A New Proof that a Mapping Is Regular
If and Only If It Is Almost Periodic

SAM W. YOUNG

I. Introduction and Definitions

Throughout this paper, X will denote a compact metric space with metric
d. The uniform metric on the space of self mappings on X will be denoted
by p.

A homeomorphism f of a compact metric space onto itself is regular if
and only if the family of iterates {..., f 72, f ~L f°, £, f2,...} is an equicon-
tinuous family. A mapping f of a compact metric space onto itself is a/most
periodic if and only if the following is true: If € > 0, then there exists a posi-
tive integer N such that every block of N consecutive positive integers con-
tains an integer » such that d(x, f"(x))<e for all xe X (p(f",id)<e€). In
case f is a homeomorphism, then the negative iterates are included as well.
See Theorem F below.

Motivated by a desire to understand the mechanics of regular mappings,
we give a self-contained proof of the theorem in the title of this paper. For
an older proof see [1]. It is hoped that the present-day interest in topological
dynamics will be served by a fresh proof of this useful old theorem. A clue
to the argument is contained in the appendix to [1, p. 146] and is incorpo-
rated here into Lemma 1. We will also make use of the following theorem,
one proof of which can be found in [3, Lemma 2.2]. But in the spirit of self-
containment, we give an outline of the proof here.

THEOREM F. If f is a mapping of a compact metric space onto itself whose
positive iterates form an equicontinuous family (positively regular) then f
is a regular homeomorphism (which will henceforth be referred to simply
as a regular mapping).

Outline of proof. We begin by assuming the following proposition, the
proof of which is straightforward:

(*) If the positive iterates of f form an equicontinuous family then either
f is a homeomorphism or there exists 6 > 0 such that po(f’,id) = ¢ for
i=1,2,3,....
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Using the metric p and the operation of functional composition, the Ascoli
theorem gives us that I'(f) =cl{f, 2 f>,...} is a compact semigroup. It
follows from a theorem of Numakura [2, Lemma 3, p. 102] that some sub-
sequence of {f, f2, f3,...} converges to an idempotent e=e2. And it fol-
lows that e =id, and so by (¥) we have that f is a homeomorphism. The
iterates of f, positive and negative, will now form an equicontinuous family
and so f is a regular mapping.

II. Statement and Proof of the Theorem

Notation. Since only one function is involved here, we will replace the
expression f"(x) by x".

THEOREM. If f is a mapping of the compact metric space X onto itself, then
fis regular if and only if f is almost periodic.

Proof that almost periodic implies regular. We will actually show that if
f is almost periodic relative to its positive iterates then f is positively regu-
lar, and so (by Theorem F) f is a regular mapping.

Suppose € > 0. There exists a positive integer K such that each block of K
integers contains an integer n such that p(f”",id) < /3. Since the mappings
fO 7L ..., f¥ lare equiuniformly continuous, there exists 6 > 0 such that if
x,yeX and d(x,y) <8 then d(x’, y')<e/3, O0<i<k-1.

Now suppose that m is a positive integer and that x, y e X with d(x, y) <é.
There exist nonnegative integers » and p such that m=n+p, p(f"id) <
e/3, and 0 < p<k—1. We have that

d(x", y™)y=d((x*)", (¥P)")
=d(xP)", xPy+d(x?, yP)+d((¥?), (¥P)")
<e/3+e/3+¢/3=¢.

It has now been shown that the mappings {f, f2, f3, ...} form an equicon-
tinuous family. |

Proof that regular implies almost periodic. This proof will be broken
into four lemmas. But first we need some definitions. Given a mapping f
of a space X onto itself and x e X, O(x) ={x° x!,x2,...} denotes the orbit
of x and O(x) the orbit closure of x. In case f is a homeomorphism, O(x) =
{...,x 2, x 1 x%x! x2,...}]. Given a mapping f of a space X onto itself, a
set K C X is called minimal if and only if K is minimal with respect to the
properties of being closed and mapped into itself by f. If f is a mapping of
a space X onto itself and x € X, then f is almost periodic at x if and only if
the following is true: If e > 0 then there exists a positive integer N such that

every block of N integers contains an integer n» with d(x, x") <e. O]

LEMMA 1. If f maps the compact metric space X onto itself and x € X, then
fis almost periodic at x if and only if O(x) is a minimal set.
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Proof of =. Suppose that f is almost periodic at x, but that there exists
a closed proper subset X of O(x) such that f(K)C K. There is a point xJ
which is not in K. Let U be an open set containing x’ such that UNK =0.
Since f is almost periodic at x, it follows that f is almost periodic at x7/;
thus there exists a positive integer N such that every block of N integers con-
tains an integer / such that x/*/e U. Also, there exists a sequence of iterates
x/Hm xJ+ny xJi*tms | converging to a point of K. So we then consider the
following matrix:
xj"*'”l’ xj+n2, xj+n3,.“
xj'*'”l"'l, xj+n2+1, xj+n3+1,".
xj+n1+2’ xj+n2+2’ xj+n3+2,.“

xj+n1+N’ xj+n2+N’ xj+n3+N’“”

Since f(K) C K and the first row converges to a point of K, each row con-
verges to a point of K. But each column contains a point of U and therefore
some row contains infinitely many points of U. A sequence that converges
to a point of X cannot contain infinitely many points of U because UNK =
@. We have a contradiction. ]

Proof of <. Suppose that O(x) is minimal, but that f is not almost peri-
odic at x. If f is not almost periodic at x, then there exists an open set U
containing x and arbitrarily long blocks of integers i such that x* ¢ U. Thus
there is a 2-block, a 3-block, a 4-block, ... of integers such that if i an integer
in any of these blocks then x'¢ U.

Let G be the collection of all increasing sequences of positive integers
{ny, ny, ns, ...} such that for each i=1, {x",x%+! ... x"*}NU=4. The
collection G is not empty since n; could be any integer which is the first
integer of a 2-block, n, any larger integer which is the first integer of a
3-block, and so on. Note that any infinite subsequence of a member of G
is a member of G. And note also that if {#,, n,, ns,...} is in G, then so is
{n2+1,n3+1, n4+1, ...}.

Let K be the set of all points P such that for some {n;, n,, n3,...} in G,

x™M o x2 x™ .. — P,

We know that K is not empty, and that if x”1, x"2, x™, ... - P e K then
xMatl xmtl xemtl, f(P) and so f(P) € K. It follows that f(K)CK
and K # O(x) since UNK =#. This contradicts the assumption that O(x)
is minimal. O]

LEMMA 2. If f is a regular mapping of the compact metric space X onto it-
self, then each orbit closure is a minimal set and {O(x): x € X} is a contin-
uous collection.

Proof. Let p denote the Hausdorff metric on the closed subsets of X. Sup-
pose € > 0. Then there exists 6 > 0 such that if s, € X and d(x, ¢) <6, then
d(s",t"Y<e forn=0, =1, +£2, +3,....
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Suppose that x, y € X and are such that some point of O(x) is at a dis-
tance less than 6 from some point of O(»). Then there exist integers m and
n such that d(x", y™) < 8. We have that, for all integers i, d(x"*/, y"+/) <e.
It follows that u(O(x), O(»)) <e. So we have established the following:

(*%) If € > 0, then there exists 6 > 0 such that if S(O(x), §)NO(y) # @ then
w(O(x), O(»)) < e, where S(O(x), 6) denotes the 5-neighborhood of
O(x) with respect to the metric d.

For the first part of the lemma, suppose to the contrary that for some x,
O(x) is not minimal. Then there exists y € O(x) such that O(») G O(x) and
(*#) leads to a contradiction. For the second part, (**) characterizes a con-
tinuous collection and so {O(x),x e X} is a continuous collection of dis-
joint closed minimal sets. O

We note here that Lemmas 1 and 2 imply that a regular mapping on a com-
pact metric space X is almost periodic at each point of X. The next two lem-
mas show how the crucial inequality d(x, x"”) <e spreads like a contagious
disease through each orbit closure and then through p-neighborhoods of the
continuous collection of orbit closures.

LEMMA 3 (Vertical contagion). Suppose that f is a regular mapping of
the compact metric space X onto itself, x€ X and ¢ >0. Then there exists
8> 0 such that if n is an integer with d(x,x™) <é then, for all y e O(x),

d(y,y")<e.

Proof. Suppose x € X and € >0. There exists 6 >0 such that ¢/3>6>0,
and if s, € X and d(s, t) < then d(s’, t*) <e/3 for all integers i. Let n be
an integer such that d(x, x") <. Let y € O(x) and let m be an integer such
that d(y,x™) <é.

We now have that d(x™,x™*")<e/3 and d(y",x™*")<e/3. Thus

d(y, y"H)<dy,x™)+d(x", x" ") +d(x"", y")<é+e/3+€/3 <e. O

We should observe here that Lemmas 1, 2, and 3 have established that if f
is regular then f|O(x) is almost periodic on O(x). It is also important to
note that if # € O(x) then O(¢) = O(x).

LEMMA 4 (Horizontal contagion). Suppose that f is a regular mapping of
the compact metric space X onto itself, xe X and ¢>0. Then there exist
8,>0 and 6,> 0 such that, if n is an integer with d(t,t") <4, for some t €
O(x), then d(y, y") <€ for all y such that u(O(x), O(»)) < é,.

Proof. We are given xe X and ¢ >0. From Lemma 3, there exists ¢/3 >
8, > 0 such that, if £ e O(x) and n is an integer such that d(#, ¢") <$é,, then
d(s,s™)<e/3 for all s € O(x). Let ¢/3 > 8, >0 be such that if u,ve X and
d(u,v) <6, then d(u’,v’) <e/3 for all i. Let y € X be such that

p(O(x), O(»)) < 6,.
There exists s € O(x) such that d(y,s) <9,.
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If n is an integer such that d(¢, ") < 8, for some ¢ € O(x), thend(y, y") <
d(y,s)+d(s,s")+d(s", y") <d,+¢/3+¢/3 <e, and this completes the
proof. O

Now we finish the proof that regular implies almost periodic. Suppose that
S is a regular mapping of a compact metric space X onto itself, and that
e > 0. If x € X then there exist §;(x) >0 and §,(x) > 0, according to Lemma
4. The 6,(x)-neighborhoods cover the decomposition space and so there
exists a finite subcover. Hence there exists a finite set {x,x,...,x,]CX
which provides such a subcover. Let 6{ = Min{8;(x,), 8;(x2), ..., §;(xp)}.

Let Z = O(x;) X O(x;) X -+ X O(xp) and F = f | O(x1) X f|O(x3) X -+-
X f|0(xp). Clearly each restriction f|O(x;) is regular and the product of
regular mappings is regular. Therefore F is a regular mapping on Z and, as
was pointed out after the proof of Lemma 2, F is pointwise almost periodic
on Z. Let X=(x1,X,...,X,) € Z.

Let 67 > 0 be such that, if d,((sy, 52, ..., 5p), (£1, £2, ..., £p)) < 6f, then
d(s;,t;)<é; for i=1,2,..., p. Thus there exists a positive integer N such
that every block of N integers contains an integer n such that d (£, F"(£)) <
61.

Choose any x € X. There exists an integer g such that M(O(xq), O(x)) <
02(xg). The inequality d (x, F"(x)) <61 implies d(x,, x7) < 6{ = 6,(x,). Ap-
plying Lemma 4 we obtain d(x, x") < e. So the desired inequality has spread
over the entire space X, and the proof is complete. ]
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