formulas
in Proposition 3.2.

>‘(t) _)\(to) =

PROPOSITION 3.3. Suppose that the triple (D, B X C", p) satisfies Condi-
tions 3.1, 3.2, and 3.3. Then, foreachteB and o (1<a<n),

dg i" _ - _
—a—z_j—"dSz = -2,1—_1||Grad(z) glldzll\dzl/\ cee /\dza/\dzaA see /\dzn/\dz,,

for all z€dD(t), where A denotes the absence of A.

Proof. Lett e B and let z € aD(¢). We consider the unit outer normal vector
n, to the real (2n—1)-dimensional surface dD(¢) at the point z. Let X,,_;
denote a unit vector in the direction of the positive x,,_; axis. Since n, =
—Grady, g(¢,2)/|Grad,, g(¢,z)|, if {, ) denotes the usual Euclidean inner
product on R?” then it follows that, for z along dD(¢),

T
the projection of dS, to the space (X, ..., X256 15 +++s X21)
/\
=dx1 /\de/\ vee Adea—l AR /\dX2n

=(Xpq—1, M) dS;

=(— % /nGrad(x)gu) s,

X341

We thus have

ag
X241

/\
dS, = —|Grad, g|ldx; Adx, A+ ANdxpe_ A+ ANdXy,.

By observing the orientation of dD(¢), we similarly obtain

ag

T
o dS, =—|Grady, g|dx;Adx, A+ Ndxzo N - Ndx;,.
2a0

In terms of Notation 2.1, they can be written in the compact form stated in
Proposition 3.3. Ol

In addition to Conditions 3.1, 3.2, and 3.3, we impose on (D, BX C", p) the
following function-theoretic restriction.
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CONDITION 3.4. The domain D is pseudoconvex over BXx C".
The pseudoconvexity of D induces the following.

PROPOSITION 3.4. Suppose that the triple (D, Bx C", p) satisfies Condi-
tions 3.1-3.4. Then

62g {ag no 92g

dg
< Grad
ot = 2R\ o0 2 e oz }/ |Gradg,) &I

Jorall (t,z)eadD.

(3.5)

Proof. Let ¢, be any point of B. We find a disk B, CC B with center ¢, such

that the pair (Dp , —g) satisfies properties (1)-(4) in Proposition 3.1. Since

the domain Dj_is pseudoconvex over BX C " —g(t,z) must satisfy the fol-

lowing condition, which is known as Levi’s condition (see [2, p. 54]): For
each (¢,z) e dDp ,

’ o 9%(—g)

a,=0 aza 323

for all (&g, &5 --.s &) € C™ 1 such that

(t,Z)i'ai_'BZO

aEO a_(t’ )g‘a_o

where z, represents the variable 7 in B.
Now, given 8 (1< <n), wechoose {,=0 (1 =a=<n, a# ). Then Levi’s
condition implies that, for (¢,2) € BDBO,

a%g _ a%g
2 2
> — <0
ata siar 5ol {atazﬁ mﬁ} 325025 55l

for ($o, $g)eC 2 satisfying (9g/ot)¢,+(dg/ 0z5) {3 = 0. Elimination of ¢, and
s leads us to the well-known formula

d%g . 9%g 9dg og N g |og
atat 3?623 ot 62,3 32."3 623 at

for (¢,2) € dDg . Summation of each side for 8 =1, ..., n gives a symmetric
inequality

2

ag <0

aZ 8

(3.6)

G.7) . % ag}

24
dg ag
> |Grad;, g|*—2R
B1dt " rade, g e[ ot 621 07dzg dZg at
for (¢,z) € 3Dp,. On the other hand, g(¢,z) is of class C?3 near 0Dg, inD
and is harmonic with respect to z in Dg —{(B,). Therefore A,g=0 on

dDp . It follows from (1.4) that inequality (3.7) can be written in the form

d’g dg o 9%g og
5oy <2Rel 5 3 oE 28] [1Grado el

A(z)g 0

at ot
for (¢,z2) € dDp . Proposition 3.4 is thus proved. L]
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We are now ready to prove the fundamental inequality which will be of fre-
quent use in what follows.

LEMMA 3.1. Suppose that the triple (D, B X C”, p) satisfies Conditions
3.1-3.4. Then
d%g

62)\(z‘)< —4 S S i
0tdt — (n—1)w,, JIbn\ J24| 9¢0Z,

Jor all t e B, where dV =dx|Adx, A --- Ndx,,_1 \dx,, denotes the volume
element of R*".

2
>a’VsO

Proof. Given t € B, we have from (1.4) that

_ "1 ag(ts Z)
T 2(n—1w,, on,

for z € aD(¢). After multiplying both sides of inequality (3.5) by dQ,, we
integrate with respect to z over aD(¢):

dQ,

ds,>0

L 0’ dg
2(n—1)w,, Jopw) 9tdf on, °

—1 n dg 0%g 0dg ag
<< 2 2
= =Dy, RG{EILDU) [( dt otoz, 9z, an>/ [Grade,) & ]dSz}'

According to Proposition 3.2 the left-hand side is equal to d2\(¢)/dtoF. It
follows from Proposition 3.3 that
dZN(2)

otor

1 noogn dg d°g _ —~
< - R = % dzAdZA---Ndz Ad
e 6{21 2n=2 Sao(t) 3t dfdz, 1k a0

/\---Adz,,/\dzn}.

As already noted, dg/at is of class C? for z on D(¢)U3D(¢). Hence, if we
apply Green’s formula to the integral 7 of the right-hand side, then

i dg 9’g _ ~ _
I= S 9 98 gz AdZA--NdZ AAZLA - Ndz, AdZ,
w=1vaD(@) Ot 9faz,

n dg d%g _ ~ _
- — ———dZyNdZ A - NdZ NAZ N -+ NdzZ, \NdT,
2 §§D(r) d( ar droz, anda Zaft(Za o z)

a=1
__§H 9%g >, o0z 8%
T 2, )b\ | ooz, ot 070z,0Z,

Because dg/dF is harmonic for z in D(¢): 3% _, 8%g/07dz,0Z, =0, it follows
from dz , AdZ,= —2idxy,_1Ndx,, that

1=—(—2i)"HDw< 5 |2

a=1 ataza

)dzlAdZI/\--./\dznAdZ,,.

2
) dxl/\de/\ “‘/\din.
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Consequently,
32N () —4 n | 3%g |
— < dv=<0.
otor (n—1wy, SSD(!)(agl 0tdzZ, )
Lemma 3.1 is proved. A

For the proof of Lemma 3.1 we used the pseudoconvexity of D, but we did
not need the plurisubharmonicity of y (¢, z) in the larger set D. This fact will
be important when we treat the extended case where D(¢) varies in a com-
plex manifold M (see [18]).

4. Differentiability

Consider a triple (D, BX C", p) which satisfies the following Conditions
4.1-4.4.

CONDITION 4.1. There exists a constant section ¢: ¢ — { of D defined for
teB.

Each fiber D(¢) then carries the Green function g(¢,z) and the Robin con-
stant A(¢) for (D(¢), ).

CONDITION 4.2. There exists a double (D, /) defining the domain D such
that (¢, z) is real analytic with respect to (¢,z) in D.

We consider the subset I" of D defined by

- oy ay
I'=(¢, Dy=—=..-= =0at (¢,
{( z)eD|y 52, 52 ( z)}
and the projection of I" to B:
¥ =ppp(l).

The set v is thus determined by 2#n+1 real analytic equations in the real
(2n+2)- dlmensmnal space D. Following (3 2), we use the notations I'g =
I'N(pgop)~1(B,) and T'(¢) =T'N(pgop)~1(¢) for any open set B, CB and
teB.

CONDITION 4.3.

(a) For each open set B, CC B, the set I, consists of a finite number of
real one-dimensional nonsingular curves in DB , except perhaps for a
finite number of singular points.

(b) The set I'(¢) for ¢ € v consists of a finite number of points: I'(¢) =
(zM(),...,z2'9(t)}, where g (=1) may depend on ¢ € y.

The set yN B, then consists of a finite number of smooth curves in B,, ex-
cept perhaps for a finite number of singular points.
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CONDITION 4.4. The function ¥(¢,z) of Condition 4.2 is plurisubhar-
monic with respect to (¢,z) in D.

Conditions 3.1 and 4.1 are identical. Condition 4.2 is stronger than Condi-
tion 3.2. Condition 4.3 is weaker than Condition 3.3, in which I" was empty.
Although Condition 4.2 and 4.3 yield (D) (¢) = dD(¢) for all ¢ € B, the vari-
ation D:¢— D(¢) (¢t e B) is no longer locally diffeomorphically (at times,
even topologically) equivalent to the trivial one. So neither g(z, z) nor \(¢)
need be of class C? for every (¢,z) e D—¢(B) or for each ¢ € B. However,
we are able to show the following differentiability of \(#).

LEMMA 4.1. Suppose that the triple (D,BXC", p) satisfies Conditions
4.1-4.4. Then \(t) is a function of class C' on B.

We proved in [14, §4] the same differentiability lemma in the case of a do-
main D over B X C, namely, in the case of a variation of Riemann surfaces.
It was based on the fact that any harmonic function of one complex variable
is locally the real part of a holomorphic function. In the present case where
n =2 this is no longer true, and we give a different proof of the lemma. It
will be divided into several short steps.

Proof of Lemma 4.1. Throughout these steps we set

B*=B-v, B;=B,-7,
and
Dy =DN(pgep)”'(B,)

for an open set B, in B.
Ist Step. (1) The function g(¢, z) is of class C3 for (¢,z) on
(Dp:—$(B*)) UdDg:;

(2) The function \(¢) is superharmonic and of class C* on B*.

Indeed, fix ¢, € B* and take a disk B, of center ¢, such that B, CC B*. Then
Condition 4.3 implies that the open set Dg over B, X C" consists of a finite
number of domains D; (j=1,...,m) over B,xC" such that (D;UdD;)N
(D;UoD;) =0 for j #i. One of them, say D, has constant section { defined
on B,, where ¢ is the section mentioned in Condition 4.1. By definition of
the Green function for an open set, for each ¢ € B, g(¢, z) is the Green func-
tion for (D,(¢), ¢) in D,(¢) and is defined to be 0in D;(¢) (2 < j < m). Also,
A(¢) means the Robin constant for (D,(¢), ¢). So it is clear that g(¢, z) is of
class C? for (¢,z) on U}L,(D;UaD;). The domain D, over B,x C" with
section ¢ satisfies Conditions 3.1-3.4. It follows from Proposition 3.1 that
g(t,z) is of class C3 for (¢,z) on D, UdD,; — {(B,). By (3.4) and Lemma 3.1,
A(?) is of class C? and superharmonic on B,. The Ist step is thus proved.

2nd Step. Let B, be a region of B such that B,CCB. Let U,: |z—¢| <71,
be a ball with center at the pole ¢ such that B, X U, CC D. Then there exists
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a constant ¢ > 0 (depending on B, and U,) such that the following inequali-
ties hold:

4.1) g(t,z)=—cy(t,z)
forall ze D(¢t)—U,U0dU, and ¢ € B,;
4.2) |Grad,,y g(¢,z)| = c|Grad, ¥(¢, 2)]

for all ze aD(¢) and ¢ € B}.
In fact, if we put
1

m=inf{—y(¢,z)|(t,z)eB,xU,} and C=_m;02n—2’

then m >0 and c > 0. We shall verify that this constant c¢ satisfies (4.1) and
(4.2). To this end, let ¢ be an arbitrary point in B,. Inequality (1.2) implies
from the maximum principle that

1
4.3) 0<g(f,2)<§‘,,_—2
o
for all ze D(¢)—U,. Let Q be any open set in D(¢) with smooth boundary
dQ and such that U, CCQ CC D(¢). We denote by gq(?, z) the Green func-
tion for (2, ¢). Construct the function

vo(t,2) =cy(t,2)+ga(t,2)

on 2—-U,UadU,. Condition 4.4 implies that the restriction of { to D(¢) is
plurisubharmonic for z in D(¢). Consequently, vq (¢, z) is subharmonic for z
inQ—-U,UdU,; thatis, A, vq(Z, z) = 0. Since gg satisfies inequality (4.3) for
z2€Q—-U,, vg(t,z2)<00n 3(Q2—U,)=0QUaU,, and it follows that vq(¢, z) <
0in Q—-U,UaU,. Because gq(¢,z) 7 g(t,z) as Q —» D(t), we have cy(¢, z) +
g(t,z)<0on D(¢t)—-U,UaU,. Hence the constant c satisfies (4.1).

Fix t € B¥. Then g(t, z) can be extended of class C3 beyond dD(¢) in D(z).
Since g(¢,z)=v¢(¢,z)=0on aD(¢) it follows from (4.1) that

d (L, z
2 on, 2 on,

for all z € dD(¢). Hence our c satisfies (4.2) and the 2nd step is proved.

Before proceeding to the following steps we shall state two preliminary
results. Let B,: |t —t,| < p, be a disk in the complex ¢ plane, and let G bean
open set over C”. Let y,(¢, z) and ¢, (¢, z) be real-valued, real analytic func-
tions with respect to (¢, z) in B, X G. We put

E;={(£,2)€B,xG|¥;(£,2) <0} (j=12);
Ei(t)={zeG|(t,2)eE;}] (teB,);
E=E NE, and E@{)=E;|(t)NE,(1).

We denote by dE or JE; the boundary of E or E; in B, X G. For t € B,, we
denote by dE(¢) or 0E;(¢) the boundary of E(¢) or E;(¢) in G. Assume that:

|Grad, g(1,2)] = = c|Grad ) ¥ (4, 2)|
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(a) for each t e B,, Grad, y;(¢,z) #0 for all z € 3E;(t) (j =1,2);
(b) AE;(t)NAE(t)#0 (j=1,2) for all # € B,;

(c) for each t € B,, dE;(t) and dE,(t) intersect transversally in G;
(d) E(¢t)ccG foreachteB,.

For the sake of simplicity we say that such a set E is an open set with cor-
ners in B, X G. Also we say that the double (B, X G, {{;, ¥,}) defines the
open set E. In this case, each E(¢) (¢ € B,) is bounded by a finite number
of smooth surfaces such that whenever two of these surfaces intersect, they
intersect transversally. Moreover, for any region B; CC B, the variation

EUJE: t > E(t)UGE(t) (teB))

is diffeomorphically equivalent to the trivial one t - E(¢,) UJE(t,) (¢t € B)),
where ¢, is a fixed point in B;. Using this notation, we have the following.

PRELIMINARY 4.1. Let E be an open set with corners in B, X G. Assume
that there exists a point { € G such that B, x {{} CE. For ¢ € B,, we denote
by g(¢, z) the Green function for (E(¢), ). Then g(¢, z) is continuous with
respect to (¢, z) in E except for the pole B, X {{}.

PRELIMINARY 4.2. Let E be an open set with corners defined by the double
(B, X G, {¥1,¥,}). Assume that u(¢, z) is a continuous function with respect
to (¢,z) in EUOE such that, for any fixed ¢ € B,, u(¢, z) is harmonic for z in
E(t) and vanishes on dE(¢)NAE,(¢). Then (0u/0z,)(¢,2) (1 <a <n) is con-
tinuous with respect to (¢,z7) e EU{dEN (JE;—JE,)}.

These can be proved without difficulty by following the concrete construc-
tion of Green function by means of the theory of Fredholm’s integral equa-
tions. Let us return to the proof of Lemma 4.1.

3rd Step. (1) The function g(¢, z) is continuous with respect to (¢,z) on
(D—¢(B))UaD and vanishes on dD; (2) The function A(¢) is continuous
for f e B.

In fact, by the 1st step, it remains to prove the 3rd step for ¢ € . We assume
t, € v. By Condition 4.3(b), the boundary surfaces dD(¢,) have the singular
points I'(¢,) = {zP(¢,), ..., 29 (¢,)]. First, let (¢,,2,) € dD. Take a disk B,
of center ¢, and a ball U, with center at the pole ¢ such that B, x U, CCD.
By the 2nd step we can find a constant ¢ > 0 satisfying (4.1). Therefore, if
(¢,z) e D tends to (¢,,z,), then

0= lim g(t,z)=—c lim  ¥(t,2) =—c¥(to, 2,) =0.
(t,2) > (L5,2,) (t,2) = ({5, 20)

This means that g(¢,,z,) =0 and g(¢, z) is continuous at (¢,, z,). Next, let
(¢5,2,) €eD—¢§(B). Fix balls U,: |z—{| <r, and V,: |z—2,| <5, such that
U,UvV,CccD(t,) and (U,UadU,)N(V,UaV,)=0. We also take an open set
G of D(t,) such that D(¢,) CC G cC D(¢,) and such that the boundary dG
of G in D(¢,) is smooth. We use the following notation: Given p >0 and
7 >0, we put
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B,={teB|lt—t,|]<p} and W,= U w, k),
=1
where W0 ={zeD(1,)||z—z®(t,)| <9} 1=k =gq).
By Condition 4.3(a) and (b), we can choose small numbers %; > 0 and
p1 > 0 such that:
(i) W,,CCGand (W, UdW, )N(U,UaU,UV,UdV,)=0;
(i) U,UV,cCcD(t)CcCG for each teB,; and
(iii) given a number 5 such that 0 <75 <7, we can find a number p(y)
such that 0 < p(7) < p; and such that the set

E=DBp(q) p(n)X(W UBW)
is an open set with corners in B,,, X G.

To achieve (iii), it is sufficient to take, as a double defining E, (B,(,, XG,
{¥1, ¥2}), where ¥ =y and ¥, =TI{_, ¥, , with

Vo k(t,2) =12 —|z—2 B (1,) %

Now fix 7 (0 <% <#,). For each ¢ € B, we denote by g, (¢, z) the Green func-
tion for (D(¢)—W,UadW,, {). We construct the harmonic function «,(z) de-
fined on G —W, UadW, whose boundary values are

1/r3"~% on oW,
”"(7')_{0 on 3G.

It is clear that as » — 0, u#,(z) ™ 0 uniformly on any compact set in G —
{2z (")(z‘o)}k ; and, in partlcular on V,UdV,. On the other hand, from the

maximum principle and (4.3), we have, for each teB,,

0<g(taz)—gq(ts z)<u~q(z)
for all ze D(¢)—W,UaW,. 1t follows from (i) and (ii) that

|8(£,2) = 8(Lo» Zo)| < 1 (2) + 1, (20) + |8, (£, 2) — &, (£ 20)]

for (¢,z) € B, XV,. Given € >0, we take a number 5, such that 0 <75, <7,
and such that 0 < u, (z) <e/3 for z € ¥, U dV,. Preliminary 4.1 together
with (iii) implies that g, (¢, z) is continuous with respect to (¢,z) in E =
Ds,,.,~Boen, ,x(W UaW, ). Because E> (4,,2,), we can find a neighbor-
hood V of (to,zo) in E such that |g, (¢,z)—g, (f,2,)|<€/3 for (t,z)eV.
It follows that |g(¢,z) —g(2,,2,)| <€ “for (t,2) ev. Consequently, (1) of the

3rd step is proved. From expression (1.3), (2) of the 3rd step follows.

4th Step. The derivative (dg/0z,) (¢, z) (1 = o <n) is continuous with re-
spect to (£,z) in (D—¢{(B))U(AD—T"). Precisely, (dg/dz,)(t,z), which is
certainly defined in D — {(B), can be continuously extended to dD —T".

Indeed, first suppose (¢,,2,) € D—{(B). We take B,:|t—1,]<p and V:
|z —z,| <r such that B, XV CCD-— {(B). Then expression (1.7) combined
with (1) of the 3rd step implies that (dg/dz,) (¢, z) is continuous for (¢,z)
in B, x V. Next suppose (f,,2,)€ 0D —TI'. Then we find B,:|f—1,|<p and
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V:|z—z,| <r such that B,x¥V cCD—{(B) and Grad, ¥(¢,z)#0 for all
(¢,z) e aDN (B, xV). Therefore E=DN (B, xV) is an open set with cor-
ners. It follows from Preliminary 4.2 together with (1) of the 3rd step that
(dg/dz,)(¢,z) is continuous on (DUJID)N (B, x V). Consequently, the 4th
step is proved. '

From (1) of the 1st step, the derivative (dg/dr) (¢, z) exists for any (¢,z) €
Dg.UaDg«. Thus we consider its restriction to the boundary dDg. and put

)
u(t,z)=£—(t,z) for (¢,z)€dDg-.

With this terminology we shall state the following.

5th Step. (1) The function u(¢,z) defined on dDg. can be uniquely ex-
tended to a continuous function #(#, z) on 4D —1I'; (2) Let B, be a region such
that B, CC B; then there exists a constant K > 0 (depending on B,) such that

(4.4) |a(¢,z)]=K and ﬁ(t,z)-:—f—(t,z) <K

rd
for all (¢,z) € BDBO—I‘, where n, denotes the unit outer normal vector to
the (2n—1)-dimensional surface dD(¢) at the point z.

In fact, by (1) of the Ist step, u(?,z) is continuous for (¢,z) € dDg.. By
Condition 4.3, dDp- is dense in 9D —TI'. Thus, to prove (1) of the 5th step it
suffices to verify the following fact: Let (¢,,z,) € 3D —T" with 7, ey, and let
(t,z) e dDg. tend to (¢,, z,). Then the limit of u(#, z) exists. Indeed, because
dD(¢,) is nonsingular at z,, we can find a neighborhood B, XV, of (¢,, z,)
in D where B,:|t—1,|<p and V,: |z—z,| <r such that Grad;, y(¢,z) #0
for all (¢,z) € B, xV,. On the other hand, equality (3.3) implies that

og oy ) |Grad,, g(t, )|
4.5 t,2)=—(t,2)=—( — (¢,
4-3) ut,z) =5, (,2) ( -2 NGrade, (2, 0|

ot

for all (¢, z) € dDg.. By the 4th step, (dg/dz,)(¢, z2) (1<=a <n) is a con-
tinuous function for (¢, z) on (D — {(B)) U (6D —TI'). By Condition 4.2,
(dy/at)(t,z)/|Grad ¥(¢, z)| is continuous for (¢, z) in B, x V,. It follows

that
. a¢ "Grad(z) g(tm zo)"
lim  u(t,z)= —(—(r 2 )) ,
(t,2) > (15, 2,) ar 7 "Grad(z) ¥ (205 20)]

where (¢,z) € (dDg:)N (B, X V,). This proves (1) of the 5th step.

For the proof of (2), let B, be a region such that B, CC B. By definition
of #(t, z) for t ey and by the 4th step, it suffices to prove the existence of a
constant K such that

ag og
—=(t,2) —
at (1,2) an,
for all (¢,z) € dDp;. Since B, CC B, we can find a ball U,: |z —{| <r, such
that B, X U, CC D. By the 2nd step, we can choose a constant ¢ > 0 (depend-

ing on B, and U,) which satisfies

(4.4") %‘?(I,z) (4,2)[=K

<K and ‘
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(4'6) "Grad(z) g(t9Z)" Sc”Grad(Z) ‘lb(ts Z)ll
for all (¢,z) € Dp;. It follows from (4.5) that
ag ¥y dg dg 6¢
o <c|— o and o anz -|Grad ;) ¥|

for all (t z)€dDp;. Since ¥(¢,z) is real analytlc for (¢,z) in D and since
Dp CC D, we can find a number M > 0 such that

| | 9
3t || 9z,

Consequently, if we put X =max{cM, ync>M?}, then K satisfies inequality
(4.4"). Thus (2) is proved.

It must be noted that (1) of the 5th step implies neither the existence nor
the continuity of (dg/at¢)(¢,z) as a function with respect to (¢,z) on DU
(aD-T') at (¢,,2,)€dD—T with ¢,€ 7.

6th Step. The function \(¢) is of class C! on B.
In fact, by (2) of the 1st step, \(¢) is of class C? on B*. It suffices for the
6th step to prove the following.

=M for (¢t,z)eDp UdDp and l<a=n.

PROPERTY (A). Let 7, be any fixed point of . Then, given ¢ >0, there
exists a- disk B, CC B of center £, such that

'_( )_._(t) e forall ¢t,t’'e B;=B,—v.

For, assume that Property (A) is true for all ¢, € 4. Since B— B* =y consists
of real analytic curves, we see that d\/d¢ on B* is uniquely extended to be
a continuous function \;(¢) on all of B. Because \(¢) is of class C? on B*,
Stokes’ formula implies

Sc”‘l dt +3,dF)=0

for any closed curve C in B such that the domain bounded by C is contained
in B. Since, by (2) of the 3rd step, A(¢) is continuous on B, it follows that

x(t)=>\(70)+5' (A dt + X, dT),

where 7, is a fixed point in B*. Hence d\/df exists, even at ¢, € v, and is equal
to A\ (¢,). The 6th step is thus true.

Now, given ae C" and 7> 0, we consider the ball V(a, ): |z—a] <7 in
C". Since y(t, z) is real analytic with respect to (¢, z) in D and since Dy CC
D for any B, CC B, the following fact is clear: Let B, be a region such that
B, CCB. Then, given 6 > 0, there exists a number % > 0 such that

4.7 ds, <6

S(aD(I)—I'(t))ﬂV(G.n)
for all (¢,a)e B, xC".
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To show Property (A), let £, € y. The surface dD(¢,) then has the singular
points I'(#,) = {z ¥)(#,)}4 =1,... - We choose a disk B, CC B of center ¢, and
a ball U, CC D(¢,) with center at the pole ¢ such that B, x U, CCD. From
(2) of the 5th step, we can find a constant K > 0 (depending on B,) which
satisfies inequalities (4.4) for (¢,z) € BDBO—I‘.

Let e >0 be given. We put 6 =2(n—1)w,,/(3¢K). With this 6 >0, we can

find a number % > 0 for which (4.7) holds for all (¢,z) € B, x C". If we put
q
W,=U W% where WO =v(z®(1,),7) (1<k=gq),
k=1

then daD(¢,)—W,UodW, consists of only ~nonsingular points. Take an open
set G with D(¢,) —W,U oW, CC G CC D(t,). As already noted in the 3rd
step, we can find a disk B,: [t —1,| < p(y) in B, such that

E =Dy — B, x (W, UaW,)

is an open set with corners in By X G. Thus, the surfaces dD(¢)—W,UdW,,
together with their unit outer normal vectors, approach those of dD(¢,)—
W,UaW, in a continuous way as ¢ € B, tends to #,. Also, by (1) of the 5th
step, @(?, z) is uniformly continuous on U, ¢ g, (¢, dD(¢) — W, U3W,), a rela-
tively compact subset of 3D —TI". It follows from the 4th step that

. 0
lim | a(t,2) 2 (¢,7) dS,
t 1, Y AD(1)—W,UdW, on;

tEBl

dg
a4(ty,2) —(4,,2)dS,.
SaD(t,,)—W,,uaW,, (fo,2) on, (lo, 2) d5,

Hence there exists a small disk B,: |t —1,|< p, in B; such that

dg ag
1(t,2) — (1,2)dS, — i(t',z)- —(t,2)dS.
SaD(t)—WnuaW,, a(t,z) anz( z) ds, Sw(ﬂ)_wﬂuaw’, a(t',z) on, (t,z)dS,
(4.8) < 2(n— 31)w2,,e

for ¢, t'€ B,. Since B, C B; C B, CC B, the inequalities (4.4) for (¢,z) € dDg,,
(4.7) for (t,a)e B, X C", and (4.8) for ¢, t'e B, remain valid. Therefore, in
view of Proposition 3.2 we see that, for every ¢, t'e B%,

)N
—(f)———(f )l

— —1 g dg dg o0g ,
T X

)(t z)dsS,

d
—S (u- —g—>(t’,z) ds,|+
Dt y-w,Vew,\  dn,

aD(1)— W, UaW, (

< m___l____{
2(1’1 '—1)(.02”
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g
KdS S KdS
+k§1(§30(1)ﬂW,,(k) 2t ap(e )N, o Z)}

< 1 {2(’7‘”1)""2#E
- 2(’1—1)&)2" 3

We thus have Property (A). Lemma 4.1 is completely proved. O

+2Kq6} =e.

REMARK 4.1. By means of the above proof we conclude that, at each i,
v, the improper integral
ag

(L5, 2)* — (£, 2) dS
Sw(to)_m)u( 0s%) anz(o z)dsS;

exists and is equal to —2(n—1)w,,(dN/dt)(Z,).

COROLLARY 4.1. Under the same conditions as in Lemma 4.1, the func-
tion \(t) is superharmonic and of class C' on B.

Proof. By (1) of the 1st step, \(¢) is superharmonic and of class C? on B*=
B—~. Lemma 4.1 implies that \(¢#) is of class C! on all of B. Since the set of
singular points of v is locally finite in B, it thus suffices to prove, at each
nonsingular point #, of v, the inequality
1 2= i0
—2"7‘; 50 >\(to+re ) = )\(to)

for every sufficiently small r > 0. Let B,: |t —¢,| <r in B. If r is small enough,
then B, CC B and B, is divided by v into two regions (B;, B/). Since \(¢) is
of class C! on B,UdB,, it follows from Green’s formula that

J 27 . 8)\ O\
—  Ne+re®ydot =\ —ds, = —
r or {So (to+re™) 0] SaB, on, dsy SaB;uaB;' an, s

RN
=i ——=(t)dtdt <0.
! S SB;UB;’ atorf (1)
Consequently, if we put L(r) = (3" \(¢,+re'’) df, then L(r) is a decreasing
function of r for r > 0 sufficiently close to 0. Because L(r) — 2w\ (f,) asr -0,
we obtain the desired inequality. Corollary 4.1 is proved. L]

5. Hartog’s Transformations

In Sections 3 and 4 we treated variations of an open set D with smooth
boundary over C”. In this section we study variations of D without smooth
boundary. Let (D, BXC”, p) be a triple satisfying Condition 4.1. For each
t € B, we consider the Green function g(¢, z) and the Robin constant \(¢) for
(D(?), ¢), where ¢ is the point mentioned in Condition 4.1. Assume that D is
a pseudoconvex domain over B X C” (which may be infinitely many sheeted).
Following Oka [8, p. 143], we construct a sequence of subdomains { D,} of
D such that D, CCD,CC---, Ug-D,=D, and such that D, is pseudo-
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convex over C"*! with smooth boundary dD,. Each D, carries a real ana-
lytic plurisubharmonic function v, (¢, z) such that y,,(¢,z) —» +oas (¢,z) =
dD, (see, e.g., Theorem 8.1 of this paper). Now, let {B,} be a sequence of
subregions of B such that ByCCB,CC --- and U, B, =B. We choose a
subsequence D;,y of D, such that D;,y DD {(B,.1). We relabel j(p)=p
(p=1,2,...). For each t € B, ;, we consider the Robin constant \,(¢) for
(Dy(2), §). Since ¥, (¢, z) is real analytic in D,, there exists a large number
ap, >0 with the following property: If we put D = {(¢,2) e D, |, (£, 2) < p},
then D, DD D; DD D,_; and the triple (D, B,» B,xC", p), where D}",,Bp =
Uves, (¢, Dy(2)), satisfies Conditions 4.1-4.4. For each ¢ € By, let N},(¢) de-
note the Robin constant for (D;(¢), ). Corollary 4.1 implies that \},(¢) is
a superharmonic function of class C! on B,. On the other hand, because
D,_,(t) CCD;(t) CCD,(t)CCD(t) for t e B,, we have \,_1(¢) <N, (£) <
A (2) <\(¢) for t € B,. Since A, (¢) 7 N(¢) as p — +oo for £ € B, it follows that
A(#) is a superharmonic function on B. We have thus proved the following.

THEOREM 5.1. Let D be a domain over B X C" satisfying Condition 4.1.
If D is a pseudoconvex domain over BX C", then \(t) is a superharmonic
JSunction on B.

In order to derive the Main Theorem from Theorem 5.1, we need the fol-
lowing elementary property of the space C".

PROPOSITION 5.1. Consider an affine transformation of C" of the form
w=¢p((z)=a(Az)+b, where a#0, aec C, be C", and A is an n X n unitary
matrix (A'A = E, =nXn identity matrix). For an open set D over C" and
€D, we put D*=¢(D) and {*= ¢($). Then:
(1) If we denote by g(z) and \ (resp. g*(w) and \*) the Green function
and the Robin constant for (D, {) (resp. (D*, ¢*)), then

eron_ 8(2) e N
(5.1) g (W)-- 'alzn_z and N*= ia|2n—-2

for ze D, where w=¢(z).
(2) Both g(z) and \ are independent of the choice of complex coordi-
nates.

Proof. We may assume that D has smooth boundary aD. Since harmonicity
is invariant under ¢ or ¢!, the function G(w) = ge¢ ~!(w) is harmonic in
D*—{¢*}. Moreover G(w) vanishes on 3D* and can be expressed in a neigh-
borhood of {* in the form

=P
where H(w) is harmonic and H({*) =0. It follows that g*(w) = G(w)/|a|*" 2
and \*=X\/|a|*"~2. Hence (1) is proved. If we take a =1 and b =0, then (2)
follows and Proposition 5.1 is proved. 1

Gw)= +N+H(w),
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Theorem 5.1 and Proposition 5.1 now having been established, the Main
Theorem is proved by a standard method as follows.

Proof of Main Theorem. Let D be a pseudoconvex domain over BxXC"
with holomorphic section {:¢— {(¢) (f € B). For t € B, we denote by ()
the Robin constant for (D(#), §(¢)). Now take any open disk B,: |t —¢,| <7,
such that B, CC B. Let f(¢) be any holomorphic function on a neighbor-
hood of B,UdB, such that f(¢)# 0. We choose a single-valued branch f;
of f1/¢27=2) on B, and consider the following transformation, known as a
Hartogs’ transformation, of Dp onto D*=T(Dp ):

=t
T: ’
{W=f1(f)(z—§'(f))-

The domain D* becomes then a pseudoconvex domain over B, X C" with
constant zero section O. For ¢ € B,, we denote by A\*(¢) the Robin constant
for (D*(t), O). From Theorem 5.1, N*(¢) is a superharmonic function on B,,.
On the other hand, equation (5.1) implies that N*(£) =N\(¢)/|f(¢)| for t € B,.
It follows from the inequality A(#) <0 that

log(—N(2,)) —u(t,) sl mallx {log(—N(2))—u(2)},
t—t,l=r,
where u(¢) =log| f(¢)|. Since f(¢) is an arbitrary holomorphic function on
B,UdB, with f(t)#0, log(—\(?)) is thus subharmonic on B,. (Note that
log(—A\(?)) may be identically —oo on B,.) It follows that \(¢) is superhar-
monic on B,,. O

6. Fiber Uniformity

From the beginning of this paper we have treated variations of open sets
D(t) over C" (n=2) with complex parameter ¢. In Sections 6, 7, and 8, we
will give some applications of the Main Theorem and Lemma 3.1. These re-
sults will be compared with those in the case when D(¢) varies over C (given
in [15] and [16]).

Let D be a domain over C" and let { e D. We denote by g(z) and \ the
Green function and the Robin constant for (D, ¢). In view of (1.2) we have
0<g(z)=<1/|z—¢|*" 2 for ze D and XA <0. We easily see by the maximum
principle that

6.1 g(z)= i in D if and only if A=0.

1
Z_g-l|2n—2

Moreover, whether A =0 or A <0 does not depend on the choice of the pole
¢ € D. We thus introduce the following.

DEFINITION 6.1. A domain D over C” with A =0 (resp. <0) is said to be
parabolic (resp. hyperbolic).
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Now let B be a region of C and consider a domain D over B X C”. The fiber
D(¢t) of D at ¢ e B is thus an open set over C"; that is, D(¢) consists of at
most countably many domains over C”. We have the following result on
fiber uniformity.

THEOREM 6.1. Let (D, BXx C", p) be a triple with pgep(D) = B and let
K ={teB|D(t) has at least one parabolic connected component}. Suppose
that D is a pseudoconvex domain over Bx C". If K is of positive logarithmic
capacity in C, then K = B and each connected component of D(t) is para-
bolic for all t € B.

Proof. We denote by D*(t) one of the connected components of D(¢) for
t € K. Suppose that K is of positive logarithmic capacity. Then we can find
a point (¢,, {,) € D with the following property: There exists a disk B,:
|t —t,| < p such that B, X {{,} CCD and such that the subset K, ={t € B,NK |
D*(t) contains the point {,} of X is of positive logarithmic capacity. If, for
t € B,, we consider the Robin constant A(¢) for (D(?), §,), then A(¢) =0 for
t € K,. According to the Main Theorem, log(—\(#)) is a subharmonic func-
tion on B,. It follows that log(—\(#)) = — on B,. Consequently, for each
t € B,, the connected component D,(¢) of D(¢) which contains {, is para-
bolic, so that X D B,,. By repeating the same process at a point (¢, {;) where
t;€ 0B, and ¢, € D;(t,), instead of the point (¢,, {,), we can eventually show
that X = B. The connectedness of D over B x C” then implies the latter as-
sertion. Theorem 6.1 is proved. i

Following Ahlfors and Sario [1, Chap. IV] we briefly recall the notion of
the Robin constant of a domain D over C. Let D be a domain over C and
let ¢ € D. Choose a subdomain Q of D with smooth boundary dQ such that
e QcCcCD. Then Q carries the Green function gg(z) with pole at {. Hence
gq(z) can be written in a neighborhood of ¢ in the form

1
z—¢|

where \q is a constant, sg(z) is harmonic, and hg($) =0. Since gg < gg- and
Ag < Ao for @ CC Q' CC D, the limits g(z) = supfgq(z) |2 CC D} and A =
sup{Ag | CC D} exist. We may have g(z) = +o0 in D and A = +oo. Then
g(z) and X\ are called the Green function and the Robin constant for (D, {).
If A = 400 (resp. < +00), the domain D is said to be parabolic (resp. hyper-
bolic). Using this notation, we obtained in [15, p. 72] the same Theorem as
Theorem 6.1 with C” replaced by C. Although both theorems are quite simi-
lar in form, there is some difference in content between them. In the case of
a domain D over C, harmonicity is invariant under any analytic transforma-
tion w = ¢(z). It follows that

Mooy (#($)) =Ap($) +log

gq(z) =log +No+ho(2),

do
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where Ap($) and N\ ,p)(¢($)) denote the Robin constant for (D, ) and for
(¢(D), ¢(£)), respectively. Therefore parabolicity is invariant under ana-
lytic transformations. In the case n =2 this does not remain valid, as is seen
in the first of the following examples.

EXAMPLE 6.1. From the well-known Fatou-Bieberbach example, the whole
space C" (n=2) can be transformed by an analytic transformation ¢ onto a
domain (D) of C" such that C"— (D) U de(D) is nonvoid. Consequently,
¢(D) is hyperbolic while C” is parabolic (see Example 1.1).

EXAMPLE 6.2. Let w=P(z) be an algebraic function of z=(z;,...,2,)
(n=1) which is not a polynomial. For n =2 (resp. =1) it determines a rami-
fied Riemann domain R over C” with a finite number of branch surfaces
(points in the case n =1) S. We put R*= R — S, which is at least a two-sheeted
unramified covering domain over C”. In the case n=1, the domain R* is
parabolic. On the contrary, in the case n=2, R* is always hyperbolic, be-
cause statement (6.1) implies that every parabolic domain is schlicht.

EXAMPLE 6.3. A typical example of a parabolic domain for n=1is a do-
main D of C" such that C”— D is a polar set, namely, such that there exists
a subharmonic function s(z) in D with lim, _, cn_p §(z) = —c0.

7. Rigidity
For other applications we need the following rigidity lemma.

LEMMA 7.1. Let (D,BXC", p) be a triple satisfying the same conditions
as in Lemma 3.1. If (3*\/dt97) (t,) =0 for some t, € B, then (3g/dt)(t,,2) =
0 for all ze D(t,).

Proof. Suppose that (82\/dt97)(¢,) =0. Then Lemma 3.1 implies

3%\ —4 n 62g
7.1 0=— <
7.1 ator (to) = (n—1w,, Hp(ro)(agl

EYEA (46, 2)
Hence inequalities (3.5) and (3.6) in the proof of Proposition 3.4 must re-

duce to equalities:

2
)stQ

d’g g » d%g og
3.5/ —— =2 Re]l— -— 2;
(3.5) i =2 57 3 gt | [1Grd
62 a 2 a 2 2 2
3.6y 8|98 ,p.fd 9% % 07e |%|"_,
otor 82:5 of 31823 aZB 325625 ot

for each 8 (1 = < n) and each point (¢,, z) such that z € dD(¢,). Inequality
(7.1) yields

dg
(7.2) 319z,

(t,,2)=0 (I=a=n)
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for z € D(t,); that is, (dg/dt)(¢,, z) is a holomorphic function of z in D(¢,).
By continuity, (3%g/8t0Z,)(t,,z) =0 for z € 3D(t,). It follows from (3.5%)
that (3%g/atd7)(¢,,z) =0 for z € 3D(t,). Consequently, (3.6”) and (7.2) yield
aZg 2
=0 (I=8=
323323 ( 5 n)

og
(73) (to,z)’ E'(t()’z)

for ze dD(¢,). On the other hand, since D(¢,) is bounded, there uniquely
exists a sphere 7: |z— | =R with center at the pole { which is tangent to
the smooth surface dD(¢,) from the outside. Take one of the points of con-
tact, say z, € 7N adD(¢,). If we choose a point @ € C" with |a| =1 such that
2 —104(2oa— $o) =R where = ({4, ..., &) and 2, =(Zo15 ---» Zon), then

0%g(t,,2,+ar)
070T

By Proposition 5.1(2) we may assume a =(1, 0, ..., 0), so that

d%g

6z1 321

(0)<O0.

(45,2,) <O.

Hence (3%g/0z,07;)(f,,z) does not vanish in a neighborhood ¥ of z, in
D(t,). Expression (7.3) implies that (dg/at)(¢,,z) =0 for all ze VNaAD(t,).
Because (dg/dt)(¢,,z) is holomorphic for z in D(¢,) and is continuous on
D(t,)UaD(t,), it follows from the uniqueness theorem that (dg/at)(¢,,z) =
0 for all ze D(¢,). Lemma 7.1 is proved. O

In the proof, the point of contact z,, is called a strictly pseudoconvex bound-
ary point of D(¢,).

COROLLARY 7.1. Under the same conditions as in Lemma 3.1, if \(t) is
a harmonic function on B then D is identical with the product B x D(t,),
where t, is a fixed point in B.

Proof. Assume that \(¢) is harmonic on B. By Lemma 7.1, the function
g(t,z) in D does not depend on ¢ € B. Consequently, if for any number ¢ >0
we put D, ={(¢,z)eD|g(¢,2) <€}, then D, =B XxD_(t,), where ¢, is a fixed
point in B. Since D,(t) 7 D(t) for e >0, we have D =B X D(¢,). Corollary
7.1 is proved. (il

In the case of a domain D over C, neither the same rigidity as Lemma 7.1
nor the similar result to Corollary 7.1 is valid. However, the following fact
was proved in [16, Thm. 1]: Let (D, BX C", p) be a triple which satisfies the
same conditions as in Lemma 3.1 with C" replaced by C. Let g denote the
Euler characteristic of the fiber D(¢) (¢ € B). Suppose that there exist at least
—q + 2 holomorphic sections of D definedon B, {;:¢t—>(¢) (teB,1<i=<
—q +2) such that the Robin constants \;(¢) for (D(¢), {;(¢)) are harmonic
functions on B. Then D is analytically equivalent to the product B X D(¢,)
by a transformation (¢,z) — (¢, ¢(t,2)), where ¢(¢,z) is holomorphic with
respect to (¢,z) in D and where ¢, is a fixed point in B.
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8. Strictly Plurisubharmonic Functions

Let D be an arbitrary domain over C” (n=2) and { € D. We denote by
G({,z) and A($) the Green function and the Robin constant for (D, ).
The function G(¢,z) can be expressed in a neighborhood of ¢ in the form

8.1 G(§,z)= +A()+H(S, 2),

_
IR
where H(¢, z) is harmonic for z in D and H(¢, ) =0. The Robin constant
A(¢) defines a real-valued function in D. In the case where D is parabolic,
we have A({) =0 in D, so there is no interest.

(1) Consider the case where D is hyperbolic, that is, —c0o < A({) <0 for
¢eD. Then A({) is real analytic in D.

In fact, let ¢, be in D and take a ball V:|z—¢{,| <r such that VCCD.
Consider the function v({,z) in VXV

_[G(,2)=1/]z=¢"72 ($#2),
”“’Z)“{Am (¢ =2).

According to the well-known symmetry property of G (viz., G({, 2) = G(z,{)
in D x D), we have v({,z) =v(z, ¢) in VX V. Hence v(¢{, z) is harmonic for
¢ as well as z in V. Moreover, inequality (1.2) yields v({,z) <0in VX V. Fu-
bini’s theorem together with (1.7) then gives

1 (r2— |z =) (r2=w—¢2))
(rwam)? oo 08 [z— P w—¢]?

for all ¢ e V. 1t follows that A({) is real analytic in V. Assertion (1) is proved.

(2) Consider the case where D is a relatively compact domain over C" for
which Dirichlet’s problem can be solved. Then —A(¢) is an exhaustion func-
tion in D; that is,

A= ds, ds,,

lim A($)= —oo.
¢—aD
In fact, let D be a domain over C” such that DD>D> DUAD, and let ¢, e

aD. Let M >0 be given. We choose a small ball W: |z—¢,|<r in D such
that 1/|z—¢|*"~2> M for all z, ¢ € W. Since we can solve Dirichlet’s prob-
lem in D, we can construct the bounded harmonic function u_,,(z) in D
whose boundary values are —M on dDNW and 0 on dD—W UJdW. Then
—M<u_y(z)<0in D. Now fix a point { e DNW. Consider the following
function s(z) in D:

o(z) = { u_p(2)—(G(6, D) =1/ lz =172 (@9,
u_p($)—A(S) (z=7%).
By virtue of expression (8.1), s(z) is a continuous superharmonic function
in D. Inequality (1.2) implies that s(z) = —M in D and that lim,_, ,s(z) =0

for any ¢ € aD. It follows from the maximum principle that s(z) =0in D. In
particular, s(¢) = 0. We thus conclude that u_,,($) = A(¢) forall e DNW.
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Consequently,
im A($)= im u_p($)=—M,
z2=$, 25,
which means that lim, _, ¢, A(§) = —oo. Assertion (2) is proved.

(3) Consider the case where D is a hyperbolic pseudoconvex domain (which
may be infinitely many sheeted) over C”. Then —A(¢{) and log(—A({)) are
real analytic plurisubharmonic functions in D.

It suffices to prove the plurisubharmonicity of log(—A(¢)). Take ¢, e D
and consider a complex line through ¢,: { = {(¢) =, +at, where a e C" with
|a] =1and where ¢ € C. We choose a small disk B: |¢| < p such that {(¢) e D
for ¢t € B. Then D =B X D is a pseudoconvex domain over B X C" with holo-
morphic section {: ¢ — {(¢) (¢ € B). It follows from the Main Theorem that
log{—A({(¢))} is subharmonic on B, and assertion (3) is proved.

(4) Consider the case where D is a bounded pseudoconvex domain over
C" with smooth boundary dD. Then —A({) is a real analytic strictly pluri-
subharmonic function in D.

To this end it suffices to prove that, for each {, e D and a € C" with |a| =
1, the inequality

5 9%(=A) _
8.2) 2 7, (0)4as >0

holds. Take a disk B:|¢|<p such that {,+af €D for t € B. We transform
the product B X D by the transformation
T'I: (t,Z)—’(t, w)=(t,z-—at)

and put D, =7,(B X D), so that D, is a domain over B X C” and has a con-
stant section {,: ¢ — {, (f € B). Since D is a pseudoconvex domain over C”
with smooth boundary, the domain D, with section ¢,, satisfies all the con-
ditions of Lemma 3.1. Therefore, if we denote by g;(¢,w) and \;(¢) the
Green function and the Robin constant for (D,(¢), {,), then

62)\1 —4 n aZgl 2
8.3 —-0) ——— dav.
( ) atat( ) (n-—l)wz,, sSD1(0)<a§1 atawa )
By virtue of (5.1) we have
(8.4) gi(t,w)=G($,+at,z) and N\ (¢)=A($,+at)
for t e B and z € D, where w =z —at. Hence

%\ no 92A

— 0 - —
ot at ©) a,§=1 3¢, 05

Differentiation of the first equation of (8.4) with respect to ¢ and each w,
(1 =@ < n) shows that

(0,w)

(§0)a,dgs-

351 gy & o (99 4 3
om=3 aﬁ(afﬁ + azﬁ)(s“o,z)
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and , .
9°g 8 /3G 4G
s, O = 2,957 (a5, + )“"’ )
for w=zeD (=D(0)). It follows from (8.3) that
n 32 —A
S 22 (e
@8.5) *F=! $adSp
4 n ot 9 /G
Zm‘ESD(agl 3§1a6 a'z‘a(ag—ﬁ )(.(.O)Z) )dVZO

We prove inequality (8.2) by contradiction. Assume that, for some ¢, €D
and a € C" with |a| =1, we have (8%\,/3¢37) (0) =0. Then Lemma 7.1 yields
(dg,/3t)(0,w) =0 for we D,(0)Ua3D,(0), so that

n oG 0G
3 a5+ 35 )G 2)=0
for ze DUAD. Since G(g‘,z) =0 for ({,z) e Dx 4D, we have

(aG)(zo,z) 0 (1=B=<n) for zedD.
a{g

Consequently,
n oG
(8.6) > a3 —($,,2)=0 for zedD.
g=1  0zg

It follows from Preliminary 1.1 that the function X §_, ag(dG/3z5)($,,2) is
divisible by G({,, z) at every point of dD. Precisely, let z, be any point of aD.
Then there exists a neighborhood V of z,, which is contained in a domain D
(DD DUaD), and a complex-valued function c(z) of class C!in V such that

n G
8.7 > aﬁa—(§o,z)=c‘(z)G(s“o,z)
B=1 Z3

for zeV. Fix z,e dD and put z(¢)=z,+at for t € C. Then
(8.8) z(t)eaD forall teC.

For let K={tr e C|z(t) e aD}. It is clear that K is closed in C. Moreover, K
must be open in C. Indeed, let ¢, € K. We have G(¢,, z(¢,)) =0. Take a small
disk B,:|t—t,| < p, such that z(¢) C ¥V for all # € B,. Then we have the real-
valued function f(¢)=G($,,z(t)) defined on B,. Equation (8.7) implies
that f(¢) satisfies the following partial differential equation on B,:

af(t

——J;(t—) =c(z,+at)f(t) with f(z,)=0.
By a uniqueness theorem, f(¢) is identically zero on B,, so that G({,, z(f))=
0 for ¢t € B,. It follows from (1.5) that z(¢) € aD for ¢ € B,. Consequently, K
is open in C. Since K50, we have K = C. Hence (8.8) is proved.
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Statement (8.8) contradicts the fact that D is bounded over C”. We thus
have (8.2) and assertion (4) is proved.

(5) Consider the same case as in (4). Then log(—A(¢)) is a real analytic
strictly plurisubharmonic function in D.

To this end, it remains to prove that, for each {,e Dand a e C” with |a| =
1, we have the inequality

Z 9*log(—4) _
(89) a’lgE:l m—(i‘o)aaa3>0.

We use the same notation B, T}, D, =T;(Bx D), g,(¢,w), and \;(¢) used to
prove (8.2). We consider the Taylor development of log(—\;(#)) at #=0:

log(—\;(¢)) =Re{c,+c 1t} +k(2),

where
dlog(—A\
¢, =log(—\;(0)) and ¢ =2—%(0).
Then k(¢) is a real analytic function on B such that
ok
k(0)=—(0)=
(0) at( )=0

and

3%k d2log(—\) 7 3%log(—A) _

g O amr . OF, 2 Tarar,  (So)ls:

We use the following Hartogs’ transformation:
Ty: (2, w) > (8, W)= (£,e*/ =D (w—¢,)) where o(t)=c,+cyt,

which maps D,; onto D, =T7,(D,). The image D, becomes a domain over
B x C" with constant section O: t — O (¢ € B). Because D is a pseudoconvex
domain over C” with smooth boundary, the domain D,, with section O, ful-
fills all the conditions of Lemma 3.1. If we denote by g, (¢, W) and \,(¢) the
Green function and the Robin constant for (D,(¢), O), then

62)\ _ n 2 2
(8.10) 2(0)=——2 S SD (0)( > ) dv.
2

a

9t3t *  ~ (n—1wy, ol Et’é%/g;(o’ W)
In view of (5.1) we have

g(t, W)=eF?Mg (t,w) and N(f)=e RPN\ (1)
for we D;(¢) and ¢ € B, where W =e?"/2n=2)(y,_ ¢ ). Hence
w03, S
On the other hand, g,(¢, W) can be expressed in terms of G(¢, z) as follows:

g (t, W)=e ReeOG (¢, +at, We™?W/Cr=2) 4 ¢ 4 at)

for (¢, W) e D,. Precisely,

(§0)aag.
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t,W)=e Reel)G(¢
gZ( ’ ) e ( 1922 {n,zl"":zn)s
where
tp=SCoptagt and zg=Wpe ?W/@ =Dy otast (1=B=n).
Differentiation of this equation with respect to ¢ shows that

)
_é’i( 0, W)=

A(&))H(a $0:2),

where

G\ & (3G oG
H(a, §°’Z)_[_?(G+— E(z,g i’oﬁ)—) Elaﬁ(@Jr&;)](;o,z)'

Moreover, for each o (1<a=<n),

ang 1 aH(as g‘o,Z)
O = Reye T g,

for We D,(0) and z € D, where
(0, W) =T5°T1(0,2) = (0, (—A($,) /"D (z—§,)).
It follows from (8.10) that

n o 3%log(—A) _
a,g::l ag,aag-:ﬁ (g.o)aaaﬂ

8.11
&1 0H (4, $,,2) |*

.,

)deO.

>
> B iy ol
(n—1)wa,(—A($)) J ID\ =4
We prove inequality (8.9) by contradiction. Assume that, for some ¢, e D
and a € C" with |a| =1, we have (32\,/3¢37)(0) =0. Then Lemma 7.1 im-

plies H(a, ¢,,z) =0 for all ze DUAD. Since G({,,z) =(0G/35)($5,2)=0
(1<B=n) for ze aD, we have

n Cy
(8.12) ﬁ{)l(aﬁ—— 20—1)

Let z,=(Z,1, -+-» Zon) € 8D such that p(z,) # p($,) in C”. Consider the sys-
tem of differential equations on C: :

oG
(zg— i’og))—(fo,z)=0 for zeadD.
aZﬁ

dzg _,
d B 2( 1)

with initial values z5(0) =z,5. Their solutions zg=2z3(¢) are given in all of
C as follows:

(zg—S$opg) (I=B=n)

Zoptagt for ¢, =0,
ZB(t) = A kt
8 + (Zog —Aﬁ)e for C)# 0,
where
k= ! and Aﬁzg‘oﬁ_fﬁ'

2n—2 k
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In both cases we put z(¢) = (25(¢))g=1,... » for t € C. Then equality (8.12)
implies that z(¢) € aD for all ¢ € C, by the same way that equality (8.6) im-
plied statement (8.8). This also contradicts the boundedness of D over C”.
We thus have (8.9). Assertion (5) is proved.

From (2), (4), and (5) we have proved the following.

THEOREM 8.1. Suppose that D is a bounded pseudoconvex domain over
C" with smooth boundary. Let { € D and denote by A({) the Robin con-
stant for (D, ¢). Then —A($) and log(—A($)) are real analytic, strictly plur-
isubharmonic exhaustion functions in D.

COROLLARY 8.1. Under the same circumstances as in Theorem 8.1, the
quadratic form

0% log(—A(z))
1 aZaaZQ

=3
B=

Q,

dz,®dzg

is a Kdhler metric in D.

In [19] we make a study of this metric, for which expressions (8.5) and (8.11)
are useful.

9. Variations of Domains in R™

Until now we have dealt with variations of the Robin constant \ of a do-
main D when D varies over C”. In this section we study the case where D
varies in the real Euclidean space R™ (m = 3). Robin’s original paper [9] is
concerned with electromagnetism in R3; we briefly discuss the role of the
Robin constant in it. Let (S) be a conductor bounded by a smooth surface
S and let {M;};_,, ., be a finite number of charged particles. Assume that
(S) has total charge q and that each M; has charge g; > 0. Let (S) be placed
in the space R3 and let M; be placed out51de of (S). We denote by x/ the
position coordinates of M Since (S) is a conductor, the charge on (S) will
be redistributed on the surface S as a charge distribution

pix—px) (xes)

such that the electric field e(x) = (€;(x));—1.2.3 in R? induced by p is identi-
cally zero on (S)—S. If we construct the Newtonian potential

q;
v(x)=\ p(y)7—dS,+ Z —
S [x—xl 1 x=x"
then Coulomb’s law implies that
e(x)=<ﬂ) for xe R3—SU{x'};_,
0X; /i=1,2,3

Because e(x) =0 on (S)—S, the potential v(x) reduces to a constant kx>0
on (S5):
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vix)=k for xe(S).

We call p (resp. v(x)) the equilibrium distribution (resp. potential). It was
a problem posed by Poisson (1811) to find an integral representation for u.
Robin (1886) showed that x must satisfy the following integral equation:

(Xx—y,n,) 1 2 qi{x—x’,n)
DR AR = }

27 j=y Jx—x/)?

for x € S, where n, denotes the unit outer normal vector to § at the point y
and where in general {a, b) denotes the cosine of the angle between vectors
a and b. Further, he showed that (9.1) could be solved in the following case:
In terms of polar coordinates (p, 8, ¢) of R3, consider a sphere p=r and a
surface p =r(1+n(0, ¢)), where n(8, ¢) is a real analytic function of (8, ¢).
Given a >0, let S, denote the surface p =r(1+an(8, ¢)). Then there exists
an «, > 0 such that (9.1) is solvable for every S, such that 0= a=<q,. Itis
well known that the resolution of (9.1) for general S needed the theory of
Fredholm’s integral equations developed in 1906.

From now on we restrict ourselves to the case where g =1 and where there
are no particles M;. Hence

O w=5-{ w0

1
9.2) v(x) = L RO s 48, and SS w(y)dS,=1.
In this case, v(x) is a continuous function in R3 such that: (i) v(x) reduces
to a constant £ on (S); (ii) v(x) is harmonic in R*—(S); (iil) v(x)—1/|x|=
O(1/]x]?) in a neighborhood of . We put

lel?={| letPPav;

and call |e|? the total energy of the electric field e(x). By Green’s formula
we find that |e|*=w;k. In electromagnetism, the reciprocal of k becomes
an important quantity called the capacity ¢ of the conductor (S):

1 w3
9.3) c=—=—.

kel
Fix x, € (S)—S. We let 7 denote the sphere |x—x,|=1. For x e R3U{},
the symmetric point x* of x with respect to = is defined by

X—X,

"x_'xo "2
We note that (x*)*=x for all xe R3U{o0}. For each A C R?*U{}, we put
A*=[{x*e R3U{w}|x € A}. We now consider the following domain D C R3:

D= (R’U{eo}—(S))*.

X*=Xx,+ (x #x,, ©0); xj=o00 and «o*=x,.

So D is the bounded domain surrounded by the surface S*. Since D contains
X,, we have the Green function g(x) and the Robin constant \ for (D, x,).
We shall show the following.
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PROPOSITION 9.1. c¢=—\and |e|*=w;/—\.

Proof. Let v(x) be the equilibrium potential defined by (9.2) such that
v(x)=k on (S). We restrict the function v(x)—k (defined on R?) to the
domain R3*—(S) and construct the Kelvin transformation of v(x)—k with
respect to the sphere = as follows:

1
[x—=Xol

K(x)= (v(x*)—k) for xeD,

where D is the domain bounded by the surface S*. Then K(x) is harmonic in
D —{x,}, continuous up to D, and vanishes on dD. From (9.2) it can be ex-
pressed in a neighborhood of x, in the form

K(x)= =k _ +1+H(x),
Ix—x,|
where H(x) is harmonic and H(x,)=0. It follows that g(x)=—-K(x)/k,
and hence A = —1/k. By relation (9.3) we get Proposition 9.1. U

Although g(x) and thus \ are defined with respect to x, € (S)— S, Proposi-
tion 9.1 yields the following.

REMARK 9.1. The Robin constant A\ does not depend on the choice of x,, €
(S)-S.

We now assume that the conductor (S(¢)) with total charge +1 varies in R?
with a real parameter ¢. Then the capacity c(¢) of (S(¢)) or the total energy
le(2)|? of the electric field e(t,x) induced by the equilibrium distribution
u(t,x) also varies with . According to Proposition 9.1 we can investigate
the variation of c(¢) or |e(¢)|* by observing the variation of the Robin con-
stant \(¢) for (D(¢),x,), where D(¢) = (R>—(S(¢)))*. This problem will be
discussed in Theorem 9.3.

We return to the general space R™ (m=3). Let I be an open interval in
the real ¢ line. Let D be a domain of the product space 7 X R™. For each
tel,weput D(t)={xeR™|(t,x) e D}, which we call the fiber of D at ¢. As
usual, D may be regarded as a variation of open sets D(¢) in R with real
parameter ¢ € I. We write

D:t->D(t) (tel).

Assume that D satisfies the following conditions.
CONDITION 9.1. There exists a point £ € R” such that D D I X {£].

CONDITION 9.2. The domain D is convex in 7 X R"; that is:

(1) there exists a double (D, ¥(¢, x)) defining the domain D;
(2) for each eI, the double (D(¢), ¥(¢, x)) defines D(¢); and
(3) for each Pe D,
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m 32‘;/
> (P)a;a; =0
i, j=0 0X;0X; !

for any @ € R™*! with |a| =1 such that 3. ,(dy/dx;)(P)a; =0, where
X, represents the variable ¢.

By Condition 9.2(3), each D(¢) (¢ € I) is connected. Because D(¢) contains
the point £ mentioned in Condition 9.1, we have the Green function g(z, x)
and the Robin constant \(¢) for (D(¢), £). Hence g(¢, x) can be written in
D(t) in the form

. 1
9.4) g(t’x)—W-l_Mt)—i_h(t’x)’

where A(¢, x) is harmonic for x in D(¢) and h(¢, £) =0. By condition 9.2(1)
and (2), the variation DUJD: t - D(¢t)UaD(t) (¢ 1) is diffeomorphically
equivalent to the trivial one. It follows that g(¢, x) and \(¢) are of class C?
on DUAD —7x{£} and on /. The next lemma is analogous to Lemma 3.1.

LEMMA 9.1. Assume that the domain D C I X R satisfies Conditions 9.1
and 9.2. Then

d2\(t) —2 m /3% \?
dt2 = (m-—Z)wm SSD(()<i§1<atax,') )dV

Proof. The pseudoconvexity of D in Section 3 yielded inequality (3.6). Anal-
ogously, the convexity of D in this section yields that, for i=1,..., m,

92 2 2 2 2
_g_(a_g) _% 0% % 0% %) <0
at2 b‘x,- at atax,- ax,- ax,z at

for (¢,x) e oD. If we sum up each side for i =1, ..., m, then we have

9°g dg m 3%g ag
—<(2 £ )/nGrad(x)gn

foralltel.

dt2 —\ It ;= 0tdx; ox;
for (¢,x) e dD. On the other hand, Proposition 3.2 implies
LT W S K
dt (m—2)w,, Jap@) ot on,

©.5)

N _ -1 5 2’ 9
dt? (m—2)w,, Jop) 8t? on,

for t e 1. It follows that

d*\(¢) ) m dg d%g ag dg
dt? = (m—2)w,, ,-glgau(t){( dt dtox; 3x,>/ |Grad s &l } on, a5

=1(t).

Also, the proof of Proposition 3.3 gives, fori=1,...,m,

ds,




450 HIROSHI YAMAGUCHI

3 i—1 i
ax -a——'( 1) dx]/\ Aa'x;/\---/\dxm

along dD(¢). By substituting this in 7(¢) we obtain
-2 m § —a—g aZg
(m—2)w,, ;/=1JaD@) 0t 0tdx;

By (9.4), (dg/at)(¢, x) is harmonic for all x € D(¢); thus it follows from
Green’s formula that

) m/ 3%g \* 0og g
I(t)=———= - A —
) (m—2)w,, S SD(:){E](atax,-) Tt atI av

B ) m aZg 2
 (m—2)w, SSD(’)LE( afaxi) } v

Lemma 9.1is proved. ]

. S
I(t)= (=1 ldx, Ao  Adx; A -+ Ndx,,.

9.6)

In the case where D was a pseudoconvex domain over BX C”, Lemma 3.1
implied that log(—\(¢)) was a subharmonic function on B. This was based
on the fact that pseudoconvexity is invariant under any Hartogs’ transfor-
mation 7°: (¢,2) = (¢, o(t) (2 —¢)), where ¢(¢) is holomorphic and nonvan-
ishing in B. The proof seems rather qualitative. In the present case where D
is a convex domain in 7 X R"™, the transformation of Hartogs’ type 7": (¢, x) —
(t, o(t)(x—£)), where ¢(¢) is differentiable and nonvanishing in 7, does not
necessarily preserve convexity. Thus Lemma 9.1 does not directly imply that
log(—\(¢)) is a convex function on /. However, a quantitative inequality
will lead us further.

LEMMA 9.2. Assume that the domain D of I X R"™ satisfies Conditions 9.1
and 9.2. Then

dt

d?log(—\(¢)) 1
dt? T m-=2

Joralltel.

Proof. We may suppose that the point £ mentioned in Condition 9.1 is the
origin O in R™ and that the interval I contains the origin 0 in R. Then it suf-
fices to prove Lemma 9.2 for 1 =0. Let T be any transformation of Har-
togs’ type:

T:(t,x)—>(t,y)=( e(1)x),

where ¢(¢) is of class C® and ¢(¢) > 0 for all ¢ € 1. If we put D*=T(D), then
D* becomes a domain in 7 X R” such that D*D I X {O}. In general, D* is not
conveXx. For each ¢ € I we denote by G(¢, y) and A(¢) the Green function and
the Robin constant for (D*(¢), O). By (5.1) we have

g(Z, x) N

7 = o A = — )
0.7) G(t,y) o ()—2 and A(?) o()1—2
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for xe D(t) and t €I, where y = ¢(t)x. We first show the inequality

d’A dlogcp dA d*(1/¢)

©-8) i ° di ~(m=2)¢ dt?

-A=<0

fortel.

Let ¢, be any point of 1. For any x, € dD(¢,) we let 7 denote the tangent
plane to the surface aD at the point (¢,,x,). Note that 7 has dimension m
as a subset of /X R™. Since D is convex, we have 7CIXR"™—D. If we put
1(t,, x,) = (¢,,y,) and 7*=T(7r), then 7* is an m-dimensional surface in
I X R™ tangent to dD* at the point (¢,, y,) = (¢,, ¢(¢,)Xx,) such that 7* C
I X R"™—D. If we write

Tia(t—1,)+ Y bj(x;—x,) =0,
j=1

where (a, by, ..., b,;) is the unit outer normal vector to aD at (¢,, Xx,)), then
7* can be expressed in the form

T* a(t—t)+2 b( o(0) xoj>=0

or, equivalently,
m m
T ap(t)(t—1,) —(e(t) —(t,)) '21 bjxo;+ _21 bj(yj—Yo;)=0.
j= j=

Since dD* and 7* have the same outer normal at (¢,,,), it follows that

3G<a be) IBG_ 1 oG
ot e ‘P i bl ayl B B bm a.ym
at (Z,,y,), where ¢’(¢,) = (do/dt)(t,). This implies directly that, for i=
1,...,m,

m 1 aG m aG

<E bjxoj)-l;a— E a Oj and

Jj=1 Jj=1

9.9

ao L 1 G G +<P,§ gg—x
b,' ay, at j=1 ayj °
at (¢,,»,). Note that the right-hand sides are independent of i. For each i
(1=i=<=m), let E; be the (¢, y;)-plane defined by the equations

Y1=Vo1s <3 Vi=DVois s Ym=Yom-

If we put 7¥=7*NE;, then 7} is a one-dimensional curve passing through
(¢,,¥,). It can be written in the form

=Li(t) = yoi— -1—-{W’(f)(f—to)—(¢(f)—¢(fo)) D) b,-xo,}
~

b;
for t e I. Since both aD* and dD*(¢) (¢t € I') are smooth, G(¢,y) can be ex-
tended of class C? beyond dD*. Precisely, there exists a neighborhood V of
aD* in 7 X R™ such that G(t, y) is of class C? in V and such that
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9.10) G(t,y)=0 on dD* and G(f,y)<0 in V—(D*UaJD*).

We consider the restriction G;(¢) of G(¢,y) to 7*NV: Gi(t)=G(t, V15 ---»
Li(t),...,Yom). Hence G;(¢) is a real-valued function on an open interval
I, C I which contains ¢,. Since 77 is tangent to dD* from the outside of D* at
(t,,¥,), it follows from (9.10) that the function G;(¢) assumes its maximum
value 0 on 7, at the point #,. Hence G/(¢,) =0 and G/(¢,) <0. By calculating
these derivatives, we have

G 4G
9.11 +——L:=0
©.10) ot ' ay;
and
0%G 9’G - 9*G oG
9.12 2 Li+ L)Y+ —L/
©.12) a7 Vouy, it gyr Ll 4 5 Li=0

at (£,,),), where

1 m
Li(t,)=— 7 {aqo(to) —@'(te) X bjxoj}
i j=1
and

1 m
Li(t,)=— '5‘ {2(190'(!0) — @ (1) _21 bjxoj} .
i j=

Let us eliminate ¢ and by, ..., b,, from inequality (9.12). First, assume that
(0G/ay;)(t,,y,) #0. Then by (9.11) we obtain L} = —((dG/at)/(dG/dy;)) at
(t,,¥,). Expression (9.9) yields

G, 20/ 109G\ 1 3G
0 28 1g L 30) o § by, 1.0

ay; ¢ b; dy; b; ay;
_ 2y aG_(2<p _ ,,>§ Ex
B ¢ ot 14 ¢ j=1 0y o

at (Z,,),). If we substitute these and x,; = y,; /go(to) into (9.12), then
{azc 2¢’ G pp"—2p'F m aG 8G + 3°G (39)2
ot2 ¢ ot @2 j= 6y, y; ay? \ ot
(9.13) 3’G 4G 9G
<2
atay,- at 6y,-
at (¢,,5,). Next assume that (3G/dy;)(¢,,»,) =0. Then, by (9.11), we get

(8aG/at)(¢t,,y,)=0. Hence, (9.13) is also true in this case. Summation of
each side for i =1, ..., m shows that

1\ 7 oG aG
¢> > ym} |Grad,, G|*+ (a )A(y)G
G m

9%*G G
—2(log so)'———so(
{ a 2 j=1 ayj

392G 4G

at i= Iatay, ay,
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at (¢,,,). Since G(t, y) is harmonic for y, and since y, is an arbitrary point
of aD*(¢,), it follows that
0%G

" m g
S 2oy 3l —o(2) 3

¢ JEI ay_]
aG 3’G oG
<< dt i§1 atay; ayi)/" rady) G|

for t =t¢, and all y € aD*(¢,). After multiplying both sides by
-1 3G(¢4,,)

dQ, =

ds,>0

7 (m=2)w, on,
for y e aD*(¢,), we integrate over aD*(¢,):
0%G 0G
—_— Q,—-2(1 ‘(¢ , ) dQ,
539*%) o7 (l0s ) dy —2(log ¢)'( 0)5 ey O - ({6, )

1 ” 3G
—So(to)(g) (%) SGD*(to) {121 '@' (to’y)yt}

m 9G 3G 3G
<2 Grad,,, G 2} dsQ,.
SBD‘(IO) {(igl at 0tay; 3)’:‘)/|l 0 (19> ) g

Identities (9.5) and (9.6) remain valid when we replace ¢, x, D(¢), dD(¢),
g(t,x), and \(¢) by ¢, y, D*(¢), aD*(t), G(t,y), and A(¢). It follows that

n aG

M) 20108 9 () N1 =005 ) @), |, 5

(to,y)y,} de,

) m aZG 2
= m-2a, S Smto) { % ( 3ty (t"’y)) } av=0.

Because G(¢,,y) =0 for y e dD*(¢,), the integral in the third term on the left-
hand side can be written in the form

L5 %9, ] dg,.
_2 I 1 a (42 ) y yl

We observe that the integrand of the right-hand 31de is harmonic for y in the
whole domain D*(¢,), and that it attains the value A(¢,) at y =0 (cf. the first
term of H(a, ¢,, z) in (8.11)). It follows that I = (m —2)A(¢,). Consequently,

I=(m-2) LD,(,O) {G(to,y) +

—2(log go)"A'—(m-—Z)qo(%) ‘A<0
at t =t,. Inequality (9.8) is thus proved. O

Next we prove the inequality in Lemma 9.2. Consider the following trans-
formation of Hartogs’ type: (¢,x)— (¢, y) = (¢, ¢(t)x), where

o) =expf - L (alr= 1) +6)]
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with o = (log(—X\))’'(¢,) and 8 =log(—\)(¢,) for ¢ € 1. Then

1 Y o 2
sa(to)(;) (to)—(m_z) .

By virtue of (9.7), we have A(¢) = \(¢) exp{—(a(t—1t,)+ )] for ¢ € I. There-
fore A(¢,)=—1, A’(¢,) =0, and A"(¢,) = —(log(—\))"(¢,). Substituting these
in (9.8), we find

(108(=N)" (1) = —— {(10g(~\)) (1)}
Lemma 9.2 is proved. O

Now that Lemma 9.1 and 9.2 are established, we can obtain the following
results, which parallel those in the preceding sections.

THEOREM 9.1. Let D be a convex domain of IXR™. Let£:t — £(t) (tel)
be a section of D defined on I of the form £(t)=at+b, where a,b e R™.
For each t € I we denote by \(t) the Robin constant for (D(t), £(t)). Then
log(—\(¢)) is a convex function on 1.

Proof. Consider the transformation 7;: (¢, x) — (¢, ¥) = (¢, x — (at + b))
which maps £ to the constant zero section O. If we put D, =7;(D) and de-
note by A;(#) the Robin constant for (D,(¢), O), then \;(¢) =\(¢) for t 1.
Since D, is convex in I X R", it follows from Lemma 9.2 that log(—\,(¢)) is
convex on I, and thus so is log(—\(¢)). Theorem 9.1 is proved. L]

LEMMA 9.3 (Rigidity Lemma). Under the same hypothesis as in Lemma
9.1, if (d*\/dt?)(t,)=0 for some t,el, then (3g/dt)(t,,x)=0 for all xe
D(t,).

COROLLARY 9.1. Under the same circumstances as in Lemma 9.1, if \N(t) =
at+B (tel) for some o, B€R, then D is identical with the product I X D(t,),
where t, is a fixed point in I.

The proofs of Lemma 9.3 and Corollary 9.1 are similar to those of Lemma
7.1 and Corollary 7.1.

THEOREM 9.2. Let D be a convex domain of R™ with smooth boundary
dD. For each £ € D we denote by A(&) the Robin constant for (D, £). Then
log(—A(&)) and —A(&) are real analytic exhaustion functions in D having
positive definite Hessian matrix.

Proof. Lemma 9.3 yields the statements concerning —A(¢) in Theorem 9.2
in the same manner that Lemma 7.1 yielded those concerning —A(¢) in The-
orem 8.1. It remains to verify that log(—A(£)) has a positive Hessian in D,
that is,

m - 3%log(—A(£))

Ha8)= 2 55

a,-aj>0
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for all £ e D and a € R™ with |a| =1. To this end, fix £ in D and take a number
p >0 such that £+ateD for all t el =(—p, p). We transform the product
IxX D by the transformation 7;: (¢,x) —» (¢,y)=(f,x—&—at), and put D;=
Ti(IxD). Then D, DIx{O}. For each ¢ € I, let A\;(¢) denote the Robin con-
stant for (D;(¢), O). Then \(f{)=A((+at) and H(a, £) = (log(—X\;))"(0).
Since D is a convex domain of R” with smooth boundary, the domain D; of
IxX R™ satisfies Condition 9.2. It follows from Lemma 9.2 that

(log(—)))"(0)= —1— ((log(~ X)) ()
or, equivalently,

m 9% log(—A(£)) 1 [ dlog(—A(¥)) )2
9.14 a;a; = a .

S T T (2

In the case where (log(—X\;))’(0) # 0, we thus have (log(—X\;))”(0) > 0. In the
case where (log(—X\;))’(0) =0, we directly have

(—A(&+at))"(0)

(log(=A))"(0) =

(—A(¢))
The right-hand side is positive, for —A(£) has a positive Hessian in D. There-
fore we always have H(a, £) >0 and Theorem 9.2 is proved. U

We thus have the next corollary.

COROLLARY 9.2. Under the same circumstances as in Theorem 9.2, the
quadratic form

st S 2log(-Aw))
ij=1 ax,-axj

dx i ® dx i
is a Riemannian metric in D.

In [19] we study the properties of this metric. Then inequality (9.14) will
be useful.

We now apply Y.emma 9.2 to study variations of the capacity c(¢) of a
conductor (S(#)) wi. n (S(¢)) varies in R with real parameter ¢. Using the
sphere 7: | x| =1, we use the notation x*=x/ | x|? (x # 0, ), O* =0, c0*=
O, and A*={x*e R3U{o}|x e A} for AC R*U{}. Let I be an open inter-
val. Consider two transformations of 7 x (R3U{}) as follows:

L:(t,x)—(t, L(x))=(t,x),

M:(t,x)— (¢, M(t,x)) = (¢, A(t) x + (1)),
where A(¢) is a 3 X 3 matrix with 4(¢)’- A(¢) = E; (the identity matrix), b(¢)e
R3, and M(¢, ) = 0. We call L a symmetric transformation with respect to
7 and M a Euclidean motion. For each t € I, put (S(¢)) =M(t, (S(¢))). If

we denote by c(¢) (resp. é(¢)) the capacity of the conductor (S(¢)) (resp.
(S(2))), then we easily have c(¢) = é(¢). The next definition will be needed.
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DEFINITION 9.1. A domain E of 7 X (R3U{0}) is said to be symmetrically
convex if there exists a Euclidean motion M such that L-M(E) is a convex
domain in I X R"™.

Now let (S): ¢t > (S(¢)) (¢t eI) be a variation of a conductor (S(¢)) with to-
tal charge +1 which is bounded by the smooth surface S(7) in R3. We denote
by u(¢, x) the equilibrium distribution on S(¢). Then p(¢, x) induces an elec-
tric field e(¢, x) spread over R®—(S(¢)). We have the total energy |e(¢)|? of
e(t, x) and the capacity c(¢) of (S(¢)). As usual, the variation (S) is regarded
as a subset (S) of IXR3:

(S)={(t,x)eIXR3|tel and x € (S(¢))}.
Consider the complement E of (S) in I X (R3Uf{oo}):
(9.15) E=Ix(R3U{w})—(S).
If, for ¢t € I, we denote by E(¢) the fiber at E at ¢, then
R3U{wo}=(S(¢))UE(¢t) and S(t)NE(t)=0.

Since (9.2) implies that lim, _, ., e(?,x) =0, we put e(¢, ) =0. Hence the
variation E: t -» E(¢) (teI) is the same as that of the electric field e:  —
e(t,x) (t eI). We now show the next theorem.

THEOREM 9.3. Let (S):t—(S(t)) (tel) be a variation of conductors
such that the complement E of (S) in I X (R3U{c)}) is symmetrically con-
vex. Then the capacity c(t) of (S(t)) is a logarithmically convex function on
I, and the total energy |e(t)|?* is a logarithmically concave function on 1.

Proof. Suppose that E defined by (9.15) is symmetrically convex. Then there
exists a Euclidean motion M of I x (R3U {eo}) such that the domain D =
LoM(E) of I x R? satisfies Condition 9.2. Since each (S(¢)) (¢ € I) is bound-
ed, the fiber D(¢) of D at ¢ contains the origin O. We thus have the Robin
constant \(¢) for (D(¢), O). By Lemma 9.2, log(—\(#)) is a convex function
on I. For each t eI, set M(t, (S(¢))) = (S(¢)) CC R? and denote by &(¢) the
capacity of (S(¢)). Then é(¢) =c(¢) and

D(t)=L(t, M(t,E(1))) = {R*U{oo} — (§(1))}*.
Since (S(¢)) — S(¢) > O, we see from Proposition 9.1 that é(¢) = —\(¢) =

w3/ |e(t)|?. It follows that log c(¢) and —log|e(¢)|* are convex on I. Theo-
rem 9.3 is proved. O
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