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‘Introduction

Let M be a compact, oriented, smooth #-manifold and consider the collec-
tion Met (M) of all Riemannian metrics on M. Although Met(M) is a con-
tractible open cone inside the space I'(S27T*M) of symmetric rank-2 tensor
fields, its natural metric (described later) is nonconstant and yields interest-
ing geometry. Furthermore, the group Diff (M) of orientation-preserving
diffeomorphisms acts isometrically (by pullback) on Met(M), and is free on
the subset Met’(M) of metrics which admit no nontrivial isometries. Hence
there is an induced metric on the quotient Met’(M )/Diff *(M). In this pa-
per we derive formulas for the curvature and geodesics of Met(AM) and of
Met’(M)/Diff *(M).

The metric on Met(M) is an example of an “L? metric” on a mapping
space. More generally, suppose M is a compact (finite-dimensional) mani-
fold endowed with a measure u, and let N be a Riemannian manifold with
metric g. Then the space of (smooth) maps Map(M, N) inherits an L? met-
ric as follows. A tangent vector at ¢ € Map(M, N) is a cross-section of the
pulled-back tangent bundle ¢*7N — M, and the inner product of two tan-
gent vectors A and B is

A,BY= | g(AGx), Bx)) u(x).

For this metric one easily calculates that the curvature R(X, Y)Z is, point-
wise, simply the curvature of N; it does not depend on the measure x. More-
over, a geodesic in the mapping space corresponds to a family of geodesics
in N. We discuss these matters in the appendix.

Although Met (M) is not, strictly speaking, a space of maps of the type
above, it is the space of sections of a fiber bundle, and similar principles
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apply. The typical fiber is GL*(n)/SO(n) (viewed as the space of positive-
definite 7 X n symmetric matrices), and it suffices to compute the curvature
of this finite-dimensional space in an appropriate metric (see the appendix).
Our computation in Section 1 proceeds by splitting this space into a product
of the symmetric space SL(n)/SO(n) and the flat space R*. However, the
metric is not a product, and so second fundamental form terms enter the
final formula. Although (for concreteness) we derive our formulas directly
for the infinite-dimensional space, they equally well give the curvature and
geodesics of the finite-dimensional space.

The curvature of the quotient Met’(M)/Diff *(M') can be computed from
the curvature of the principal fibration Met’ (M) — Met’(M)/Diff (M), and
the geodesics of the quotient can be computed from those of Met’(M).

When M is a Riemannian surface of genus greater than 1, one may form
the quotient Met _,(M)/Diff ®(M) of the subspace of metrics of constant
curvature —1 by the identity component of the diffeomorphism group. This
quotient may be naturally identified with the Teichmiiller space of M, and
the induced metric is the Weil-Petersson metric. This approach to Teich-
miiller theory has been studied extensively by Fischer and Tromba [3;4].
The basic differential topology of Met(M)/Diff *(M) was studied by Ebin
in his doctoral thesis (see [1]). His main theorem asserts that the action of
the diffeomorphism group on the space of metrics admits a slice. Further-
more, he defines the L2 metric that we use here, and computes the Levi-Civita
connection of Met (M). DeWitt [2] computed the curvature of Met (M), im-
plicitly using the principle about L2 metrics mentioned above. He wanted
these formulas for his Hamiltonian approach to general relativity. One of
our original motivations for this paper was a desire to simplify his calcula-
tion and make the geometric content more self-evident. Finally, we under-
stand that Bourguignon and collaborators have made computations similar
to those we undertake in Section 3. We owe I. M. Singer the suggestion that
we undertake these curvature computations.

In Sections 1-3 we discuss only formal aspects of the problem, essentially
treating Met (M), Met’ (M), and Diff ¥ (M) as finite-dimensional manifolds.
These spaces are of course infinite-dimensional, but are Fréchet manifolds
(see [10]). The maps and group actions we use are smooth in the Fréchet
sense, and our formal treatment can be rigorously justified in this setting.

Where convenient, we will abbreviate Met (M), Met’ (M), and Diff + (M)
as M, M’, and D, respectively.

1. The Curvature of Met(M)

Since M is an open subset of the vector space I'(S27*M), the tangent space
T, 9 (for any ge IMN) is I'(S2T*M) itself. Since g determines a pointwise
inner product on tensors, an L? inner product on tensor fields is induced.
Specifically, for any A, Be I'(T*M @ T*M), we set
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(BY A, BY=| tr(AB (@),

where, in local coordinates {x'}, 4= A;;dx'®dx” (and similarly for B, g),
B'=B;;dx'®dx’ (the “transpose” of B), g=g;;dx'®dx’, {g"} is the ma-
trix inverse of {g;;}, tr,(AC) =A,-jgjka,g”, and u(g) is the volume form
\/det(g,-j) dx!A--- Adx™. The restriction of this quadratic form to symmet-
tric A, B is positive definite. [More generally, one can define a metric by us-
ing tr,(A°B®) + W try(A) try(B), with an arbitrary weight W, in place of
tr,(AB) in (1.1); here tr,(A) means A4;;g". The metric (1.1) is equivalent to
choosing W=1/n.]

Let Vol(M) C Q"(M) denote the space of volume forms on M consistent
with the orientation. For o€ Q"(M) and » € Vol(M), let («/v) denote the
function satisfying o= (a/v)». Let p: M — Vol(M) denote the projection
carrying g to u(g), and let M, =Met (M) = p~!(») for any » € Vol(M). The
fibration p is trivial, and each g e 9N determines a section s, € Vol(M) — I
given by

(1.2) s¢(») = (v/n(g)*"g.
More generally, each volume form p determines a splitting
(1.3) i,: VOl(M) XM, =M, (v, k)~ (v/p)*"h.

Since Vol(M) is an open subset of the vector space Q"*(M), the tangent
bundle of Vol(M) is canonically isomorphic to Vol(M) X Q"*(M). A vector
field B8 over any subset UC Vol(M) may therefore be naturally identified
with a function 8: U—- Q"(M), and we implicitly make this identification
henceforth. Given such a 8 defined over an open set U, any v € U, and any
a e Q"(M), we define the directional derivative

8 . d
E(V)_Et—ﬁ(v-'—m)

b

t=0

where the right-hand side is computed pointwise on M. Directional deriva-
tives of functions on Vol(M) are defined analogously.

Each choice of x and 4 in (1.3) gives us an embedding of Vol(M) in I as
i,(Vol(M) x {h}), and therefore via (1.1) induces a metric on Vol(M). For
o, €T, Vol(M), the induced inner product is

.4 @n=5{($)(5)"

independently of u and £, that is, 4/n times the “natural” inner product on
Vol(M).

The tangent space to I, at & is the set of A-traceless symmetric tensor
fields; that is, {4eT'(S2T*M)|h"YA;;=0}. From this and (1.1), it follows
that the splitting (1.3) is everywhere orthogonal.

Our first observation is that, in the metric (1.4), Vol(M) is flat.
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PROPOSITION 1.5. At peVol(M), the Levi-Civita connection and the
Riemannian curvature of the metric (1.4) are given by

(i) V4®'B=0B/6c— 3 (cr/p)B;
(i) R"(a, 8)=0.

Proof. The Levi-Civita connection on any Riemannian manifold is deter-
mined by the “six-term formula”

2(VyY,Z)=X(Y,Z2)+Y(X,Z)-Z(X,Y)
—(X [, ZD) - (Y, [X, Z]) +(Z,[X, Y)),

where brackets denote a Lie derivative. Let «, 3, v be vector fields on Vol (M);
let p,=p+tv(n), a,=a(n,), and B,=B(x,). Then, at p,

-2 ()
IO D

However, from o= (o/p)p we find
7 ()l Grl-G)()
dt \p:/|i=o 0y # M w)
n AV AW AV AN EAYE:
g1 = S[(#)(57>+(u>(57) (u)<u>7]'
Using this equation, (1.6), and the fact that [«, 8] = 68/6a— 6 /63, we find

- LGN

and the formula for V"°! follows. As for curvature, applying the above to
constant vector fields «, 8, v gives

-4 (2))
O HE)
S

and thus R(a, 8)7y = V,Vgy—V3V,y =0. C

(1.6)

o)

(1.7)

Thus the “pure trace” directions of Met(M) carry no curvature. However,
we will see that I is not flat in the “traceless” directions [i.e., those tangent
to M, under the splitting (1.3)].

Given ge M, for each A € M, and x € M there is a unique endomorphism
h of T, M satisfying A(X, Y) = g(h(X), (Y)); moreover, A is self-adjoint with
respect to g and of determinant 1. [In terms of local coordinates, % is obtained
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from A by “raising an index”; i.e., if h=h;;dx'®@dx’ and h = h}(3/0x') @ dx’
then h/=g"*ny;.] Thus 9, consists of sections of a bundle whose fiber can
be identified with the noncompact symmetric space SL(n)/SO(n).

In general, given a semisimple, noncompact group G, a maximal compact
subgroup H determines a symmetric space N= G/H. The Lie algebra de-
composes into g=hH@yp, with [h, h] €, [, p] Ep, and [p, p] S §. The Killing
form, negative-definite on f) and positive-definite on p, induces a G-invariant
metric on N. Let p(S) denote the isometry of N corresponding to left-trans-
lation by Se G, and p(X) the Killing vector field on N induced by X ep.
Then the curvature of N is given by

1.8) R(p(X), p(Y)) p(Z) = —p([[X, Y], Z))

(see [8]). The formula for the connection is more complicated. The isotropy
representation of H on T[N is given by the adjoint action of H on p, and
the vector bundle associated to the principal H-bundle G — G/H via this
representation is isomorphic to the tangent bundle of N. Thus a vector field
on N can be represented by an H-covariant function X from G to p—more
precisely, by 6(X). With this in mind,

(1.9) Vix)P(Y) | (5= 6(=3(Ad(STHX, Y]),),

where Z, is the p-component of Z € g. [Note in particular that V; x)6(Y) van-
ishes at the base point [e] of N, and that V;x,6(X)=0; i.e., p(exp(tX))
traces out geodesics.]

For the case of relevance to us, the Lie algebra 8[(n) = 80(n) ® Sym(n) de-
composes into the direct sum of the orthogonal and traceless symmetric ma-
trices, and we may identify 8o(n) with §and Sym°(n) with p. Let SPosSym(n)
denote the set of positive-definite symmetric # X n matrices of determinant 1.
The action of SL(n) we are considering is the change-of-basis formula for
the matrix of a quadratic form. Thus, for Se 8l(n) and P e SPosSym(n),

(1.10) p(S)P=SPS’,
and so for X € Sym®(n),
(1.11) 5(X)| p= XP+PX.

In particular, o(X)|;4=2X, and (1.8) becomes
(1.12)  RSPosSymmy( 4 BYC = — le [[A4,B],Cl, A,B,CeT,ySPosSym(n).

A useful result of Ebin is the following.

PROPOSITION 1.13 (cf. [1, Thm. 8.9]). Met (M) is itself a (globally) sym-
metric space.

Proof. The volume form p gives a reduction of the GL(#)-bundle of linear
frames of TM to SL(n). Any g € M, gives a further reduction to SO(n). Let
SL(TM) and SO(TM, g) denote (respectively) the automorphism and gauge
transformation groups of these reduced bundles. Let SPosSym(g) denote
the subset of I'(End(7M)) whose elements are everywhere self-adjoint and
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positive-definite with respect to g and of determinant 1. The orbit of the
identity section under the action of SL(M) (via P — SPST, where “1” means
adjoint with respect to g) is precisely SPosSym(g), and the stabilizer of this
section is SO(TM, g). [Surjectivity follows from the fact that each #(x), a pos-
itive-definite element of SL(T, M) which is self-adjoint with respect to g(x),
has a unique positive self-adjoint square root, which is again in SL(7,, M).]
Hence SPosSym(g) = SL(TM)/SO(TM, g). But M, = SPosSym(g) by the
correspondence 2+ h discussed above, so M, =SL(TM)/SO(TM, g). To
see that this quotient is a symmetric space, observe that the metric

(1.14) (A, B} = thr(ABT)p.

on the Lie algebra 8[(7M ) = {everywhere traceless sections of End(7M)} is
Ad(SO(TM, g))-invariant, and induces the metric (1.1) on M, under the
isomorphism with SL(TM)/SO(TM, g). Now, for each xe€ M, the group
SL(T, M, g,) possesses an involutive automorphism o, which is the identity
on SO(T, M, g,) and whose differential at the identity is +1 on §o(7, M, g,)
and —1 on Sym%T, M, g,) (see [9]). For any Se SL(TM) C I'(End(TM)),
define a(S) to be that section of End(7M') whose value at x is g,.2S,.. Then o is
an involutive automorphism of SL(7M) whose fixed-point set is SO(TM, g).
Since (1.14) is Ad(SO(TM, g))-invariant, it follows that SL(TM)/SO(TM, g)
is a symmetric space, and hence so is 91,. O

Since the group operations in SL(TM) are carried out pointwise, and since
the metric (1.14) is an integral of a constant metric on SL(#n) times the fixed
volume form p= u(g), the curvature formula (1.12) carries over to give the
following.

COROLLARY 1.15.
RSPosSm(@)( 4, B)C= ~ 1[4, B], C]
for A, B, Ce T;y(SPosSym(M, g)) = Sym°(M, g).

REMARK. For each g, the index-raising isomorphism between T*M & T*M
and End(TM) identifies T, 9, with Sym°M, g). Therefore T, 91, inher-
its an associative product and a Lie bracket operation. We will use these
algebraic structures henceforth without further comment, and will write
Symy(M, g) for T, M,. Then we also have the following.

COROLLARY 1.15’.
RMetM)( 4, BYC=—]I[A,B],C]l for A,B,CeSymyM,zg).
The fibration M — Vol (M), together with the metrics (1.1) and (1.4), com-

prise a Riemannian submersion. We will use this fact to compute the curva-
ture of 9N from (1.5) and (1.15). The result will be as follows.

THEOREM 1.16. Under the identification (1.3) of Met(M) with Vol(M) X
Met (M),
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RMMY (4, B)C =~ ;11- [[A4,B],C]+ Tng {(trg(AC))B—(tr,(BC)) A}

for A, B, Ce Symy(M, g) =T, Met (g), and all components of the RM'*)
involving pure trace directions (i.e., Vol(M) directions) vanish.

In particular, (RM*M)(4, B)C, D))|,=0if any of A, B, C, D is pure tracz
(i.e., a function times the metric g).

The formula in (1.16) can be derived quickly from the six-term formula
(1.6). However, such a derivation leaves mysterious the vanishing of the
curvature components in pure trace directions. For this reason we choose a
derivation which relies explicitly on the splitting (1.3). This derivation is
somewhat longer but clarifies the origins of the various terms in (1.16).

COROLLARY 1.17. The sectional curvatures of Met(M) at g are given by
KM (4, By:=(RMO( 4, B)B, A)

1
=S [Z try([4, B1?) + %«trAAB»Z—trg(AZ) trg<32>>}u(g>

Jor A, Be Symy(M, g) orthonormal with respect to (1.1). In particular,
KMetM)( 4 B)<0.

Also, KMty Ay=KMetM)(y 8Y=0 for «,fB€ Ty (i g Vol(M)) [with
notation as in (1.3)].

Proof of 1.17 (assuming 1.16). For any square matrices E, F, G, H,
(1.18) te([[E, F1G1H) =tr([E, F]IG, H]).

Let x € M, choose local coordinates, and let g7}, A,, B, denote (respective-
ly) the matrices {g¥}, {A;}, {B;;} at x. Then, by definition, tr,(AB)|,=
tr((g ~'A4,)(g 'B,)), so the formula in (1.17) follows immediately from (1.16),
(1.1), and (1.18), as does the vanishing of K if either direction is pure trace.
The Cauchy-Schwarz inequality implies (tr(EF'))?<tr(EE®)tr(FF') for
any matrices E, F and hence that (tr(EF))?><tr(E?) tr(F?) if E and F are
symmetric. Therefore (tr,(AB))*—tr,(A?) try(B%) < 0 pointwise. Since g !4
and g ~'B are symmetric matrices, their commutator is antisymmetric and
hence tr,([ 4, B]?) <0 pointwise. It follows that K(A, B) <0. O

For the rest of this section we fix p e Vol(M) and, via (1.3), regard 9N as
Vol(M) X .. We represent any tangent vector at (», h) € Vol(M) X M, as
a+A, where ae Q"(M)=T, Vol(M) and Ae T, I, C I'(S?T*M). Writing
the metric (1.1) relative to this splitting, we have

4
(1.192) @Blon=1 J(5)(5)»

(1.19b) {ay A | (,,;y=0,
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(1.19¢) (A, B y.1y= Strh(AB’)v.

As a preliminary to proving (1.16) we review some basic geometry of sub-
manifolds. Let W be a submanifold of a Riemannian manifold V and give
W the induced metric. Let X, Y, Z, N be locally defined vector fields along
W, with X, Y, Z tangent to W and N normal to W. Then, for V=VV (the
Levi-Civita connection on V), the equations

(1.20a) VY'Y= (VyY)TAN:=tangential component of VY,
(1.20b) II(X, Y)=(VxY)NOR:=normal component of VyY,
(1.20c) In(X)=—(VxN)TAN,

(1.20d) Dy N=(VyN)NOR

define (respectively) the Levi-Civita connection V¥ on W, the second fun-
damental form II, a tensor field 3, and the induced connection D on the nor-
mal bundle of W V. The tensors II and 3 are related by the Weingarten
equation

d.21) (On(X), Y)=(I(X, Y),N).

The Gauss equation, Codazzi equation, and Ricci equation express the var-
ious components of the curvature R(X, Y)=RY(X, Y) in terms of the cur-
vatures R” of W, RP of the normal connection D, and the quantities defined
above [8]:

1.22) (R(X,Y)Z,T)=RMX,Y)Z,T)+(U(X, Z),11(Y, T))
—(I(X, T), 11(Y, Z)),

(1.23) (R(X, Y)Z)NOR = (DxII)(Y, Z) - (DylI)(X, Z),
(1.24) (R(X, Y)N)NOR=RP(X, Y)N+I1(35(X), Y) = 11(3n(Y), X),

where, in (1.23), D represents the tensor product connection induced by V%
and D. '

We apply these equations to V'=Vol(M) X M, and W= Vol(M) X {g] at
the point (u, g). For o, 8,... € T, Vol(M) = ”(M) let &, B3, ... denote the
“constant” vector fields on Vol(M ) X M, corresponding to these elements.
Let A, B, ... € Symy(M, g) and use the same letters to denote the correspond-
ing elements of Sym%M, g) obtained by raising an index. We let A, B, ...
denote the Killing vector fields on 9, obtained from lA, éB . by using the
SL(TM)-action; thus A(h)= 2(Ah+hA), where Ah= A,khkdx’®dxf lo-
cally, and so forth [cf. (1.11)]. We further extend A, B, ... to vector fields on
Vol (M) X M, by declaring them constant in the Vol (M ) direction. Finally,
we let V and R denote (respectively) the Levi-Civita connection and curva-
ture of IN.

PROPOSITION 1.25. In the notation of (1.20), with W= Vol(M) x {g} and
at the point (p,g)e W:
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(i) V6= 586/6a—L(a/n);

(i) II=0 (i.e., Vol(M) x {g} is totally geodesic);
(iii) 34=0 for all A; and
(iv) D,A=68A/ba+ L (a/n)A.

(In (i) and (iAv) we allow general vector fields 3, A as well as the consiant
vector fields (3, A.)

Proof. Statement (i) is part of Proposition (1.5). For the remaining state-
ments, we need consider only constant «, 8. Applying the six-term formula
(1.6), noting that [&, 3]=[&, A]=0 and that A¢&, 8Y=0, it follows that
2(V, B, Ay = — A&, B =0. This proves (ii), and (iii) then follows from (1.21).
Finally, 2<Vafi, By=a(A, By={tr,(AB)«, proving (iv) for the “constant”
vector field A, and the general case of (iv) follows immediately. [

COROLLARY 1.26. On Met(M),

(1) (R(a,B)y,06>=0,
(ii) (R(e, B)7y,A>=0, and
(iii) (R(c, 8)A,B)=0,
where «, 3, v are any directions tangent to Vol(M) X {g} and A, B are any
directions tangent to Met ., (M) under the splitting (1.3).

Proof. By (1.5), Vol(M) x {g} is flat, and by (1.25) II =0. Hence (i) follows
from the Gauss equation (1.22). Similarly, the Codazzi equation (1.23) im-
plies (ii). For (iii) we use (1.25) and (1.7) to compute

ot (3(2)4)- () (pt

SHOEEOA

RP(&,)A=D,;D3A—DyD,A=0.

from which

Since RP is tensorial, we conclude that RP(«, 8).4 =0 in general. The Ricci
equation (1.24) then implies (iii). O

Next we investigate the traceless directions.

PROPOSITION 1.27.  Let notation be as in (1.20), with W= {p} X M, and
V=N. Then, at the point ge M,

(i) 1II(A, B)=—(n/8) trg(AB)u,
(i) 34(4)=—3(a/W) A4,
(iii) Dyoa=6a/6A, and
(iv) V¥B=0,
where 6a/6A denotes derivative of the Q"(M)-valued function o (viewed as
a vector field normal to W) along a curve tangent to A.
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Proof. Again we use the six-term formula (1.6) together with (1.19), this
time obtaining

2V, B, &y=—a(A, By= -—Strg(AB) (%)u

- <Z— (tr,(AB) a>,

from which (i) follows. Statement (ii) then follows from Weingarten, (1.21).
For constant vector fields &, (1.6) implies (V,&, 8)=0, and then (iii) fol-
lows easily for general «. Statement (iv) follows from the parenthetical sen-
tence following (1.9). O

COROLLARY 1.28. At (p, g) € Vol(M) XM,
(i) (R(A, B)et, B) =0,
(ii) (R(A,B)C, a)=0, and
(iii)
1
(R(A,BYC,Dy= [{= 7 tr, (LA, BIIC, D))

+ 22 [1r,(AC) try(BD) —tr,(AD) trg(BC)]} n

Proof. Statement (i) follows from the Ricci equation (1.24) (also from
(1.26.iii) and the symmetries of the Riemann tensor). Next, let W= {u} X M,
in (1.20)-(1.24). Since the integrand defining the inner product on M, is
SL(TM )-mvarlant p01ntw1se (1.27.1) holds at all points of W even if we
replace A, B by A, B only on the left-hand side; that is, trg(AB) is constant
as a function of ge M,. Also, VWB 0 at g by (1.27.iv). Thus, at g,

(D4I1)(B, C)=D,(II(B, C))-1I(VY B, C)-11(B, VY C)
=D (constant n-form)—0—0
=0.

Statement (ii) now follows from Codazzi, (1.23). For (iii) we apply (1.27.i)
and the Gauss equation (1.22) to (1.15):

(R(A4, B)C, Dy= | ~tr,(11 4, B], C1D)p

4
+= K— §)trg(AC)< )trg(BD)p

4
= S(— §)trg(BC)< )trg(AD)u,

from which the desired formula is immediate. O

There is one component of the curvature not covered by (1.26) or (1.28)—
namely, the mixed component {(R(«, A)3, B). This can be determined neither
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by applying symmetries of the Riemann tensor to components already dis-
cussed nor from the submanifold equations (1.22)-(1.24). However, the map
pei,: Vol(M) X M, — Vol (M) is a Riemannian submersion; that is, ( peiy) s
is surjective and preserves the metric on “horizontal” vectors (the orthog-
onal complement to the fiber tangent spaces [“vertical spaces”]; in our case,
those vectors tangent to Vol(M) X {fixed metric}). This allows us to apply
a formula of O’Neill [5, Thm. 3]. The result is the following.

PROPOSITION 1.29. On Met(M), (R(a, A)B,B)=0.

Proof. O’Neill defines tensor fields 7, o by

(1.30a) Tx Y =hor (Ve x) vert(Y)) +vert (Vyey x) hor(Y)),

(1.30b) oxY =vert(Vyor(x) hor(Y))+hor (Vie (x) vert(Y)),

and proves that if X, Y are horizontal and V, W vertical then

1.31) (RIX, V)Y, W)=(oxV,oyW)—<1y X, Ty Y)
+{(Vx7)y W, Y)+{(Vyo) x Y, W).

In our situation, if we regard some fixed {u} X 9, as the submanifold defin-
ing II and 3, then

TxY=1I(vert (X), vert(Y)) — 3jo,(y)(vert (X)).

If we regard a fixed Vol(M) X {g}, g€ M, as the submanifold defining II
and J, then

oxY =1l(hor(X), hor(Y))— 3,ep1(v)(hor(X)).
Thus, from (1.27) we have

n 1/8
7a+A(B+B) I(,u,g) = '8— trg(-"lB) + 5 (;‘)A
and, from (1.25),
0a+A(B+B)=O-
Hence
(1.32) (R(a, A)B, BY=—(3,(A), 35(B)>+{(V,T) 4B, 8.

Defining II(X, Y) =1I(vert (X), vert (Y)) for X, Y not vertical, we have
(V1) 4B=ValT4B) =7y 4 B—74(V,B)
=V, (1I(A4, B))—-11(D, A, B)—11(A4,D_,B)

. n

1
. {Va(trg(AB) u)—tr, (-2— (%)AB)M

(2N
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(by (1.27.1) and (1.25.iv))

n 1
(- (2 )nin(:)

n
= E tI'(AB) .

Since 3,(A4)=—1(a/n)A, (1.32) therefore implies

(R(, A)B, By=— e (%)A, %(%)B>+ <% tr(AB) a, ﬁ)
_ 1 a\/pB
=315 (5) s
4 8
() maam e

=0. [

Proof of Theorem 1.16. The result now follows from (1.26), (1.28), and
(1.29). Ul

2. Geodesics on Met(M)

Throughout this section we fix pe Vol(M) and implicitly identify Met (M)
with Vol(M) X Met (M) as in (1.3). Also, for

A=A(3/3x")@dx’e ' (End(TM))
and
h=h;dx'Q@dx/eT(T*M®T*M),
we define
hA e T(T*MQT*M)

by the local formula (hA);; = hy A¥;. Similarly, for BeT(T*M®T*M)
and g e Met(M), we define g ~'BeI'(End(TM)) by (g 'B)’;=g"*By;. Ob-
serve that for 4, g e Met (M), h— g ~1h is simply the identification of A with
an element of SPosSym(g) (i.e., g !k is what we called & in §1).

In this section we solve the geodesic equation on Met(M ). Since the for-
mulas on each piece (Vol(M) and Met ,(M)) of our splitting may be of some
independent interest, we state these special cases first, although the follow-
ing is a corollary of our general formula.

PROPOSITION 2.1. The geodesic in Vol(M) with initial position p and
initial velocity o€ T,(Vol(M)) =Q"(M) is

1 2
p(t)=p,= (1+ 5 (g)l) -
b
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Notice that the total integral of x changes in time, which is expected since,
by (1.33), Vol,(M) is not totally geodesic. Also, if (a/n) <0 at some point
of M then the geodesic u(#) can only be continued for finite time. This is
also as expected, since I'(A"T*M | ,oi) is just R™ and, if one starts any-
where in R* and heads towards zero, one hits the origin in finite time.

PROPOSITION 2.2. The geodesic in Met, (M) with initial position g and
initial velocity A e T,(Met (M))=Sym(M, g) is

g(t)=g,=ge'®™.

Moreover, Met (M) is geodesically complete.

Proof. Since Met (M) is a symmetric space, the geodesic formula in (2.2} is
more or less automatic [cf. the parenthetic sentence following (1.9)]. Com-
pleteness follows immediately from this formula. O

Since Met, (M) is not a totally geodesic submanifold of Met(M), one ex-
pects some “mixing” between (2.1) and (2.2) for geodesics in Met(M). This
is indeed the case.

THEOREM 2.3. The geodesic in Met(M)=Vol(M)XMet (M) with ini-
tial position (u, g) and initial velocity (a, A)e Q"(M) X Symy(M, g) is

-1
(@) g(t)=iu(gt)=(q(t)2+r2t2)2/”gexp(wg“fl)

where q(1) =1+ 3 (a/p)t, r=5(ntr((g~'A)*)?, and i, is as in (1.3). (If
r=0, replace the exponential term by 1.) The change in the volume form
of g(t) is given by the formula

(b) weg(@)=(q()>+r’t*)p.

While the results of Section 1 may be used to prove this theorem, we give the
direct proof below to avoid some technical points required by that approach.

Proof of (2.3). The six-term formula (1.6), applied to constant vector fields
B, C, E on Met(M), quickly leads to

VsC | ,=—1(Bg~'C+Cg1B) + L{(try(C))B+ (tr,(B)) C—tr,(BC)g}.

Now let {g(#)} be the geodesic and let B= g’=dg/dt. Then the above for-
mula, applied to the geodesic equation V,.g’=0, yields

B'—Bg~'B+ (1/2)(try(B))B—(1/4) tr,(BB)g = 0.

Setting C =g ~!Be I'(End(TM)) and left-multiplying the above line by g},
we get the simpler equation

(2.4) C'+(1/2)(tr(C))C+(1/4) (tr (C?*)I=0.



336 DANIEL S. FREED & DAVID GROISSER

(Here 1 is the identity endomorphism of 7M.) Let f=tr(C), E= C—(f/n)1,
and v =tr(E?). Separating (2.4) into its trace and traceless components, we
obtain the coupled equations

(2.5a) f+1/4) f2—(n/4)v=0.

(2.5b) E'+(1/2)fE=0.

It is more enlightening to write these equations in terms of quantities directly
connected to the splitting (1.3). Write g, = (n,, #,) € Vol(M) X Met W(M).
Let p(¢)=(p,/p). Then, using (1.3), we find B,=(2/n)(p’/p)g,+ & h 'h;.

Therefore C,= (2/n)(p'/p)I+h~ W, f=2p'/p, and E=h~'h’. We rewrite
(2.5) as the system

(2.6a) u=p’/p,
(2.6b) E=h"1n,
(2.6¢) v=tr(E?),
(2.6d) u'+(1/2)u*=(n/8)v,
(2.6¢) E’'=—ukFE.
Differentiating (2.6¢) and using (2.6¢€), we obtain
2.7) v'=2tr(EE’)=—2uv.

Differentiating (2.6d) and plugging in (2.7), (2.6d), and (2.6a) then gives
O=u"+uu'+u(n/4)v
=u"+uw’ +2u(u’ +u?/2)
=u"+3uu’+u3
=p"/p.

Therefore p” =0, so p=a+ bt+ct? for some functions a, b, c on M. The
initial conditions p(0)=1, p'(0)=«, and A’(0) = A lead, with the aid of
(2.6), to the equalities p’(0) = (a/p) and p”(0) = (1/2)(o/p)?*+2r?, where
r is as in the statement of the theorem. It follows that a=1, b=(a/n), c=
(1/4)(o/p)?+r?, and therefore

p()=1+ (3)t+ (l (5)2+r2)t2
2.8) " 4 \n

=q(t)*+r2t?

Next, from (2.6¢€) and (2.6a), we have E’+ (log p)’E =0, implying that
E(t)=E0)/p(t)=g 'A/p(¢). 1t is straightforward (albeit tedious) to in-
tegrate the resulting equation (log(g~'h))'=h" W =g 14/(q(t)*+r?t?)
(which one may view as a local equation for matrices), finding

tan~!
(2.9a) g‘lh,=exp(m—fwglg‘1A> if r#0;
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(2.9b) g 'h,=1, if r=0 (equivalently, if A=0).

Part (a) of the theorem now follows from (2.8), (2.9), and (1.3). For part
(b), simply observe that det(exp(\g 1A4)) =exp(tr(Ag "'A4)) =1, because
(by hypothesis) 0=tr,(A) =tr(g~'A). O

REMARK. A direct consequence of equation (2.6¢) in the proof above is
that the change in the traceless part of g along a geodesic is abelian —the
commutator of £ and E’ is zero. This is reflected in (2.3a); the traceless part
of g varies along the one-parameter subgroup {exp(sg ~'4)}.

One can deduce some elementary aspects of the qualitative behavior of
geodesics from (2.1)-(2.3). First, as noted above, geodesics in Vol(M) can-
not be continued beyond ¢, = inf {—2(u(x)/a(x)) | a(x) <0}. The same is
true of a geodesic in Met(M) with A =0, since each Vol(M) X {g} is totally
geodesic. However, if A is nowhere zero then a geodesic in Met(M) runs
forever, since the r in (2.3a) is everywhere positive. If, in addition, « is no-
where zero, then as ¢ — co the projection of the geodesic onto Met (M) ap-
proaches a limiting value, namely

1 _qf 2r 1
— — Jg T A},
geXp{r tan (a/.u>g }

We also remark that (2.1) implies that distinct geodesics in Vol (M) emanat-
ing from the same point never intersect (roughly, because the two distinct
geodesics from a point in R* don’t intersect). The same holds for geodesics
in Met, (M), again reflecting the behavior of the associated finite-dimen-
sional (and negatively curved) space SL(n)/SO(n).

3. The Quotient Met’(M)/Diff (M)

Met’(M)/Diff (M) is an example of what one may call a “principal Rie-
mannian submersion” —a Riemannian submersion 7n: P — X, defined as in
Section 1, where in addition P is a principal bundle with (say) group G, and
the G-action is isometric. [Fischer and Marsden [3] use the term “(weak-)
Riemannian principal fiber bundle.” “Weak” applies to infinite-dimensional
cases of the sort we are considering, because spaces of C® sections are not
complete with respect to L2 metrics.] A familiar example of this is the quo-
tient of a Lie group with a right-invariant metric by a closed subgroup. The
gauge-theorists’ fibration {irreducible connections on some principal bun-
dle}/{gauge transformations} is an infinite-dimensional example. It is not
hard to find a general formula relating the curvatures of P and M in the
general case. Let R, R be the Riemann curvature tensors of P, M, respec-
tively. Let ¥, Z be horizontal vector fields on P (not necessarily G-invariant).
Let pe P, x=n(p), Y=m.(Y,), and Z==,(Z,). The general formula (see
O’Neill [5] and Cheeger and Ebin [6]) then states

ER)) (R(Y,2)Z,Y) | x=(R(Y, 2)Z, Y )+ § |vert{¥, Z]|*],..
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The last term in this formula is related to the curvature of the principal con-
nection defined by the horizontal distribution. If ¢,: g— ¥, is the canonical
isomorphism from the Lie algebra of G to the vertical space V,,C T, P, then
this curvature F, viewed as an Ad G-equivariant g-valued 2-form on P, is
given by

3.2) FU, V)| ,= —Lp_l(vert[hor(U), hor(V)]),

where U and V are extended arbitrarily to local vector fields on P, and of
course “vert” and “hor” are the orthogonal projections onto the vertical and
horizontal spaces, respectively. Thus, in (3.1), |vert[Y, Z]|2= |, F(¥, Z)|>.

In our situation, ® acts freely and isometrically on 9, and, as we will see
below, it is not hard to write explicitly the associated splitting of 79’ into
horizontal and vertical. A metric on M’/ D is given by restricting the inner
product (1.1) to the horizontal distribution. With these data, 7: 9’ — M’/ D
becomes an infinite-dimensional principal Riemannian submersion. To com-
pute the curvature of the quotient, we need to exhibit the maps ¢, vert, and
hor.

The Lie algebra of D is (M), the space of vector fields on M. Since M
is compact, each X € (M) generates a one-parameter subgroup {exp(X)}
of », and the tangent vector to this curve in D at £=0 is X. Hence, for
ge M,

dt
V= {7 (eXp(£X)*8),=0] X € SC(M)}
(3.3)
={Lxg|Xe X(M)},

where L denotes Lie derivative. The map ¢,: X(M) — V, is simply
3.4 t(X)=Lxg.

Since
(Lxg)(Y,Z)=X(g(Y,Z))—g([X,Y],Z)—g(Y,[X,Z])
=g(VxY—-[X,Y],Z2)+8(Y,VxZ—-[X, Z])
=g(Vy X, Z)+g(Y,Vz X),

ty can be expressed in terms of the Levi-Civita connection V of g as the fol-
lowing composition:

tg: X(M) D> T(TM @ T*M) &8 D(T*M Q@ T*M ) 222, T(S2T*M)
X - VX - g {VX) - (1+7)g71VX,

where 7 denotes transpose and g ~! has the same meaning as in Section 2.

It is useful to express this in local coordinates. If X = X(9/dx") is a local
vector field, we write VX = (X", ;)(8/3x")®dx, and similarly use semicolon
notation for covariant derivative of any tensor field. Also, we will lower
indices on tensors, just as on vectors, using the matrix g;;= g(d/0x i 8/0x7);
indices will be raised using g“. With this notation in mind, the analysis
above yields



The Basic Geometry of the Manifold of Riemannian Metrics 339

3.5) 1o (X) = (X, + X, )dx' Q@dx.

Next we identify the horizontal spaces. For Ce T, M’ = T(S2T*M), we
have

(L8 C) | = | (Xi;;+X;,) Cn(g)
= | (X + X0 ClinCe)
=—2{x,C;u(e)
by Stokes’ theorem. Giving (M) the L? metric induced by g, analogously

to (1.1), the map t,: (M) — T, MM’ acquires a formal adjoint (¢*),, and the
computation above shows that

(3.6) (t*) o (Cyj dx'®@dx’) = —2Cij;j chi .

(It is important to remember that the “*” in “.*” depends on g, so we have
until now avoided the simpler notation :3. The reader now having been
warned, we henceforth adopt the simpler notation.)

For each ge I, ker, =0, since otherwise (M, g) would have at least a
one-parameter group of isometries. The operator ¢3¢, is elliptic, and hence
(tzte) ~'maps C*®vector fields to C ® vector fields, continuously with respect
to the L2 norm on (M). Therefore (M) = Im (. )@ker(1z), orthogonally
and continuously with respect to the L? inner product. This fact justifies
many of the otherwise formal statements below, in which the vertical and
horizontal subspaces of TO’ are treated essentially as if they were finite-
dimensional.

For any rank-2 tensor field 7, let us define (div,T)(g) = T, ;(3/dx),
where the covariant derivative is the one determined by g. The orthogonal
complement H, of V, is simply ker(c3), so by (3.6)

(.7) H,={BeT(S*T*M)|(div,B)(g)=0}.

Looking at (3.1), we see that we need to exhibit some horizontal vector fields
and compute their brackets. Given B € Hy, define a horizontal extension B
of B to a neighborhood of ge M’ by B(g+A) =hor, 4(B) € H, 4; thisis
defined for small A since M’ is an open subset of M (see [1]). The Lie bracket
of two such extensions B, C is given by

o~ d - ad .
(3°8) [B9 C]gz(a_t"cg+t3—' -C_it_Bg+tC> (=0
To compute the first term, remember that (;C, = 0; hence
d ~ d ~
a‘t‘CgﬂB t=0= -E(Ve"thB(Cg)) o

(3.9)

d N
= —1g(t5t9) ™ = (3415 Co) .
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In local coordinates, the Christoffel symbols of g+ A4 are related to those
of g by

(T(g+AN =T+ 3Ug+A) N Ay + Ap,j+Aji1)

where “;” is with respect to g and the matrix '(.g+A)‘1 is_ the inverse_of
{g;;+A;;}. Substituting A= ¢B; using CY.; = (C7/3x*)+ CYT" 4+ CT,,

f

and remembering to raise the indices of the symmetric tensor Cj; dx'®dx-
with the metric (g+ ¢B) before taking d/dt, one finds (eventually) that

icif;k

1 . . L
df = [Bla;k'*'Blk;a_Bka;l}aj

(=0 2

+ 5 (Blos it Bl o= Big/} C¥— (BUC/ + CMBY) 4,

where all indices on the right are raised with g. Inserting this expression into
(3.6), using (3.9) yields

d -

—C
dt g+1tB =0
=L(L*L)*1{[(28'0”-—8]“;')C”J+ij;aC‘”—2(BC+ CB)Y, ] ax,.},
where =1, and (BC)Y=B"C,/. Using «*B=1*C=0, the expression in

square brackets simplifies to
—B;,/CY +1tr,(B).,C“—2(CB)Y.;.
Let [B, C] denote the algebraic commutator BC — CB (not to be confused

with the Lie bracket [B, C1), let b=tr,(B), and let ¢ =tr,(C). Then, putting
the last few equations together,

d . e - B 8
ECgHB t=0=L(L L) ([—Bjk;'C j+b;kC ’—Z(CB)’J;J;] axj>
and
(3.102) [B,C]|,_o=A(B, C)=1(:*)"'P(B, C),
where
P(B, C) = (b, CY— ¢, B) + (BHCpyi— CI*B,y i3 -2
(3.10b) ax

+2div,([B,C1, g).

Conveniently, A(B, C) is already vertical, and we may plug directly into
(3.1) to find the sectional curvatures of 9’/ D in terms of those of N. Thus
(3.11)  (R(B,C)C,B)| »=I(R(B,C)C, B)+ 3} A(B, C)|}21],,

where we have abused notation by writing B, C on the left for 7. B, 7.C.
Recall that the sectional curvatures determine the full Riemann tensor by
polarization. Polarizing (3.11), one obtains
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3.12) (R(A,B)C,D)=(R(A, B)C, D)+ i(A(A, D), A(B,C))>
¢ —3(A(4, C), A(B, D)) 12— 5(A(A, B), A(C, D)) .

Summarizing, we have the following.

PROPOSITION 3.1. Egquations (3.12) and (3.10), together with Corollary
(1.28.iii), constitute a formula for the Riemannian curvature of N’/ D.

REMARKS. (i) Thereis a minor simplification that occurs when one inserts
(3.10a) into (3.11) or (3.12); namely,

(A(A4, B), A(C, D)y 2=(P(A4, B), (t}15) "'P(C, D)),2.

(ii) The expression — (t3t,) ~IP(B, C) is precisely the curvature F of (3.2).
To see this, observe that (¢*t) ~1c*| m(.) Plays the role played by t~lin (3.2).
Hence

F(B,C)=(*)""W*A(B, C)
= ——(l,*l,) _IP(B, C).

(iii) P(B, C) can be written purely in terms of the traceless parts of B
and C. For if B=B—(b/n)g and C= C—(c/n)g, then one finds

. . s o .
P(B, C)=(b;Cli—c;( BY) 55 +2divy((B, Cl, 8)

d

HBYHC) = (VB i) 5

One can then eliminate b and ¢ from this expression, since
. . b \Y
0=BY, ;= <B+ —-g)
’ n .
3

s L
’ n ’
implying
b;k=—nl§kj;j, C;k=—nékj;j.

It is not clear, however, whether this is a useful simplification.

Finally, we consider geodesics on 9M’/®D. Given any Riemannian submer-
sion w: P— M, the horizontal lift of a geodesic is a geodesic (see [6]). Since
geodesics are determined uniquely by initial conditions, it follows that any
geodesic on P which is anywhere horizontal projects to a geodesic on M
and is in fact everywhere horizontal.

In our situation, therefore, the geodesics on IM'/D are simply the 7-
images of those curves in Theorem 2.3 with horizontal initial vectors. In
the notation of that theorem, («, A) is horizontal at (u, g) if and only if
AY.;+(2/n)(a/p)./= 0. Hence we have the following.
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COROLLARY 3.2. The geodesics on '/ D are of the form w(g(t)), where
g(t) is as in Theorem (2.3a) and, in the notation of (2.3),

n
grad (3) = — —(div, A)
7 2
(covariant derivatives being taken with respect to g).

REMARK. It is possible for a geodesic in 9N to start in M’ and run for
infinite time in M, but to leave M’ (by reaching a metric with nontrivial iso-
metry group) in finite time. Thus in general the geodesics of M’/ D are pro-
jections only of geodesic segments in 9.

Appendix. L? Metrics on Mapping Spaces

In this appendix we demonstrate how the basic Riemannian geometry of
L? metrics on mapping spaces reduces to the (finite-dimensional) Rieman-
nian geometry of the target. We need to deal with the more general situation
of fiber bundles. Thus let S— M be a smooth fibering of manifolds. We
denote the fiber over xe M by N,. Let g be a Riemannian metric along the
fibers, that is, a metric on the vertical tangent bundle V'7'S. Further suppose
that M comes equipped with a measure u.

Our basic mapping space is the space 9T of smooth sections of S— M.
(For the trivial fibration M X N — M, the space M is simply Maps(M, N).)
Suppose that ¢ € 9 is such a smooth section. Then the tangent space to 9
at ¢ may be naturally identified with the space of vertical vector fields along
the image of ¢ (more precisely, with the space of sections of the pulled-back
bundle ¢*V'TS). There are special vector fields we can consider in a neigh-
borhood of ¢. Specifically, let 4 be a vertical vector field defined on a neigh-
borhood in S of the image of ¢. Then for any ¥ close enough to ¢ the re-
striction of A4 to the image of ¢ is a tangent vector at y. Suppose we are
given two such vector fields 4 and B.

LEMMA A.l. The bracket [ A, B] in N is given by the pointwise bracket
in the fibers: [ A, B1(x)=[A| n_, B| n.1($(x)).

The proof follows easily from the observation that the flows of {A| x }xcm
combine to give the flow of 4 in 9. We omit the details.

The L2 metric on 9 is defined by integrating the vertical metric g over M
using the measure u. Specifically, suppose A and B are tangent vectors to
M. Then

A2) A By=| (A0, Boo)u).

From this and the six-term formula (1.6), the “Christoffel symbols” (V B, C)
of the Levi-Civita connection of g are easily determined. We leave it for the
reader to verify the following proposition.
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PROPOSITION A.3. Let ¢(¢) be a curve in M and A(t) a vector field along
this curve. For each x e M, let ¢, denote the induced curve in the fiber N,,,
with A, the induced vector field along ¢,. Then, for all x and t,

DA DA,
ar = g
where the left-hand side refers to the covariant derivative on 9 and the

right-hand side to the covariant derivative on N,.

There are two simple corollaries of this formula, which state that geodesics
and curvature on 9 can be treated fiberwise on S.

COROLLARY A.4. A curve ¢(t) is a geodesic if and only if ¢ ,(t) is a geo-
desic in N, for each x.

COROLLARY A.5. The curvature operator on M is given pointwise:
R(A,B)(x)=R,(A,, B,).

Our basic space Met (M) of this paper is the space of sections of the bundle
GLT(TM)/SO(TM, g,), where GL*(TM) is the bundle of frames consis-
tent with the orientation and g, is any metric on M. The fiber N, is the space
of endomorphisms of 7, M which are self-adjoint with respect to gy, and is
diffeomorphic to GL*(n)/SO(n). For any other metric 4 there is a unique
(as well as self-adjoint and positive-definite) 2 e I'(End(7M)) satisfying
h(A, B)=gy,(h(A), B) [cf. the discussion following the proof of Proposi-
tion (1.5)]. The metric (1.1) can be written

(A, By, = SM try(AB) det () "2y,

where po= u(go). Define a vertical metric on the bundle of positive-definite
quadratic forms over M by

(A.6) h(A, B) =tr,(AB) det (h)"2.

Then formula (A.2) determines an L2 metric on Met(M), and Corollaries
(A.4) and (A.5) apply. The computation in Section 1 may be viewed as giving
the curvature of GL*(n)/SO(rn) in the metric (A.6), where A, B, h are to be
viewed simply as symmetric matrices and &= h (i.e., (g¢);; = 6;;).
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