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1. Introduction

The study of the Jordan structure of operator algebras dates back to the
work of Jordan, von Neumann and Wigner [7], who wished to place an ap-
propriate algebraic structure on the set of bounded observables of a quan-
tum mechanical system. Kadison [8] was the first to show that there is an
intimate connection between the Jordan structure and the order structure of
a C*-algebra. Much of the study of the Jordan structure of a C*-algebra A
has followed Kadison in investigating the real Jordan algebra of self-adjoint
elements of 4. This Jordan algebra is an example of a JB-algebra, the prop-
erties of which have been extensively investigated over recent years. For a sur-
vey of the theory of JB-algebras the reader is referred to the book of Hanche-
Olsen and Stgrmer [5]. In particular, the structure of the set of quadratic
ideals in a JB-algebra is discussed in [1].

When investigating the ideal structure of complex Jordan algebras (or,
more generally, of Jordan triples), a natural class of ideals which arises is
that of inner ideals. In a four de force McCrimmon [10] described algebraic-
ally the set of inner ideals in a quadratic Jordan algebra over an arbitrary
commutative, associative ring. Some of McCrimmon’s results were general-
ized to Jordan pairs by Loos [9]. The purpose of this paper is to describe the
set of weak* closed inner ideals in a W *-algebra.

Examples of weak* closed inner ideals in a W*-algebra A are weak* closed
left and right ideals of A. Such ideals were studied by Effros [3] and Pros-
ser [13], who showed that every weak* closed left ideal in A is of the form
Ae for some unique projection e in A. Moreover, the mapping e — Ae is
an order isomorphism from the complete lattice P(A) of projections in 4
onto the complete lattice of weak* closed left ideals in 4, and the mapping
e — A,e is an order isomorphism from P(A) onto the complete lattice of
norm closed left invariant subspaces of the predual A4, of A. The main re-
sult of this paper is that every weak* closed inner ideal in A is of the form
eAf for some pair (e, f) of projections in A. In general, this representation
is no longer unique but sets up an order isomorphism between the complete
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lattice C(P(A)) of centrally equivalent pairs of projections in A4 and the com-
plete lattice of weak* closed inner ideals in A, as well as an anti-order iso-
morphism between C(P(A)) and the complete lattice of norm closed A4-bi-
invariant subspaces of A,.

In Section 2 various preliminary results are given whilst Section 3 is de-
voted to the proof of the main theorem. In Section 4 some of the conse-
quences of the main result are considered. The methods of proof are very
much Jordan-theoretic in nature. Indeed, some of them apply equally well
when the W*-algebra A is replaced by a JBW*-triple (for the theory, refer
to [2; 4; 6; 11; 16]).

The authors are grateful for the support that their research has received
from the United Kingdom Science and Engineering Research Council.

2. Preliminaries

A partially ordered set P is said to be a lattice if, for each pair (e, f) of ele-
ments of P, the supremum eV f and the infimum e A f exist. The partially or-
dered set P is said to be a complete lattice if, for any subset M of P, the su-
premum V M and the infimum A M exist. A complete lattice has a greatest
element and a least element denoted by 1 and 0, respectively. A complete
lattice — together with an anti-order morphism e — e’ on P such that, for all
elements e and f of P, eve'=1, e"=e, and f=eV(fAe’) if e < f—is said
to be orthomodular. A pair (e, f) of elements of P is said to be orthogonal,
denoted by e L f, if e< f’. An element z of P is said to be central if, for all
elements e in P, z=(zAe)V(zAe’). The set Z(P) of central elements of the
complete orthomodular lattice P contains O and 1, and if z lies in Z(P) then
so also does z’. With the restricted order and orthocomplementation z — z’,
Z(P) forms a subcomplete complete Boolean orthomodular sublattice of P
which is said to be the centre of P. The central support z(e) of an element e
of P is defined by

z(e)=N{zeZ(P):e=z}.
Observe that for each pair (e, f) of elements of P,

2.1) z(enz(f))=z(e)Az(f)
and, for each family (e;) of elements of P,
(2.2) z(Vej)=Vz(e).

When endowed with the product ordering, the Cartesian product P X P of P
with itself is a complete lattice. A pair (e, f) of elements of the complete
orthomodular lattice P is said to be centrally equivalent if the central sup-
ports z(e) and z(f) coincide. Let C(P) be the collection of centrally equiva-
lent pairs of elements of P. It follows from (2.2) that, when endowed with
the ordering inherited from P X P, C(P) is a complete lattice with least ele-
ment (0,0) and greatest element (1,1), and the supremum of a subset of
C(P) coincides with its supremum when regarded as a subset of the complete
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lattice P X P. In general that is not the case for the infimum, though for any
element (e, f) of C(P),

2.3)  (6,/)=@z(f),[)Ncwp (e z(e))=(z(f),f) Apxrle z(e)).

For details the reader is referred to [14].

Let A be a W*-algebra. A self-adjoint idempotent e in A is said to be a
projection in A. For elements e and f in the set P(A) of projections in A,
write e < f if ef =e and e’ =1—e. Then, with respect to the order relation <
and anti-order morphism e — e’, P(A) forms a complete orthomodular lat-
tice. Moreover, the centre Z(P(A4)) of P(A) consists of the set of projections
in the centre Z(A) of A.

A subspace J of the W*-algebra A is said to be a left ideal provided that
AJ < J, and is said to be a right ideal if JA =J. A subspace J is said to be
a two-sided ideal if it is both a left ideal and a right ideal. For each weak*
closed left ideal J in A there exists a unique projection e in A4 such that J co-
incides with Ae. The ideal J is two-sided if and only if e is central.

For each element a in A the unique projection e(a), such that Ae(e¢)’ =
{be A: ba=0}, is said to be the left support of a. It is the least element of
P(A) with the property that e(a)a =a. The right support f(a) of A is simi-
larly defined. Clearly e(a) = f(a*), and therefore the left and right supports
of a self-adjoint element a of A coincide. This element s(a) is the unit in the
sub-W*-algebra of 4 generated by a, and is said to be the support projection
of a.

An element u in A is said to be a partial isometry if uu*u=u or, equiv-
a lently, if either uu* or u*u is a projection. Clearly, every nonzero partial
isometry is of norm one. A partial isometry u is said to be a unitary if uu*
and u*u are equal to the unit 1in 4. The collection of partial isometriesin A
is denoted by U(A4). The subset of U(A) consisting of unitaries in 4 forms a
group which is denoted by G(A). For each partial isometry u in 4, e(u) =
uu* and f(u) =u*u.

For elements p and g in P(A), write p <q if there exists an element « in
U(A) such that e(u) =q and f(u) = p. Notice that the relation < is transi-
tive. For each element a of A there exists a unique partial isometry r(a) in 4
such that @ =r(a)|a| and f(r(a)) =s(|a|), where |a|=(a*a)!/2. Moreover,

(2.4) r(a*)=r(a), fla)=f(r(a)), e(a)=e(r(a))
and
(2.5) a=r(a)a*r(a).

The partial isometry r(a) is said to be the support of a. For details of these
and related results, the reader is referred to Pedersen [12] and Sakai [15].
3. Inner Ideals

This section is devoted to the statement and proof of the main theorem. Let
A be a W*-algebra. The Jordan triple product {a ¢ b} of elements a, ¢, and
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b of A is defined by

{acb}=1(ac*b+bc*a).
A subspace J of A is said to be an inner ideal in A if {JAJ}<J. Observe
that right and left ideals of A are inner ideals. Moreover, for each pair (a, b)
of elements of A, aAb is an inner ideal. Since multiplication in A4 is sep-
arately weak* continuous, the weak* closure of an inner ideal is an inner
ideal. Because the involution in A4 is a weak* continuous isometry on 4, J*
is a weak* closed inner ideal for every weak* closed inner ideal J in A. Since
the intersection of a family of weak* closed inner ideals is a weak* closed in-
ner ideal, when ordered by set inclusion the collection 7(A) of weak* closed
inner ideals forms a complete lattice. Notice that, for each pair (e, f) of pro-
jections in A, the inner ideal eAf is weak* closed.

LEMMA 3.1. Let u and v be partial isometries in the W*-algebra A. Then
the inner ideal uAv coincides with e(u)Af(v).

Proof. Since u and v are elements of U(A), for each element @ in A,
uav = uu*uavv*v =e(u)uavf(v),

which is contained in e(u#)A f(v). Conversely, if a is an element of e(u)Af(v)
then
a=e(u)af(v)=uu*av*v,

which is contained in #Av. (|

LEMMA 3.2. Let u be a partial isometry in the W*-algebra A. For elements
a and b in the weak* closed inner ideal uAu of A, define

a-b=au*b, at=ua*u.
Then, with respect to the multiplication (a, b) — a -b and the involution

a—at, uAu is a W*-algebra with unit u.

Proof. Since uAu coincides with e(u)Af(u), it is clear that uAu is closed
under the two operations and that it forms a weak* closed *-algebra with
unit . Since

la*|=[ua*u| < Julla*|lu]=|a*| = |a]

and the mapping a — a* is an involution, a — a* is also an isometry. Clearly,
for all elements ¢ and b in uAu,

la-b|=lau*d| < |a|]|u*]|b]=|a]|b].
Finally, observe that
[(a*-a)|?=|(a*-a)*(a*t-a)| =|(ua*uu*a)*(ua*uu*a)|
= |(ua*a)*(ua*a)| = |a*au*ua*a|
= [(a*a)*(a*a)| =|a|*
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for each element a in uAu; thus uAu is a C*-algebra which, being weak*
closed, is a dual space and hence a W*-algebra. ]

LEMMA 3.3. Let a be an element of the W*-algebra A with support r(a).
Then, in the W*-algebra r(a)Ar(a), a is self-adjoint with support projec-
tion r(a).

Proof. It follows from (2.5) that a lies in r(a)Ar(a) and that a is self-adjoint.
Let p be a projection in the W*-algebra r(a)Ar(a) such that pr(a)*a=a.
Because

pr(ay’)p=p and r(a)p*r(a)=p,
it follows that

pp*p=pr(a)pr(a)’p=pr(a)’p=p

and hence that p is an element of U(A). Moreover, p|a|=a.
Since r(a) is the unit in the W*-algebra r(a)Ar(a),

pf(a)=pf(r(a))=pr(a)r(a)=p.
Hence

p*p=f(r(a))=s(lal]).
On the other hand,

ap*p =ar(a)*pr(a)’p=ar(a)’p=a,
and therefore
s(la])=p*p.

It follows from the polar decomposition theorem that p and r(a) coincide.

THEOREM 3.4. Let A be a W*-algebra and let a and b be elements of A
with supportsr(a) and r(b), respectively. Then, the weak* closed inner ideal
r(a)Ar(b) in A coincides with the weak* closure aAbY" of the inner ideal
aAbin A.

Proof. By (2.9),
aAb=r(a)a*r(a)Ar(b)b*r(b) S r(a)Ar(b),

and hence aAb"" is contained in r(a@)Ar(b). Conversely, by spectral theory
there exists a sequence (¢,,;) of odd real polynomials such that (g,,,1(|@|))
converges in the weak* topology to the support projection s(|a|) of |a|. Then,
using Lemma 3.3, it follows that the sequence (g,,.;(a@)) converges in the
weak* topology to r(a). Since g,,..1(a) is contained in aAa+Ra for each
nonnegative integer n, it follows that, for nonnegative integers n and m,

Q21 +1(a)AG2p+1(D) SaAb

and r(a)Ar(b) is contained in a4b"" as required. O
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COROLLARY 3.5. Let J be a weak* closed inner ideal in the W*-algebra A.
Then, for each element a in J, the weak* closed inner ideal r(a)Ar(a) in A
is contained in J.

Proof. This is immediate from Theorem 3.4. d

LEMMA 3.6. Let J be a weak* closed inner ideal in the W*-algebra A and
let z be a central projection in A. Then the weak* closed inner ideal JNzA
coincides with zJ, and J is the direct sum of the weak* closed inner ideals
JNzA and JNZ'A.

Proof. By Corollary 3.5, the support r(a) of each element ¢ in J is con-
tained in J. Therefore,

gr(ay={r(a)zr(a)r(a)}cJ and za={zr(a)azr(a)}<J.

It follows that zJ is contained in JNzA; the remaining parts of the proof
are straightforward. O

LEMMA 3.7. Let A be a W*-algebra. Then:

(1) fora pair (e, f) of projections in A, the weak* closed inner ideal e Af
is zero if and only if z(e) L z(f);
(ii) the central support z(e) of a projection e in A is the supremum of the
set S, of projections fin A such that f <e; and
(iii) if e(a) and f(a) are the left and right supports of an element a in A,
then the pair (e(a), f(a)) is centrally equivalent.

Proof. The proof of (i) is given in [15, 1.10.7]. Suppose that « is an element
of the group G(A) of unitary elements of 4 and that f lies in S,. Then there
exists an element v in U(A) such that v*v = f and vv* <e. Furthermore, vu
lies in U(A) and

(vu)*(vu)=u*fu, (vu)(vu)*=vv*=<e.

Hence u*fu is contained in S,.
Let p be the supremum of the elements of S,. By [12, 2.6.3], the central
support z(f) of each element f in S, is majorized by p. Therefore

p=VS.=Vi{z(f): feS.}=p,

and p is a central projection. It follows that, for each element fin S,, z(f) <
Z(e) and therefore p <z(e). However, because e lies in S,, z(e) <p. This
completes the proof of (ii). Notice that (iii) follows from (ii) using (2.4).

The proof of the following lemma is straightforward.

LEMMA 3.8. Let e, f, g, and h be projections in the W*-algebra A withe<g
and f<h. Then the weak* closed inner ideal eAf is contained in gAh.
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LEMMA 3.9. Let (e, f) be a pair of projections in the W*-algebra A and let
a be an element of A. Then the following are equivalent:

(i) aeeAf;
(ii) r(a)eeAf;
(iii) e(a)<e and f(a)<f.

Proof. If (i) holds then r(a) lies in eAf by Corollary 3.5. If (ii) holds then
er(a)=r(a) and r(a)f=r(a), which implies that

ee(a)=er(a)r(a)*=r(a)r(a)*=e(a),

fla)f=r(a)'r(a)f=r(a)r(a)=f(a),

and e(a) <e and f(a) < f as required. If (iii) holds then, by Lemma 3.8,
e(a)Af(a) is contained in eAf. Since a is contained in e(a)Af(a), the proof
is complete. O

For each pair (e, f) of projections in A define the pair (e, f)~ by

(3.1 (e, f) =Vi(e(a), f(a)):aceAf},
the supremum being taken in the complete lattice P(A) x P(A).

THEOREM 3.10. For each element (e, ) of the complete lattice P(A) X P(A)
of pairs of projections in the W*-algebra A, let J(e, f) denote the weck*
closed inner ideal eAf and let (e, f)~ be the element of P(A) X P(A) defined
by (3.1). Then, for elements (e, f) and (g, h) of P(A)XP(A):

(1) (e,f) =(ef);
(i) J(e, f) =J(e, f);
(iii) if J(e, f) S J(g, h) then (e, f)"=(g, h)7;
(iv) if (e, f)=(g,h) then (e, f) = (g, h)";
(v) (e, f) is a centrally equivalent pair of projections;
(vi) if (e, f) is a centrally equivalent pair of projections then (e, f)=
(e,f)7; and
(vi)) (e, f)"=(e,f)".

Proof. (i1)-(iv) The proofs are immediate consequences of (3.1) and Lem-
mas 3.8 and 3.9.

(v) Observe that, for each element a in A, (e(a), f(a)) is centrally equiva-
lent by Lemma 3.7(iii). Since the suprema of any subset of C(P(A4)) ob-
tained in the complete lattices C(P(A4)) and P(A) X P(A) (respectively) co-
incide, it follows that (e, f)~ lies in C(P(A)).

(vi) Let e, and f; be elements of P(A) such that (e, f;) is equal to (e, /).
Since by (i) (e;, f1) < (e, f) and by (ii) e; A f; coincides with eAf, it follows
that

e A(f—f1) D (e—e)Af D (e—e)A(Sf—f1)=1{0}.
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Therefore, by Lemma 3.7(i),

z(e))Lz(f—/f1), z(e—e)Lz(f)), and z(e—e)Lz(f—/f1).
Thus

z(e)=z(f)=z(L+ (=S =z(S)VZ(f—f1) Lz(e—ey).

Therefore e L e —e;, which shows that e and e; coincide. Similarly, so also
do f and f;.
(vii) This is now immediate from (v) and (vi). U

COROLLARY 3.11. For each pair (e, f) of projections in the W*-algebra
A, the pair (e, f)” defined by (3.1) is the greatest element of the complete
lattice C(P(A)) of centrally equivalent pairs of projections in A such that

(e, f) "= (e, f).
Proof. This is immediate from Theorem 3.10. O

LEMMA 3.12. Let (e, f) be a centrally equivalent pair of projections in the
W*-algebra A. Then the supremum of a maximal orthogonal subset M of
the set { f(a):aeeAf} coincides with f.

Proof. Let g be the supremum of the set M. Then, by Lemma 3.9, g < f.
For each element a in eA(f—g), again using Lemma 3.9, f(a)<f—g and
f(a)1 g. Since by Lemma 3.8 a also lies in eAf, by maximality, f(a) and
therefore a is zero. It follows from Lemma 3.7(i) that z(f) =z(e) Lz(f—g)
and hence that f and g coincide. ]

LEMMA 3.13. Let J be a weak * closed inner ideal in the W*-algebra A. Then
J contains a maximal weak* closed inner ideal of the form eAf for e and f
projections in A.

Proof. Let T be the nonempty set of weak* closed inner ideals in 4 con-
tained in J and of the form eA f for some pair (e, f) of projections in A par-
tially ordered by set inclusion. Let C be a chain in 7. Then, for each element 7/
in C, by Theorem 3.10, there exists a unique centrally equivalent pair (e;, f7)
such that 7 coincides with e; 4 f; and such that (e;);cc and (f7);ec are in-
creasing nets in P(A). Let g and A (respectively) be their suprema. Then the
union K of the elements of C is an inner ideal contained in J and also con-
tained in gAh. Let a be an element of gA4 and let I; and 7, be elements of C
such that I, € 7,. Then

eperafr, fi,=erafr,

and ey, afy, lies in K. Because multiplication by elements of A is separately
weak* continuous, and since the increasing nets (e;);ec and (f7);ec con-
verge in the weak* topology to g and A (respectively), it follows that gAh
is contained in the weak* closure K*" of K. Since K is contained in gA# it
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follows that gA44 and K*" coincide. Clearly gA# is the least upper bound in
T of the chain C, and the result follows. O

The proof of the next lemma is straightforward.

LEMMA 3.14. Let e and f be projections in the W*-algebra A and let J be an
inner ideal in A. Then J is contained in the weak* closed inner ideal eAf if
and only if e’J and Jf' are zero.

The final lemma is a technical result needed in the proof of the main theorem.

LEMMA 3.15. Let J be a weak* closed inner ideal in the W*-algebra A and
let (e, f) be a centrally equivalent pair of projections in A such that the
weak* closed inner ideal e Af is contained in J. Then Jf'Af is a subset of J
and, for all elements c in J such that cf’ lies in J, eAcf’ is a subset of J.

Proof. By Lemma 3.12 there exists a nonempty subset M of eAf such that,
for distinct elements a; and a, of M, f(a,) is orthogonal to f(a,) and the su-
premum of the set { f(a): ae M} is f. For each finite subset L of M, let

Ji= 2 fla).
ael
Then, if M/ denotes the set of nonempty finite subsets of M, (f1)1 cps isan
increasing net in P(A) converging to f in the weak* topology. By Lemma
3.1 and Lemma 3.9, for each element b in A and each element a in M,

bf(a)e Af(a)=Ar(a)=Aer(a)f S AeAf.
Therefore, for each element ¢ in J,
cf'bf(a)ecf'AeAfS{cAf’ eAf},

since f is orthogonal to f”. Since J is an inner ideal, it follows that ¢f’bf(a)
is contained in J and, by linearity, the same is true of ¢f’bf; for all elements
L in M/, Since J is weak* closed it follows that cf’bf lies in J as required.

Repeating the argument of Lemma 3.12 shows that there is a nonempty
subset N of eA f such that, for distinct elements a; and a, of N, e(a,) is or-
thogonal to e(a,) and the supremum of the set {e(a): @ e N} is e. Moreover,
denoting by e; the sum of the elements e(a) for @ a member of a finite sub-
set L of N, it follows that (e;); <~/ is an increasing net converging to e in
the weak* topology. By Lemma 3.1 and Lemma 3.9, for each element b in 4
and @ in N, e(a)b lies in eAfA. If c is an element of J such that ¢f’ lies in J,
then

e(a)bef'eeAfAf ' cfeAfAfcf’].

Because J is an inner ideal, e(a)bcf’ is contained in J and, as above, it fol-
lows that ebcf”’ lies in J, as required. O

It is now possible to prove the main result of the paper.
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THEOREM 3.16. Let A be a W*-algebra and let J be a weak* closed inner
ideal in A. Then there exist projections e and f in A such that J coincides
with eAf.

Proof. Let T be as in Lemma 3.13 and let eA f be a maximal element of 7.
By Theorem 3.10, (e, f) may be chosen to be an element of C(P(A4)). Let z
be the common central support of e and f and let @ be an element of z'J.
Since e(a) and f(a) are orthogonal to z it follows that z(e(a)) and z(f(a))
are orthogonal to z. Furthermore, by Lemmas 3.1 and 3.6 and by Corollary
3.5, e(a)Af(a) is a subset of J. Therefore, by Lemma 3.7(i),

eAf S (et+e(a)A(f+f(a))=eAfDe(a)Af(a)

and «a is therefore zero. Hence z'J is zero and, since eAf =zeAf SzJ S zA,
Lemma 3.6 shows that e4Af S JczA.

Without loss of generality, assume that z is the unit 1in A, let ¢ be an ele-
ment of J, and let b denote the element ¢f’. By Lemma 3.3 and Theorem 3.4
there exists a net (b;) in A such that the net (bb;b) converges to b in the
weak* topology. Then, by Lemma 3.15,

bbjbecf'Acf'Scf'Ac—cf'Acf ScAc+cf'AfSJ

for all j. It follows that b lies in J. The second part of Lemma 3.15 shows
that eAb is a subset of J. By Theorem 3.4, eAf(b) is the weak* closure of
eAb and hence eA f(b) is contained in J. Since f(b) is orthogonal to f it fol-
lows that

eAfceA(f+f(b))=eAf@eAf(b)<J.

By maximality, e4 f(b) is zero and, by Lemma 3.7(i), z(f(b)) and therefore
b itself is also zero. Hence Jf" is zero. Notice that J* is a weak* closed inner
ideal and, since (e’J)* coincides with J*e’, a similar argument shows that e’J
is also zero. The assertion now follows from Lemma 3.13. U

4. The Complete Lattice of Weak* Closed Inner Ideals

Recall that the set of weak* closed inner ideals in the W*-algebra A4, when
ordered by set inclusion, forms a complete lattice 7(A4). The following result
is an immediate consequence of Theorem 3.10 and Theorem 3.16.

THEOREM 4.1. Let A be a W*-algebra and, for each element (e, f) of the
complete lattice C(P(A)) of centrally equivalent pairs of projections in A,
let J(e, f) denote the weak* closed inner ideal eAf. Then the mapping J
is an order isomorphism from C(P(A)) onto the complete lattice I(A) of
weak* closed inner ideals in A.

THEOREM 4.2. Let (e, f) be a centrally equivalent pair of projections in A
and let eAf be the corresponding weak* closed inner ideal in A. Then eAf
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is a left ideal in A if and only if e is central, and eAf is a two-sided ideal if
and only if both e and f are central.

Proof. Let e be central and let @ be an element of A. Then aeAf =eaAfc<
eAf and eAf is a left ideal. Conversely, if eAf is a left ideal then there
exists a projection g in A such that eA f coincides with Ag. By Theorem 3.10,
J=<g. Then, by Lemmas 3.7(ii), 3.9, and Theorem 3.10,

z(e)=z(f)=<z(g)=Vle(u):ueU(A), f(u)=<g]
=Vie(e):aeA, f(a)=g]
=Vlie(a):acAgl=e,

and e is central. The remaining assertions are similarly proved. 0l

COROLLARY 4.3. Let A be a W*-algebra and let (e, f) be a centrally equiv-
alent pair of projections in A. Then the weak* closed inner ideal e Af is the
intersection of the weak* closed left ideal z( f)Af and the weak* closed right
ideal eAz(e).

Proof. This follows from (2.3), Theorem 4.1, and Theorem 4.2. ]

COROLLARY 4.4. The following conditions on a W*-algebra A are equiv-
alent:

(1) every weak* closed inner ideal in A is a left ideal;
(ii) every weak* closed inner ideal in A is a two-sided ideal,;
(iii) A is commutative.

Proof. The equivalence of (i) and (ii) and the implication that (iii) implies
(ii) are clear. If (ii) holds and e is a projection in A, then eAe is a weak*
closed inner ideal in A and (e, e) is centrally equivalent. Therefore, by The-
orem 4.2, e is central. It follows that A coincides with its centre and is there-
fore commutative. ]

THEOREM 4.5. Let A be a o-finite Type III W*-algebra and let J be a weak *
closed inner ideal in A. Then there exists a purtial isometry u in A such that
J coincides with uAu.

Proof. This follows immediately from Theorem 4.1, Lemma 3.1, and [15,
2.2.14]. ]

Let A be a W*-algebra with predual A, regarded as being canonically em-
bedded in the dual A* of 4. For each element ¢ in A4 there exists a mapping
W, from A X A to A defined, for elements @ and b of A4, by W_.ia, b) ={a cb]}.

For each element x in A,, the sesquilinear functional x o W, on A4 is jointly
strongly continuous on bounded subsets A X A. Let B(A) be the complex
vector space of sesquilinear functionals on 4 which are strongly continuous
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on bounded subsets of A X A. A linear subspace L of A, is said to be A-bi-
invariant [1] if, for all elements x in L and all elements ¢ in 4, xo W, lies in
the annihilator (L9 x L9), of the product L?x L9 of the annihilator of L in A
with itself. Clearly, the zero set and A, are A-bi-invariant, and the set A(A4)
of norm-closed A-bi-invariant subspaces of A, (when ordered by set inclu-
sion) forms a complete lattice, the infimum of a family of elements of A(A4)
coinciding with its intersection.

Let x be an element of A4, and let ¢ and b be elements of A. The linear
functional axb on A is defined, for each element ¢ in 4, by axb(c) =x(acbh).
Clearly axb is an element of A, and, for elements a, b, ¢, and d of A4,

c(axb)d =(ac)x(db).

THEOREM 4.6. Let A be a W*-algebra with predual A,. For each pair (e, f)
of centrally equivalent projections in A, the subset L(e, f) of A defined by

L(e,f)=eAf@eAf @®e'Af’

is a norm closed A-bi-invariant subspace of A,. Moreover, the mapping L is
an anti-order isomorphism from the complete lattice C(P(A)) of centrally
equivalent pairs of projections in A onto the complete lattice A(A) of norm
closed A-bi-invariant subspaces of A.,.

Proof. It follows immediately from the properties of annihilators that the
mapping J — J, is an anti-order isomorphism from the complete lattice 7(A)
onto the complete lattice A(A4). Because

A=eAf@e’Af@PeAf @®e’Af’

for each centrally equivalent pair (e, f) of projections in A, it is clear that
(eA[f), coincides with L(e, f). Ui
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