The Existence of 7-fields and 8-fields
on (8% + 5)-dimensional Manifolds

TZE BENG NG

1. Introduction

Let M be a closed, connected and smooth manifold whose dimension # is
congruent to 5 mod 8 with n>21. Let » be a spin n-plane bundle over M.
We shall investigate the span of 5. Recall that the Kervaire mod 2 semi-
characteristic of M, x,(M), is defined by

X2(M)= Y dimgz, H'(M;Z,) mod 2.
2i<n
When 7 is the tangent bundle of M and M is 3-connected mod 2, we have
from [12] that span(n) = 6 if and only if w, _s(M) =0 and x,(M) =0, where
w;(M) is the ith mod 2 Stiefel-Whitney class of M.
We shall prove the following theorems.

THEOREM 1.1. If M is 5-connected mod 2, then span(M) =17 if and only
if ow,_7(M)=0 and x,(M) =0, where 6 is the Bockstein operator associ-
ated with the exact sequence 0 >Z —Z —Z,— 0.

THEOREM 1.2. Suppose M is 5-connected mod 2 and Sq'H"~"(M;Z,)=
0. Then span(M) =8 if and only if w,,_;(M) =0, 0€y3(w,_o(M)), and
X2 (M) =0, where y is a stable secondary cohomology operation associated
with the relation

¥3: Sq2Sq*+Sq'(Sq*Sq') =0.

Some applications to immersions of manifolds into Euclidean spaces are
given in the last section. Throughout the paper we assume that dim M =n
is congruent to 5 mod 8 with n=21. All cohomology will be ordinary co-
homology with mod 2 coefficients unless otherwise specified.

2. The Modified Postnikov Tower

We shall consider the problem of finding an s-field as a lifting problem. Let
BSO;{8) be the classifying space of orientable j-plane bundles £ satisfying
wy (&) = wy(£) =0, where w;(£) is the ith mod 2 Stiefel-Whitney class of
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Table 1. The n-MPT for 7: BSO,_,{8) — BSO,(8)

k-invariant Dimension Defining Relation
Stage 1 ki n—6 ki=ow,_;
k3 n—>5 ki=w,_s
Stage 2 k? n—>5 Sq2ow,_;+Sq'w,_s=0
k3 n-3 Sq4ow,_;+8Sq3w,_s=0
k? n—1 Sq*Sq?éw,_;=0
k? n xSq*Sq*w,_s=0
k? n Sqw,_s=0
Stage 3 k3 n—3 Sq%Sq'ki+Sq'k2=0
k3 n—1 Sq*Sq*k}+Sq'k?=0
k3 n xSq*k3+Sq*k}+Sq'ki=0
Stage 4 k* n—1 Sq*Sq'k3+Sq'k3=0

the bundle £. Let 4 be an n-plane bundle over M with w,(n)=0. Since M
is 3-connected mod 2, the n-plane bundle 5 is classified by a map g: M —
BS0,(8). Then the problem of finding s linearly independent sections of
is equivalent to lifting # to BSO,_,{8). Thus we shall consider the n-MPT
[3] for the fibration «: BSO,_,(8) - BSO,(8) for n=21 and for s =7 or 8.
The k-invariants for the n-MPT for 7 for s =7 or 8 are listed in Tables 1

and 2.

The computation of the k-invariants for 7 is now a routine exercise (see,
e.g., [15] and [18]). We leave the details for the reader.

For notational purposes we shall use the following diagram as a reference
to the n-MPT’s defined by Tables 1 or 2, where n=.

B'

9, n
pl Vv
—_— B

Let vy be the appropriate universal n-plane bundle over B. We shall denote by
T(E;) the Thom space of the n-plane bundle over E; induced from +y by p,
when i =1 or by p,;ep, when i =2. The Thom class of T(E;) is denoted by
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Table 2. The n-MPT for 7: BSO,_4(8) — BSO,(8)

k-invariant  Dimension Defining Relation
Stage 1 k! n—17 kl=w,_;
ké n— 5 ké = Wn_s
Stage 2 kt n—=6 Sq*w,_,=0
k3 n—>5 Sq*Sq'w,_,+Sq'w,_s=0
k32 n—4 Sq4wn—-7+Sq2Wn-—5=
k3 n—1 (Sq*Sq2Sq'+Sq®Sq'l+ Sq")w,_;
+8q%Sq’w,_s=0
k? n (SqB+wge)w,_;+("58)Sqbw,_s=
k? n Sqbw,_s=0
Stage 3 k3 n—>5 Sq*kt+Sq'k3=0
k3 n—1 Sq*Sq'k3+Sq'ki+Sq3Sqk;=0
k3 n (Sq*Sq?Sq'+Sq")k}+Sq*k;=0
Stage 4 k4 n—1 Sq*Sqiki+Sq'k3=0

U(E;). The Thom space of the n-plane bundle v is denoted by 7(B) and its
Thom class U(B).

We shall denote the tangent bundle of M by 7, the stable normal bundle
of M by », the Thom space of any vector bundle » and its Thom class by
T(n) and U(n), respectively.

We shall denote the Eilenberg-MacLane space of type (Z,, j) by K; and
its fundamental class by ¢;. All manifolds are assumed to be closed, con-
nected, and smooth.

3. 7-frame Fields

Throughout this section M is assumed to be 3-connected mod 2. We shall
refer to Table 1 for the k-invariants of .
Consider cohomology operations £F and £, associated with the relations:

£1: 8q2(65¢% %)+ Sq'Sq3* = 0 on integral classes,
(3.1) EzzSqGSq8k+Sql(Sq8k+4Sql+Sq8k+2Sq3)=0
on mod 2 classes of dimension < 8% +5.

We can choose £f and &, to be of Hughes-Thomas type [4]. Hence we
have the following.

LEMMA 3.2.
U(E,)-kie EX(U(E))) and U(E,)-k3e &, (U(E))),
where E, is the first stage of the n-MPT for w: BSO,_.(8) - BSO,(8).
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Because Sq'(U(E,)) = Sq*(U(E,)) =0, Lemma 3.2 is an immediate conse-
quence of the choice of £f and £, and the admissible class theorem [8] since
(8Wsk_2, W) is admissible for k£ and wyg, is admissible for k2. We leave the
details to the reader.

Next we shall consider the identification of k3.

Consider the stable secondary cohomology operations ¢{;, {5, and {3 of
Hughes-Thomas type associated with the relations

( $1:8¢*(88q% %)+ Sq°Sq* + 5¢' (Sq**Sq*) = 0;

21 (Sq*Sq*)8Sq®* ~2+ 8q° (Sq*Sq?)

(3.3) ) , +8q%(Sq®*Sq*Sq' + Sq® ~1Sq3Sq') =0;
30 (xSq*Sq*)Sq* +xSq*(Sq®*Sq*) + (Sq*Sq") (Sq®*Sq*Sq’

L +Sq%~18¢%Sq") + Sq°(Sq®Sq') =0.

Then we have the following theorem.

THEOREM 3.4. The operations ¢, {», and {3 can be chosen in such a way
that on bgy_,, the fundamental class of Y _», the principal fibration over
Ksk—», with classifying map (Sq', Sq*)ig_,, we have
(Sq*bgr—2Ubgr_, Sq*Sq*bgy_5,0) € ({1, £2, £3) (Dgx—2)
and
(0, Sqg%*1Sq*Sq" g6+ Sq°Sq" 51— 6 U Sq>Sq" 1546, 0)
€ (§1> $25 §3) (t8k—6)-

The proof of Theorem 3.4 is omitted since it is analogous to that of the
proof of Lemma 4.7 in [8].

Furthermore, ¢; can be chosen in such a way that {3 C {3, where §; is a
stable operation associated with the relation

(35) 53: XSq4(Sq8k+2+SqSkSQZ)+Sq2(Sq8k+3Sql+Sq8k+1Sq2Sql) =0.

Indeed, we may take {3 =¢;°Sg% 2, where ¢, is a stable operation asso-
ciated with the relation

é7: xSq*Sq*+Sq*(Sq*Sq?) =0.
Using Theorem 3.4 and the methods of [8], we can prove the next theorem.

THEOREM 3.6. The operation ({1, $, $3) can be chosen in such a way that
the relation

3.7) Q: xSq*$1+8¢%5,+ 553 =0

holds. Furthermore, associated with the relation Q! we can choose a stable
tertiary cohomology operation, also denoted by the same symbol, such that
on dgy_», the fundamental class of Dy, _», the principal fibration over Ky _»
with classifying map (Sq', Sq?, Sq*)igx_,, we have
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dgr—2Ud7(dgr_2) € Udgr_3)-

LEMMA 3.8. Let E, 25 E, 2 BSO,(8) be the n-MPT for w: BSO, _7(8) -
BSO,(8). Then

U(E,) (P3P Wy—7+5q°04) +k3) e UU(E,)),

where U(E,) is the Thom class of the n-plane bundle induced on E, via
Daopy from the universal n-plane bundle over BSO,(8), and

0, H*(BSO,(8)) = Z,
Is a generator.

Proof. For n>37, n* is an epimorphism, and since Ker n* D Ker pf in di-
mension < n, by Theorem 3.6 and the admissible class theorem [8], we have

U(E;) (P3P Wn_7+Sq°04) +k3) € QU(E,))

for ¢;(U(BSO,_-(8))) = U(BSO, _{8))+Sq>0,, where U(BSO,_-(8)) is the
Thom class of the universal (n—7)-plane bundle over BSO,_,(8). For n<
37, notice that Indet?"(T(BSO,_(8)), Q) = (Tq,)* Indet*"(T(E,), Q), where
T(BSO,_-(8)) is the Thom space of the n-plane bundle induced by = and G,
is a lifting of = to E,. As wg;_,+Sg>0, is in the image of 7*, by a slight mod-
ification of the admissible class theorem we have the required result. O

For any n-plane bundle n over M with w,(n) =0 that is classified by a map
g: M — BSO,(8), define 64(n) to be g*(8,). A similar definition applies when
7 is a stable bundle over M.

THEOREM 3.9. Suppose M is 3-connected mod 2 and wy,(M)=0. Let y
be an n-plane bundle over M satisfying w,(n) =0. If Sq?*0,(v) =0, then as-
sume further that 0,(—n—7)=0. Then span(n) = 7 if and only if 6w, _1(n) =
0, w,_s(n) =0, 0 € £{(U(n)), £(U(n)) = 0, and N U()) = 0 whenever
Sq*0,(») =0.

Proof. Since wy(n) =w,4(M) =0, Indet™"(M, (k3, k?)) is trivial. By the ad-
missible class theorem and Lemma 3.2, 0 € k£(y) if and only if 0 € £}(U(#)).
Similarly, 2(n) =0 if and only if £,(U(n)) =0. Now {3(U(9)) = &(U(n)) =
$7°8q% ~2(U(n)). The S-duality pairing

($7°Sq* 2 (U@)), U(=n—1))
=(8g**"2(U(n)), x$7U(—n—1))
=(Sg* "2 (U)), U(~—n—7)+8q*04(—n—T))
=(Sq¥** ' (U(), U(=n—7)*04(~=n—7)> =0,
since Sq'0,(—n — 7) = 0. Thus §3(U(n)) = 0. Therefore, by the admissible
class theorem, k3 () = 0 whenever it is defined. If Indet”(M, k3) is not triv-

ial, then 0 € k3(n) and we are done. If Indet”(M, k3) =0, then by the con-
nectivity condition on M and S-duality it can be shown that Sg26,(v)=0.
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Now by the connectivity condition on M, S-duality and Atiyah-James dual-
ity (applied to 7'(3)), and by the assumption 64(—n—7) =0, we can verify
that Indet?*(T'(5), @) =0 modulo a zero primary piece. Therefore, by Lem-
ma 3.8, k3(y) = 0 if and only if Q(U(y)) =0, since w,,_-(n) +Sq304(n) =
Sq'(w,—7(n)+Sq?04(n)) =0 when éw,_,(n) =0. This completes the proof.
]

Now we consider the span of M. Let g: M X M — T(7) be the map that col-
lapses the complement of a tubular neighbourhood of the diagonal in M to
a point. Let U= g*(U(7)) mod 2. Then U=A+tA, where t: H*(MXM) -
H*(M x M) is the homomorphism induced by the map that interchanges the
factors of M and
114
A= S S @Bl oleHI(M), ni)=dim H(M),
i<dk+21=1
and aij ugk_, = ks o€ H"(M) is a generator and & is the Kronecker
function. As in [19], AUtA = x,(M)u&@p.
Using Wu-duality and a Cartan formula for Steenrod squares we can eas-
ily derive the following lemma.

LEMMA 3.10.

(i) If M is 2-connected mod 2, then Sq® Sq'A =0, Sq¥Sq2Sq'A=
Sq®1Sq3Sq’A =0, and Sq®Sq*A=0; if also wg, (M) =0, then
Sq3 A =0.

(ii) If M is 3-connected mod 2 and dwgy_,(M) =0, then 6Sq® 24 =0.

THEOREM 3.11. Suppose M is 3-connected mod 2 and w,(M)=0. Then
span(M) =7 if and only if dw,_,(M)=0, w,,_s(M)=0, 0€ £}(U(7)), and
x2(M)=0.

Proof. This follows essentially from Theorem 3.9. Thus span(M) = 7 if and
only if éw,_,(M) =0, w,_s(M) =0, 0€£§(U(7)), £2(U(7))=0, and O
k3(7). By Lemma 3.10(i), &, is defined on A hence on zA4. Thus

g*6(U(7)) = £,(U) = £2(A+1A) = £,(A) + £,(tA) + AU LA = X, (M) Q@ .

Since g* is injective, £,(U(7)) = xo,(M)U(7)pu. We shall next show that Q is
defined on A. By Lemma 3.10(i), ;3 is defined on A. By our choice

F3(A)=§3A4=¢;°8¢% 24,

Now by using S-duality as in the proof of Theorem 3.9 together with Lemma
3.10(i), we can show that ¢,0Sg% 24 =0. Thus ¢3(A) =0 modulo zero in-
determinancy. So Q is defined on A. If Indet”(M, k3) # 0, then we have noth-
ing to prove for 0 € k3(7). Assume now Indet”(M, k3) = 0. Then Sq%0,(») =
0 and by Theorem 3.9 we must show that Q(7(7)) =0.

Let P, —» P;— K, be the universal example space for the operation Q. Let
U be represented by a map also denoted by U: T(7) — K,,. Let U be a lifting
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of U to Py such that U also has a lifting U to P,. Let m,: P, X P;— P; and
m,: P, X P, — P, be the multiplication maps. Let A be represented by a map
M XM — K,, also denoted by A. If w,_s(M)=0 and éw,_,(M)=0 then @
is defined on A. Let A be a lifting of A to P, and A a lifting of 4 to P,. The
rest of the proof is similar to Theorem 9.10(ii) of [11]. Then 4 = m;o(A, At)
is a lifting of U-g to P, and A= mzo(fl,flot) is a lifting of 4 to P,. Let f=
U-g. Then f is also a lifting of U-g to P,. Thus there is amap /: M XM —
QCI, where CI = K(Z,2n—6) X Ky s XKy a XKy 3 XKy, » is repre-
sented as a vector (,z,¢,d,0), ye H*" " {(MXM;Z), z€ H”" (M x M),
ce HS(Mx M), and d e H*"~*(M x M) such that fand h; = myo(i;l, h)
are homotopic, where i;: QC; — P; is the inclusion of the fibre. The class
i1e/ is invariant under ¢ since both f and / are obviously invariant under ¢.
Thus the homotopy class [/]+[/-¢] lies in the image of the homomorphism
[MxM,K,_]1-[MxM,QC,]. Thus there is a class § in H" " {(M x M)
such that

[/1+[l-t]1=(6Sq® 20, Sq®%6, Sq®Sq'0, Sq®*Sq>0, 0).

It can be shown that if M is 3-connected mod 2, then Sg®* H""{(M x M) =
0, Sg% 19 is of the form a},_;@pu+p®ati_;, Sg¥¥Sq'0 is of the form
(Sq'age_1)?’@u+p®(Sq ay_1)?% and Sq®*Sq?0 is of the form

Sq¥Sq a1 @p+p@Sq*SqPoy,—y, where oy e H¥* (M),

We can write p,y =y’ Q@pu+p®y”, ¥y,y"€ H" (M), and p,y + py 1y =
V'+y")Qpu+u® (¥’ +y"). Since ¢; is defined on y’ and y”, ¢;(y'+y”") =
o7(¥")+d7(»”). Now by the S-duality pairing,
(D7(ctak—1)% U)y = Lage—1)% x07(U()))
= ((ag—1)%, U(r) +Sq304(v))
= ((8q" (aap-1)%, U(»)+Sq*04(»)> = 0.

Thus ¢7(a,-1)* =0 and 50 ¢(y’) =¢7(»"). Hence ¢7(¥) = ¢7(p2(1)) =0.
Note that by the definition of @, Indet>”(M x M, Q) is given by {¢(ay)+

b6(az) + ¢5(a3) + xbs(as) a1 e H" (M X M;Z),a€ H'" (M x M), a3 €
H" S(MxM), and a,e H""*(M x M)}, where x¢,, ¢s, and ¢¢ are stable
cohomology operations defined by the following relations:
x$4: xSq*Sq' +8q°Sq> + Sq'xSq* =0,
¢5: Sqlsqs = 09

¢: xSq*Sq*+Sq'(xSq*Sq*) =0.
Trivially, since Sq%0 =0, z is symmetrical and so ¢¢(z) =0. As before, we
can write c=c’'Qu+p®c”, ¢’,c”e H"3>(M). Then

cHte=(c'+c")@p+p®(c’'+¢") = (5S¢ oap—1)*@p+ 1@ (Sq gy —1)?

for some a4y _y € H*~1(M). Now the S-duality pairing
(b5(Sq agr_1)% U)> = {(Sq ar_1)% xbs(U(»))) =0,
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since x¢s(U(r)) =0 modulo zero indeterminacy. Therefore, by the additiv-
ity of the stable operation ¢s, ¢5(c)=0. Similarly we can write d =d’®u +
p®d’, d',d"e H"4(M). Thend + td = (d"+d") @ u+ p @ (d' + d") =
Sq¥*Sq oy, | @pu+p®Sq*Sqay,_,. Again by the S-duality pairing, we
have
(x$4(Sq*Sq* s 1), U())
=(Sq*Sq’ask_1, b4 U(»))
=(Sq*Sq*(Sq**~*+8q*Sq"Yorsr_1, U(r) +04(v))
={(Sq**+8¢* Sq Yyt _1, U(r)+Sq°0,(v)y = 0.

Thus x¢4(Sq**Sq2a 4, _;) = 0 and so by stability x¢,(d) =0. Hence ¢,(»)+
d6(2) + ds(c)+ xd4(d) =0. Now consider the fibre square

4

G1 > P2
Py Py
L 4 il ¥
ﬂCl > P1

Since both f and # lift to P,, / must lift to G, with a lifting /: M x M - G.
Now h=mye(ijol, h) is a lifting of mye(ije/, h) ~ f. Let w be a representa-
tive for the operation Q. Then A*w = A*w+ I*ifw. Now

Fitw e ¢7(¥) +d6(2) + ds(c) +x¢4(d) = 0.

Thus 2*w = A*w = A*w + tA*w = 0. Now f = U g is a lifting of f ~
mye(iyel, h). Since the primary piece of the indeterminacy of Q is trivial,
F*w=h*w=0; that is, g*T*w=0. Since g* is injective, U*w =0 and thus
Q(U(7)) =0 modulo zero indeterminacy. This completes the proof. O

3.12. PROOF OF THEOREM 1.1. This is now an immediate corollary to
Theorem 3.11.

4. 8-frame Fields

In this section we shall assume that M is 4-connected mod 2. We shall refer
to Table 2 for the n-MPT for #: BSO,_5{8) — BSO,(8). Because of the con-
nectivity condition on M we shall be interested in realizing (kZ, k3, k2, k2)(7)
and (k3, k3)(7) whenever they are defined. For simplicity we shall make the
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assumption that Sqg'H" (M) = H"~3(M) so that we can ignore k3 and k3.
Recall that dimM =n=8k+5, k=2.

Consider the stable cohomology operations 6, 0,, and 84 associated with
the following relations

f 91 . Sq28q8k—2+Sql(Sq8k—2Sql) =0;

02: (Sq*Sq*Sq'+Sq"+Sq%Sq")Sq® ~2 + (Sq2Sq3)Sq®*

4.1 < +(Sq%8q") (Sq**Sq*) + Sq°(Sq® ~2Sq")
+8¢%(Sq*~'Sq°Sq") = 0;

L 03:Sg%Sq'(Sq¥~1Sq3Sq') =0.

We can choose (6, 05, 63) such that
(0, (S¢**~'Sq*Sq") g6, Sq°Sq tgr_6USq>Sq gy _g, 0)
€ (01, 02,03) (tgx—6) "~

and such that, on the fundamental class bg;_; of the principal fibration
Ysi_3 over Kg;_5 with classifying map (Sq!, Sg%)tg—_3,

4.3) (0, Sq " bgi_3Ubgi_3,0) €(6;,0,,03)(bgi_3).

Using the above characterization and the methods of [8] and [18], we can
prove the next theorem.

4.2)

THEOREM 4.4. The operation (0,,0,,03) can be chosen in such a way that
the following relation holds stably:
4.5) O: (Sq*Sq*Sq'+Sq")0,+ Sq?0,+ Sq'0; =0.

Hence there is defined a family of tertiary operations associated with the
above relation. Furthermore, we can choose a tertiary operation O such that
on dgy_3, the fundamental class of dimension 8k —3 of Dg,_3, the principal
fibration over Ky _3 with classifying map (Sq', Sq*, Sq*) (tgx—3), we have

(4.6) Ps(dsi_3)Udgy_3€O(dgs_3),
where ¢g is a stable operation associated with the relation
(4.7 $3:(Sq*Sq*Sq'+Sq")Sq*+Sq*(Sq*Sq*Sq' +Sq” +5q°Sq") = 0.

THEOREM 4.8. For the k-invariants defined by Table 2, we have:
(@) (Wex—2, wgi) € H¥~2(BSO,(8)) D H®(BSO,(8)) is admissible for
(kf, kZ,0)e H¥~YE)@H¥* Y E)@H*+>(E,) via (6,,0,,0,).
(b) (kf,k3)e H¥*~YE)@®HY*4(E,) is admissible for k3 e H3**3(E,)
via ©. In particular,
4.9) U(E;)«(k{, k7)€ (0;,0,) (U(E}))
and, for some \€Z,,
U(E,) (P53 p}(Wai—3+ (05 +Iwg)) + k3) € O(U(Ey)).
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Proof. The proofs of (a) and (b) are similar to that of Lemma 3.8, and we
shall not present them here. The evaluations on U(E;) and U(E,) are (re-
spectively) given by the choice of 6;, 6,, and 6; and the fact that

$g(U(BSO,_5(8))) = (U(BSO, _g(8)) +(Wgr13+(0F +Awg))

for some A € Z,, and by the admissible class theorem. i

We shall now consider the identification of k2 and k2. Consider the opera-
tions associated with the relations:

~ 05: Sq8Sq® 2+ Sq5Sq
+Sq%(Sq%* Sq*+ Sq¥ ~18q° + Sq8**+38q') =0, k even;
0s: Sq°Sq®*—?
+Sq*(Sq* Sq*+ Sq%~1Sq° + Sq¥*28q%) =0, k odd;
0: Sq0Sq +Sq*(Sq®*+2Sq% + Sq¥*+3sq") =0,
. valid on classes of dimension < 8% +5.

@.11) <

We can choose (05, 05) so that on dg;_3, the fundamental class of Dgj_3,
4.12) (Sq®dgy_3Udgy_3,0) € (05, 06) (dgi—3).

Now 7*: H*(BSOg; 1 5(8)) - H*(BSOg_3(8)) is an epimorphism in di-
mension <8k + 5 for k =5. For 2 <k <4, n*is an epimorphism in dimension
8k —1and 8k + 3. Thus Indet?(T(x*y), 6;) = (Tx)* Indet®*(T'(y), 8;) for i =
5,6, where v is the universal #-plane bundle over BSO,(8). Therefore, by
(4.12) and the admissible class theorem, we have the following.

THEOREM 4.13.

(@) U(E))+(p}(wg+wgx_3)+k3) € 05(U(E)).
(b) U(E,)«(k2) e b(U(Ey)).

We shall also need a characterization of §,. Consider the following relations:
I'y:Sq*(Sq°Sq*~*)+5q'(Sq*Sq'Sq* ~*) = 0;

4.14) | T,:5¢*(Sq* %) +Sq*(Sq*~>Sq") +Sq' (Sq* ~2Sq") =0;
I';: Sq*(Sq%—3sq") =0.

Then we can choose operations associated with the above relations (also de-
noted by the same symbols) such that

(4.15) I;=y,:8¢%76Sq!, TI',+I'3Ch, and T,CT{Cy;Sq¥ 4,

where 5 is defined in Theorem 1.1 and i, is a stable operation associated
with the relations

(4.16) Va: Sq*(Sq*Sq') =0.

THEOREM 4.17. Suppose M is 4-connected mod 2. Suppose M satisfies
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(i) Sq'H""8(M)=H""*>(M) and

(ii) Sq¢'H"~"(M)=0.
Let n be an n-plane bundle over M with wg(n) =wg(M). Then span(n) =8 if
and only if w,_7() =0, w,_s(1) =0, 0€6,(U(n)), 05(U(1)) =0, 0s(U(n)) =
0, and ©(U(n))=0.

Proof. Condition (i) implies that 0 € k2(n) and 0 € k{(5) whenever kZ(x)
and kj(y) are defined. By Theorem 4.13, k2() =0 if and only if 85(U(y)) =
0 modulo zero indeterminacy, since

wg (1) *Wer_3(n) = Sq"' (Wg(n) +wgr_4(n)) =0.

Again by Theorem 4.13, kZ(5) =0 if and only if 65(U(n)) =0. Now, by the
connectivity condition on M, condition (ii), and S-duality, we can easily de-
duce that Indet?”(T(r), ©)=0. Since y Indet”(M, k3) C Indet>*(T(7), O),
where y is the Thom isomorphism, we see that Indet”(M, k3) =0. It fol-
lows from condition (ii) and Theorem 4.8 that 0 € k?(n) if and only if O
0,(U(n)). Then Theorem 4.8(b) says that k3 () =0 if and only if

U(n) s Wer—_3(0) (04 (n)*+Awg (1)) = O(U(n)).

Since M is 4-connected mod 2 and wg(n) +wg,_3(n) =0, we conclude that
k3 () =0 if and only if ©(U(%)) =0. This completes the proof. O

We shall now apply the above theorem to the span of M.

THEOREM 4.18. Suppose that M is 4-connected mod 2. Suppose also that
Sq'H"""(M)=0 and Sq"H"~S(M)=H""3(M). Then span M =8 if and
only if w,_7(M)=0, w,_s(M)=0, 0€6,(U(7)), and x,(M)=0.

Before proving this we need a preliminary lemma. Recall the decomposition
UM)=A+tA.

LEMMA 4.19. Suppose that M is 4-connected mod 2, w,_;(M)=0, and
W,_s(M)=0. Then:

(@) 0,, 0,, and 05 are defined on A. In particular, if Sg'H"~"(M) =0 and
0€6,(U(7)), then O is defined on A and hence on tA; ©(U(7)) =0
modulo zero indeterminacy.

(b) 05 and 04 are defined on A. 05(U(7)) =0 modulo zero indeterminacy
and 0s(U(7)) = x2(M)U(7) - p.

Proof. Part (a). If w,,_s(M) =0, then by the definition of ,, 8,, #; and Lem-
ma 3.10(i), it only remains to show that Sg3—24 =0 and Sq® ~2S¢'4 =0.
By a Cartan formula and Wu duality we can show that

Sq** 2A=wg_,(M)®p,

since M is 3-connected mod 2 and Sq¥ ~2Sq'4 =0. Thus 6,, 6,, and 6, are
defined on A. Now we can choose 05 such that 8;(A) = Sq205(A4) =0, where
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63 is a stable cohomology operation associated with the relation
Sq'(Sq®~'Sq’Sq") =0.
By the connectivity condition on M, 6,(A) = 0. By the characterization (4.15),
01(A) = 4(Sq* ~°Sq'A) +¢5(Sq**A)

modulo Sg¥35¢%4 ® Sq8 —*Sq3A ® Sq¥ ~4Sq2Sq'A. The above group
can be shown to be trivial since M is 3-connected mod 2. By the connectivity
condition on M we have

n(4k+2)

¢4(Sq8k-GSqIA>=¢4( 121 Sq“"-3Sq‘a£k+z®Sq4"—3B£k+3)

RN 4k=3 g 1y ] 4k—-3pl
= X [Ya(Sq7Sq )tk +2®Sq™ T Bakas

I=1
+8q*38q aly 1 2@V Sq¥* 3Bhx 13))
=0.

Now suppose that 0 € 8,(U(7)). Then 0 € 6;(U(M)). Now ¢;(Sq3—44) =
(¥3(Wgr—4(M))®u} and

Hn+8k—1(MxM) =H"(M)@Hsk_l(M)@HSk_l(M)®H"(M).

From this we see that 0 e 8,(U(7)) implies g*(6,(U(7))), and that 6,(A)+
0,(tA) differ by symmetric elements. Thus 0 € 6,(A). Thus © is defined on A
hence on tA. The rest of the proof is exactly the same as that used in Theo-
rem 3.11 to show that ©(U(7)) =0, and we leave the details to the reader.

Part (b). By the definitions of 65 and 6 and the connectivity condition on
M, 85 and 6 are defined on A and hence on ¢A. Since Indet?*(M x M, ;) is
trivial, g*0(U(7)) =0s(A+1A) =05(A) +65(tA) + AU LA = x,(M)p&@p for
f¢ is nonstable. By the methods of [11, Thm. 9.5], using the fact that 65 is de-
fined on 4 and on ¢4, we can show that 6;(U(7)) =0 modulo zero indeter-
minacy. This completes the proof of part (b). U

4.20. PROOF OF THEOREM 4.18. This is now an immediate consequence
of Theorem 4.17 and Lemma 4.19.

4.21. PROOF OF THEOREM 1.2. This is now an immediate consequence
of Theorem 4.18 since 0 € §,;(U(7)) is equivalent to 0 € Y3 (w,,_o(M)). (For
w,_g€ H"°(BSO,(8)) is a generating class for & via 5, which is spin-
trivial. Thus 0 € k?(7) is equivalent to 0 € Y3 (W,_q(M).)

5. Applications to Immersions
Suppose that M is a spin manifold of dimension # with n» = Smod 8 and

n=21. Then by Massey and Peterson [5], w,_;(M)=0fori=0,1,2,...,5;
ow,_7(M) =0 unless a(n)=3, where a(n) is the number of terms in the
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dyadic development of n; W, _7(M) =0 unless a(n)<4; and w,_g(M)=0
unless a(n) =4 or 5. If M is a spin manifold satisfying w,(M) =0, then
Ww,_7(M)=0 unless a(n) <4 and n=5 mod 16; w,_o(M ) =0 unless a(n) <
6 and n=5mod 16. Since we are now seeking the stable span of » we shall
ignore the nonstable k-invariants (k2 in Table 1 and k2 in Table 2).

THEOREM 5.1. Suppose M is 4-connected mod 2. Suppose M satisfies
(i) Sq'H"$(M)=H"">(M) and
(ii) Sg'H"~"(M)=0.
If a(n)<4 and n=5mod 16 assume w,_;(M)=0. Then M immerses in
R2"=8 if and only if 0 € Y3 (W,_o(M)).

Proof. We can use Theorem 4.17 ignoring the nonstable operation 5. We
remark that 0 € Y3 (W, _q(M)) is equivalent to 0 € 6, (U(»)). Therefore, if 0
6,(U(v)) then ©(U(v)) is defined, and ©(U(r)) =0 since O is a stable co-
homology operation mapping into the top class of H*(T(r)). Similarly,
05(U(r)) =0. Thus M immerses in R>"~8, ]

We now have the following.

COROLLARY 5.2. Suppose M is a 5-connected mod 2 manifold of dimen-
sion n=13 mod 16 = 29. Suppose H¢(M;Z) has no 2-torsion. Then M im-
merses in R*"~8,

Proof. Plainly, conditions (i) and (ii) of Theorem 5.1 are satisfied. By the
remark preceding Theorem 5.1, w,,_o(M ) =0. Trivially, 0 € y3(w,,_o(M)).
Therefore, by Theorem 5.1, M immerses in R?"~%, O

REMARK 5.3. Theorem 5.1 and Corollary 5.2 give a new result only if
a(n) <8, in view of Cohen’s immersion theorem.
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