Order and Lower Order of
Composite Meromorphic Functions

WALTER BERGWEILER

1. Introduction

Let fand g be entire functions and suppose that g is transcendental. Denote
the order of f by p(f) and the lower order by A(f). Podlya [11] proved the
following.

THEOREM A. If p(fog) <, then p(f)=0.

Gross [6, p. 86] pointed out that one can use Pdlya’s method also to prove
the following.

THEOREM B. If N\(feg) <o, then \(f)=0.

Schonhage [12] considered the /-order p;(f) (see also [9, p. 96]) which is de-
fined for a nonnegative integer / by

. 10g1+1 T(r:f)
d =
(1.1) pi(f) hinﬂsgp log 7
where log,, ; x =log(log,; x) and log, x = x, and where T(r, f) is the Nevan-
linna characteristic of f. The case / =0 is the classical one; that is, po(f)=
p(f). Using Pdlya’s ideas, Schonhage [12, Satz 9] proved the following gen-
eralization of Theorem A.

THEOREM C. If p;(feg) < oo, then p;(f)=0.

One can also prove an analogous result for the lower /-order \,;(f) which is
defined by taking the limes inferior in (1.1).

Suppose now that f is meromorphic while g is still entire and transcen-
dental. Edrei and Fuchs [5] proved that Theorem A still holds under this
more general hypothesis. It is the main purpose of this paper to show that
Theorem B also holds for meromorphic f, while Theorem C does not.

We note that the method used by Edrei and Fuchs does not carry over to
the case of the lower order. We use a different method which also yields a
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new proof of the theorem of Edrei and Fuchs. While their proof uses the
elementary theory of central index and maximum term, our proof is based
on Nevanlinna theory. We assume familiarity with the basic definitions and
results of the theory (e.g., [7], [9], [10]).

2. Statement of Main Results

THEOREM 1. Let f be meromorphic and let g be entire and transcendental.
If M f-g) <o, then N(f)=0.

THEOREM 2. Let a(r) and 3(r) be two real-valued nondecreasing functions,
defined for r >0, which tend to infinity as r — co.

(@) There exist a meromorphic function f and an entire transcendental
Junction g such that T(r, fog) <rf") holds for all sufficiently large r while
T(r, f)=a(r) holds for arbitrarily large values of r.

(b) There exist a meromorphic function f and an entire transcendental
SJunction g such that T(r, fog) <rf") holds for arbitrarily large values of r
while T(r, f)= a(r) holds for all sufficiently large r.

COROLLARY. (a) There exist a meromorphic function f and an entire tran-
scendental function g such that p;(f-g)=0 and p;(f)= o for all | = 1.

(b) There exist a meromorphic function f and an entire transcendental
Junction g such that \;(feg)=0 and \/(f)=oco for all | = 1.

3. Proof of Theorem 1

The key step in the proof of Theorem 1 is the following lemma. The proof
will use an idea due to Clunie [3].

LEMMA 1. Let g be entire and transcendental and let K, N, p > 0. Then
there exist ro, Ry> 0 such that if r =ry, T(r, g) <r*, and Ry<|w|=<r¥, then
n(r,w, g)=K.

Proof. Suppose that the lemma is false. Then there exist sequences {r;} and
{wy] satisfying ry — oo and |wy|— oo as k — oo such that T(ry, g) <rf, |wi] <
r, and n(ry, o, 8) <K.

For sufficiently large £ we have n(1, wg, g) =0 and therefore N(ry, w;, g) <
K log ry. This implies that

N(fﬁ,oo, &
2 88— Wy

’

)sN(%,wk,g) =<K logry.

Using Hayman’s estimate of the logarithmic derivative [7, Lemma 2.3] for
r=ry/2, R=ry, and f(z) = g(z2) — w;, wWe obtain
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’

m<ﬁ‘-, 0o, £ ) <416g T(rk,g—wk)+415g 15g
2 g—wy

8(0) —wy

2 2
+518g r, +610g — +16g — +14
Tk I'x

<410g T(ry, g)+410g laglwkl +610g ry
<(4u+7)10g ry
for sufficiently large k. It follows that

T(-’i, £ )s(4p+1<+7)16grk.
2 g—wi

If we assume for simplicity that g’(0) # 0, then Nevanlinna’s first fundamen-
tal theorem [7, equation (1.10)] yields
g'(0)

ry 8—wg re g
T a0 =T > —log| ————
(2 g’ ) (2 g—wk> 8(0) —wi

< (4p+K +7) log ri,—log|g’(0)| +10g|g(0)|
+16g| ey |+1og 2
<@p+K+N+8)logr,

(3.1)

for sufficiently large k. In particular, we have

N(% o, g;f"") <(4p+K+N+8)logry,

and therefore

Iy I'k 8—wy Ty
Nl —,0,g’")=N| —, =, N{ —, g,
(2 Og) (2 P )+ (2 “”‘g)

<(4u+2K+N+8)logr,.

This implies that g’ has only finitely many zeros. Since T(ry, g) < r} we have
A(g) < p < oo, so that g'(z) = P(z) exp Q(z), where P and Q are polyno-
mials. Let n be the degree of Q. Then there exist >0 and an interval
in [0, 27] such that |g’(re?)| <exp(—7r"), if 6 € I and if r is large enough.
Hence |g(re’®)| = O(1) as r — oo uniformly in 6 € I. It follows that

r —
m(_ZE’ o, £ g,wk) =crf
for some ¢ > 0, if k& is sufficiently large. This contradicts (3.1) and the lemma
is proved. O

Proof of Theorem 1. Let u>2X(f°g). Then there exist arbitrarily large r
such that

(3.2 T(r?, fog)<ire
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For large values of r we have (cf. [9, p. 147])
T(r,g)=<2T(2r, fog)<2T(r?, fog),
so that (3.2) implies that 7'(r, g) <r*.
Now let b e C and let a;, a,, ... be the b-points of f. Then

n(r,b, fog)= Y  n(ra;,g)
,ajISM(rvg)

and Lemma 1 implies (for X =1) that
n(rsb’f°g)2 2 n(r’ajag)

R0<|aj|er
Zn(rNs b,f)'_n(RO, bsf)°
Setting (cf. [4, p. 341])
_ 1 o i
s(r,f)= o SO n(r,e’, f)do,

we find

s(r, fog) zs(rP, f)—s(Ry, f).
By Cartan’s theorem we have

r2 s(, fo8)
0 t

T(r?, fog)=s dit+0(1)

25’2515’-?51 dt +0(1)
=s(r, fog)logr+0(1)
and

T(rN, fy<s@rN, f)Nlogr+0(1).
Altogether we have

T(rN, f)=NT(r? fog)+O(logr)
3.3) N
= —2—rﬂ+ O(log r)<Nr#,

This holds for arbitrarily large values of r. It follows that A\(f) < u/N and
this proves the theorem, since N can be chosen arbitrarily large. O

REMARK. If p(feg) <o and if p>2p(f-g), then (3.2) and hence (3.3) hold
for all large r. It follows that p(f) =0. Hence our method also yields a new
proof of the theorem of Edrei and Fuchs.

4. A Theorem of Valiron and an Example of Hayman

The key step in the proof of Pdlya’s theorem for meromorphic f by Edrei
and Fuchs was the following result due to Valiron ([14], [15]).
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THEOREM D. Let g be an entire transcendental function satisfying p(g) <
oo, Let £>0. For |w|>|g(0)| define t =t(|w|) by |w|=M(t,g). Then the
equation g(z) =w has a solution in |z| < t1*§, provided |w|> K (g, £).

Hayman [8] has given examples of functions which do not satisfy the con-
clusion of Theorem D. Of course, these functions have infinite order. We
construct similar examples which are, however, subject to certain additional
growth restrictions.

THEOREM 3. Let a(r) and B(r) be as in Theorem 2. Then there exist real
sequences {R,} and {T,}, a complex sequence {v,}, and an entire transcen-
dental function g with the following properties:

4.1) lim |w,|= lim R,= lim 7, = o,
n—» o n— o n— oo
4.2) g(z)#w, Iif |z|<R,,
4.3) R,z a(|lwy]) and R,z |w,|?,
(4.4) log M(T,, g) <B(T,)log T,,,
4.5) log M(r, g) <r8")  for all sufficiently large r.

Proof. We will define the sequences {R,}, {T,}, {w,} and a sequence {p,} of
polynomials by recursion. The function g will be defined by

(4.6) g(z)=p1(z)+ X (Pr+1(z) —Pn(2)),

n=1

where the series will converge uniformly on compact sets.
For abbreviation let y(r) =r8(-1, Choose w; € C and R, such that

(4.7) RIZ 1, RIZa(|w1[), RIZIOJIIZ, ’Y(Rl) >1,
and let

N] zn
4.8) pPi)=w1+ Y —,

n=0 N:

where N; =1 is chosen such that p,(z) # v, for |z|<R;. It follows that

p= min |p;(z)—w;|>0.
lz| =Ry
Finally, choose 7} > R, such that 4y(7}) 1< u;, v(T1) + /3 < T1v(T)), and
M(r,p)) <v(r) for r=T,.
Assume now that n =2 and that w;, Ry, T}, and p, have been specified for
k=1,...,n—1. Choose w, € C such that

(4.9) |@n| =v(Tp-1)’
and R,, so large that
(4.10) R,zn, R,zallw]), R,=|w,%, R,>T,_,,
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and
4.11) Pn = %#n—l,
where p; = 1 exp(—v(Ry)) for k =2. Now put
Dn-1(2)
Sa(z)=—""="2 and - g,(2) = wn(1—-exp(5,(2))).
n
Let
1 .
N.= = min |exp(S,(z))|,
2 |z|=R,
and define
I
L |
Pn(R)=—w,| X —(Sa(z))¥),
k=1 k!
where /, is chosen so that
s 1
4.12) |pn(z)_Qn(Z)|= Wy X F(Sn(z))k =Nn
k=l,+1 K'
for |z| < R,,. Finally, choose T,,> R,, such that
(4.13) 4v(T,) ' < pys
1-n
(4.14) Y(T,)+ m =T,v(T,),
and
(4.15) M(r, pp) =~(r)
forr=T,.

Now let {R,}, {T,}, {w,}, and {p,} be sequences as defined above and
let p,, Spy @n, and 7, be the corresponding auxiliary quantities. Then (4.9)-
(4.15) hold for all n=2 and (4.13)-(4.15) also hold for n=1. Moreover, we
have 7,,> R, =n for all n. This and (4.9) imply that (4.1) holds. Further-
more, (4.3) follows from (4.7) and (4.10).

It remains to show that (4.6) defines an entire transcendental function g
which satisfies (4.2), (4.4), and (4.5). It follows from (4.9) and (4.15) that

< M(T,_y, Pn-1) - ¥(T,-1) _
|°’n| I""nl

for n=2 and |z| < T,,_,. This, together with (4.9) and (4.13), implies that

Pn-1(2)

n

'Y(Tn—l)—z

ISn(Z)I =

In 1
Wy k§2 Tl (Sn (z))*

Ipn(z)_pn—l(z)l =

{
noo]
S'Y(Tn—l)3 E F'Y(Tn—l)—zk
k=2 .
- 1 Brn—1
<v(T,_™! — =y(T,_) 1= .
’Y( 1) Ky k! ’Y( n 1) 4

Since p; < p,4" 7 for j > n by (4.11), we have
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o«

Y (@ -pa@)|= 3 B

= = 4
(4.16) k=n+1 k n+°l° 1 41_—”
<pn % A" =zm=—m

k=n+1

if n=1and |z|<T,. It follows that the series (4.6) converges uniformly on
every compact set, and hence it defines an entire function g.

To prove (4.2), we note first that |w,|=v(T,_1)?>>v(R;)?>1. This, to-
gether with (4.12), implies that for n>2 and |z|<R,,

| Pn(2) — 03| 2 |@(2) — ©0n| — | Pn(2) — @ (2)]
2 |0y €XP(Sp(2))| =10 = 27 — 1 = 15
Using R,=7,,_, and (4.15) we obtain
Mn= 3 €Xp(—M (R, S,)) = 5 eXp(—M(Ryy, Py 1))
> 3 exp(—Y(Rp)) = pn-
Altogether we have
(4.17) | Pn(2) — | =

for |z] =R, and n = 2. By definition of u;, however, (4.17) holds also for
n=1. It follows from (4.16) and (4.17) that, for n>1and |z|<R,<T,,

Ig(z)'—wnlzlpn(z)_wnl_ . )y l(pk(z)_pk—l(z))
=n+

ZM_1M=3M>Q
3 3

This proves (4.2).
Furthermore, (4.4) follows since, for |z|=T,,

Y (Pr(z)—pr-1(2))
k=n+1

1—n

3

|g(z)|=|pa(z)|+

<y(Ty) + w < T, y(T,) = T

by (4.14), (4.15), and (4.16).
To prove (4.5), let T,,_;<|z|=r<T,. Then

1
Ipn(z)lslwnl )) FlSn(Z)lk
k=1 -

<|wy| exp|S,(z)|
<Y(T;-1)* exp| Py (2)|
<vy(r)3expy(r)

by (4.9) and (4.15). This, together with (4.16), implies that
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|g(z)| =|pn(z)]+ k_ZH(pk(z)—pk_l(z))

<~vy(r)dexpy(r)+ % .

It follows that
M(r, g) <exp2y(r)<exp rf

for sufficiently large r, which is (4.5).

It remains to show that g is transcendental. It follows from (4.6) and (4.16)
that |g(z) —pi(z)|<p/3 if |z|<T;. Since 71> R, =1, Cauchy’s inequality
yields |g’(0) — p{(0)| < p,/3. Since p{(0) =1and g, <|p;(0) —w;| =1, we have
|g’(0)—1|=<1/3 and it follows that g is not constant.

Suppose that g is a polynomial of degree m —say, g(z) =a,,2"+ --- +ay. If

a
o] < 12l gy
and if n is sufficiently large, then the equation g(z) =w has a solution in
|z| =R,. It follows that

||
|, | > TmR,',"
This is a contradiction for large n, since |w,|><R, and m=1. Hence g is
transcendental and the proof is complete. d

REMARKS. Hayman [8] essentially constructed entire functions g which sat-
isfy (4.1), (4.2), and (4.3). It is not difficult to show that this implies that g
does not satisfy the conclusion of Theorem D (cf. [8]). In Theorem 3 we
have the additional growth restrictions (4.4) and (4.5).

Condition (4.5) shows that the hypothesis p(g) < c in Theorem D is best
possible in a certain sense. We will need (4.5) for the proof of Theorem 2.

Condition (4.4) shows that g may have finite lower order. In fact, if 3(r) =
log r then A(g) = 0. This shows that Theorem D does not hold with p(g) <
replaced by A(g) < . This is, however, claimed by Song and Yang [13, Lem-
ma 1] and used in their proof of Theorem 1 [13, Cor. 1]. The fact that the
conclusion of Theorem D fails to be true for certain functions of finite lower
order shows that the method of Edrei and Fuchs does not carry over to the
case of lower order.

If one assumes that g is of finite order, then of course Theorem D can be
used. With this additional hypothesis, even Theorem C and the correspond-
ing result for the lower /-order hold for meromorphic f ([2, Satz 5.2], [9,
Satz 16.7, Satz 16.9]).

5. Proof of Theorem 2

Clunie [3] has constructed a meromorphic function f and an entire function
g such that
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T(r, fog) _

lim inf =0.

row  1(r,f)
To construct g, he used Hayman’s result {8]. Instead of Hayman’s result we
will use the more precise Theorem 3, since we need the growth restriction
(4.5). We also will use an infinite series to define f, instead of the infinite
product used by Clunie. Although this is not essential, it does simplify the
computations.

Proof of Theorem 2. First of all, let o*(r) =a(er) and B*(r)=6(r)—2. Let
g be a transcendental entire function with corresponding sequences {w,} and
{R,} such that the conclusion of Theorem 3 is satisfied with «*(r) and 3*(r)
instead of a(r) and B(r). (We do not need the sequence {7,,} and (4.4) here.)
We may assume that

(5.1) R,=n+1;

otherwise, we may consider a suitable subsequence.
Let {k,} be a sequence of positive integers (to be specified later) which
satisfies

n—1

(5.2) h> ki<k,
“

for n=2. Let !

(5.3) Yn= min |g(z)—wp|.
|z] =R,

There exists a sequence {§,} of positive real numbers such that

(5.4) Y 6,<1
n=1
and
(5.5) Y 8,(ya) =1
n=1

It follows from (4.1) and (5.4) that

g 6
fR)=3 —2
ngl (z—wn)k”
defines a meromorphic function f.

For r <R, we have

n
(5.6) N(r, o, fog)= El kiN(r, wj, g).
J:
The first fundamental theorem implies that
(5'7) m(r9 w_pg)+N(rawj’g)ST(rvg)'l'O(l)SZT(rag)

for sufficiently large r and for all j =1, since by (4.1) g(0) is not a limit point
of {w;}. It follows from (5.2), (5.6), and (5.7) that

(5.8) N(r, e, fog) <2T(r, g) _El kj=4k,T(r,g),
j=
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if r <R, and if r is sufficiently large. Moreover, (5.1)-(5.5) and (5.7) imply
that, for R, <r <R, with r sufficiently large,

o

3

j=1 (g(rew)_wj)kj

27r Szwi 08

1 27
m(r, fog)= XO 16g db

do

+10g 5; 5j(’yj)_kf+log(n+l)
Jj=n+l1

n
= X (kim(r,w;, g) +l5g 6;)+log R,
ji=1

n
<2T(r,g) X k;j+logr

ji=1
<5k,T(r,g).
This, together with (5.8), yields that
(5.9) T(r, f-8) <9, T(r,8)

if R,=r=<R,,; and if r is sufficiently large.
To prove (a), we choose k,, such that

a*(|w,]) =k, <a*(|w,|)+1.

We may assume that &, > 1, that (5.2) holds, and that &, < 2a*(|w,|); other-
wise, we consider a suitable subsequence. It follows from (4.3), (4.5), and
(5.9) that

T(r, fog) <180*(|w,|)T(r, 8) < 18R, log M(r, g) <18rr#'("
< r2pB' () = B

if R,<r=<R, ., and if r is large enough. On the other hand, we have

elo,| n(t, :f)
|eop o

= _il kj=kp = o*(|wg|) = a(e]w,]).
j=

T(e|wnl, £)= Neelon, o, )= | dt = n(a,], , f)

This proves (a). To prove (b), we choose
C‘f*(lc“’n+ll) =k,< a*(lwn+1|)+1'

Again we may assume that &, > 1, that (5.2) holds, and that k, <2a*(|w,41|)-
Analogously, we find

T(Rp41, £°8) <180*(|wn 1) T(Rn 41, 8) 18Ry 4 RESFr4?
SRS‘&-RI"-‘-I)

for sufficiently large #; for |[w,|<R <|w, 41|,



Order and Lower Order of Composite Meromorphic Functions 145

T(eR, f)=N(eR, o, f)=n(R, o, f) 2 n(|w,|, =, f)
>k, = 0*(|wg41]) = *(R) = a(eR).

This proves (b). O]

Proof of the Corollary. The conclusion follows from elementary computa-
tions, if we choose 8(r) =log r and a(r) =expy,; r, the [r]-times iterated ex-
ponential function. Here [r] is the greatest integer function.

REMARKS. (1) It is not essential in Theorem 2 and 3 that «(r) and B(r) be
nondecreasing; this was assumed only to simplify the proofs. It is essential,
however, that 8(r) — « as r — . If 8(r) is bounded, then the conclusion
of Theorem 3 does not hold because of Theorem D. The theorem of Edrei
and Fuchs and Theorem 1 show that Theorem 2(a) and (b) do not hold for
a bounded function 8(r).

(2) Schonhage obtained Theorem C as a consequence of a more general
result which he called “Multiplikationssatz” ([12, Satz 6], [9, Satz 16.1}).
Jank and Volkmann [9, Bemerkung 16.10] asked whether this result holds
for meromorphic f. This is not the case: as shown by the corollary, Theo-
rem C does not hold for meromorphic f.
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