THE SINGULAR SET OF A
NONLINEAR ELLIPTIC OPERATOR

P. T. Church and J. G. Timourian

0. Introduction. The equation
Au+ u—u’=gonQ, u|oéQ=0,

where Q CR” (n=<4) is a bounded domain, was studied in [9], and we continue
that study here. Let H be the Sobolev space W3’?(Q), define

(ANU), o5 = SQ [Vu Vo —Augp+u’e]

for all ¢ € C5’(2), and define A: HXR — H XR by A(u, N\) =(A\(u),\). The
present paper investigates the singular set SA of this (real analytic) mapping.

Most results here are actually given for a more general nonlinear operator
A, : H— H called abstract A4, (0.1) defined on some Hilbert space, and the map
defined in the previous paragraph is called standard A4, (0.2).

Let \;(u) be the jth eigenvalue of DA, (u) (for standard A4, of Av+Xv— 3ulv=
0); then the singular set SA4 is the union of graphs of these eigenvalue func-
tions \;: H—R (j=1,2,...), each is locally Lipschitzian (1.5), and wherever
dim ker DA\, (&) =1, the function ; at # is locally real analytic (1.8). In particu-
lar, for A <\, (the second eigenvalue of —A with null boundary conditions), SA
is the graph of a real analytic function A\;: U — R, where U is an open star-shaped
neighborhood of 0 in A (1.9 and 2.4); moreover the function \; has its only sin-
gular point at # =0 (1.10), but it fails to satisfy the Morse lemma (2.10). For stan-
dard A the function \; is real analytic for all v € H (1.9). Moreover, if dQ is a
compact C* manifold, then there are (1.11) an open dense subset V; of H such
that A; | V;: V; —» Ris real analytic (j =1, 2,...), and (1.12) an open dense subset
W of the singular set SA such that, for every (u, \) € W, dim ker DA, (u) =1.

If N\<\j4; and 0# u € H, then the ray {cu:c =0} meets SA, in at most j
points (2.5). On the other hand, given any A € R, there is a 0# u € H such that
the line {cu: c e R} is disjoint from SA4, if A# \;, and for A =\; they meer only
in (0,N)) (j=1,2,...) (2.6). Thus, for any A >\, there is a 0 # u € H such that
M=N(cu)<Aforall ceR (2.7). If A\(u)=0, ue SA,, and A < Xy, then (3.1)

k=2
(u,\) e ( U graph x,-> U0, A1), (0, \e))-

i=1

Our ultimate goal is to determine for each g and X the number of (weak) solu-
tions u of the given boundary value problem, and how this number changes as
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g and A are perturbed. In the perspective of the series of papers [7]-[10] and the
present paper, the numbers of solutions correspond to numbers of point inverses
of the nonlinear map A. We wish to determine for each (g, \) e H XR the num-
ber of points in 4A~!(g, \) and how this number changes as (g, \) is varied. In
some related cases ([7], [8], [25]) the map A is actually identified up to global
coordinate change, while in others (e.g. [24], [12], [13], [23], [27], [28]) the singu-
larities of 4 are studied.

Almost all of the results in the present paper are used in a manuscript [14] in
preparation. In that work with E. N. Dancer our goal is to identify up to global
coordinate change the map A for A near \,, the first eigenvalue of —Au=0on Q
with |92 =0.

The present paper is done in an abstract context (0.1). Although this increases
the difficulty, because of the abstraction the results apply to several other exam-
ples [9: (1.4), (1.7), (1.8)] and relate to the similar von Karman equations [9:

1.9), §4].

0.1. DEFINITION [9: (1.2)]. The abstract map A. Consider any Hilbert space
H over the real numbers and a map A, : H — H defined by

Ayx(u)=u—NLu+N(u),

where L and N have the following properties:

(1) L is a compact, self-adjoint, positive linear operator ({(Lu, u)y;=0and =0
only if u=0). It follows [18, pp. 349-350] that H is separable and the eigen-
values \,,, (m=1,2,...) of u=\Lu are positive, \,,, < \,, 1, and (if H is infinite-
dimensional) \,, — o as m — o, Let {u,,} be an orthonormal basis of H of eigen-
vectors.

(2) The first eigenvalue A is simple.

(3) (@) Themap Nis C¥ (k=1,2,... or © or w) such that DN(u) is nonnega-

tive self-adjoint ((DN(u)-v,v)y =0 for every ve H).

(b) If (DN(u)-u,,, u,>r =0 for some m (m=1,2,...), then u =0. [State-
ment (b)) is: (DN(u)-u;, u; >y =0 implies u =0.]

() k=2 and D/N(0)=0 for j=0,1,2. [Statement (c;) for j=0,1,2is:
N is C’/ and D/N(0)=0.]

(d) k=3 and (D3N(u)(v,v,v),v)y>0for 0#veH.

() D*N(u)=0. From Taylor’s theorem [32, p. 148, Thm. 4.A] it
follows that N is real analytic, and assuming (3)(c), (3!)N(u)=
D3N(0)(u, u, u), so that 2DN(u)-v=D3>N(0) (1, u, v).

We refer to a map A, satisfying (1) and (3)(a) above, and to A defined by
A(u,\)=(Ax(u), \), as abstract Ay and A. Often a lemma or theorem will as-
sume abstract 4 and some of the above conditions; for example, Proposition 1.7
requires abstract 4 with A a C? map and the additional assumption (0.1)(3)(c).

0.2. EXAMPLE [9: (1.3)]. The standard map A. Our main example of abstract
A is the map A of the first paragraph of this paper; it satisfies all the properties of
(0.1) and we call it standard A. Here H is the Sobolev space Wg>2(Q) ([7, §2] or
[3, p. 28]), where © is a bounded connected open subset of R"” with n <4, and the
operators L and N are defined by
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(Lu, oYy = SQ up and (N@), )= u’e

for all ¢ € Cy’(£2), the space of C*real valued functions with compact support in
Q. For more information about standard A, see [9: (1.3)], and for generalization
with certain functions f(«) in place of u3, see [9: (1.4)].

Other examples of (0.1) are given in [9: (1.7), (1.8)]. The von Karman equa-
tions for the buckling of a thin planar elastic plate yield an operator A satisfying
most of the properties of (0.1) (see [9, §4, especially (4.6)]).

For related work and announcements see [7], [8], [10], and [15], as well as [9].
The results of the present paper are used in further investigations the authors are
pursuing with E. N. Dancer.

0.3. NOTATION. An ordered pair in X X Y is denoted by (x,y), while the
inner product of x and y in a Hilbert space H (resp., in L2(Q)) is denoted by
{x,¥>n (resp., {x,¥>;). The norm of x in L?(Q) is |x|,. Real analytic [32: (8.8),
p. 362] is denoted by C®. Assume throughout that  is a bounded connected
open subset of R” (n<4).

Since this work is addressed to researchers in singularity theory as well as those
purely in partial differential equations, somewhat more detail is given in some
places than is usual. The authors are grateful to W. Allegretto and E. N. Dancer
for furnishing references and advice. Church thanks Syracuse University for re-
search Ieave during 1986-87, and the University of Alberta for its hospitality and
support during that period.

1. The singular set SA4 as the union of graphs.
1.1. DEFINITIONS. (a) For abstract 4 (0.1), ue H and ¢ € H, let
D,[e]l=(o, oI+ {(DN(u)p, p)y.

Let &;_; be the collection of subspaces of H of codimension j—1, and let

Aj(u)= sup inf D,le].
FeTF;_1 eeF,{Lp,pody=1

(b) For abstract A satisfying (0.1)(3)(c)(e), ue H, o€ H and c=0, let

Dc,u[ﬂo] = (§03 §0>H+C<D3N(O) (u’ u, ﬂa)’ §0>H
and let
Nj,c(u) = sup inf D ,[e].
FeS3; peF {Lo,o)y

1.2. LEMMA. Consider abstract A.

(@) The function \;j(u) is the jth eigenvalue of v—NLv+DN(u)v=0.

(b) Each Nj(u)>0, Nj(u)=<N\;1(u), and (if H is infinite dimensional)

\j(u) — oo as j — oo; in particular, each eigenspace has finite dimension.

() Given any FeJ;_,, there is op, ,€F with {Lor, ,, ¢F, ,)u =1 such that

Du[SDF,u]: inf D,[e].

peF,(Lo, o) =1
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Thus N\j(u) =sup{D,[¢F,,]1: Fe F;_}. Moreover this sup is achieved
at an F.

(d) There is vi(u) e H with (Lvj(u), vj(u)) g =1 such that \j(u)=D,[v;(u)];
these are the eigenvectors of v—ANLv+ DN(u)=0.

(e) Assume A satisfies (0.1)(3)(c)(e). The function \; .(u) is the jth eigen-
value of v—ALv+cD3N(0)(u, u, v), and the analogs of (b), (c) and
(d) hold.

Proof. For any u € H define an inner product ¢ , ), on H by
(vs ¢>u = (vs §0)H+ (DN(U) ‘U, §0>H

(see (0.1)(3)(a)); let | |, be the resulting norm, and let H, be H with this norm.

For every o€ H, |¢| g <|¢|, and (DN(u)- ¢, 0>y < | DN(u)| | ¢|3; thus | |z and
| |. are equivalent norms, so H,, is a Hilbert space. Define M(u)=M: H,,— H,,
by {(Mv, ¢),,=(Lv, ¢)y. For every v,we H,

|Mv—Mw|,= sup {(Mv—Mw, ¢),

lel, =1
= sup (Lv—Lw, o)y < sup (Lv—Lw,p)y=|Lv—LWw|g;
||99[|u=l ' E§0[|H=l

since L is a compact self-adjoint positive linear operator on H, M is a compact
self-adjoint positive linear operator on H,,.
The eigenvalues of M(u) are given [18, pp. 349-350] by

. (M(u)- o, 0>,
pi(#)= min max

(/=12,...),
FeS;_y| ¢eF (o, >y

and p;(#) = pj,.1(u) > 0 with u;(1#) > 0 as j — oo (if H is infinite-dimensional). Now
A\ is an eigenvalue and v is a corresponding eigenvector of v—ALv+DN(u)-v=0
if and only if

(Lv, oy pp=(1/N){v+DN(u)-v,0dy
for every ¢ € H, if and only if
(M(u)' v, §0>u= (l/x)<vi ‘P)u

for every ¢ € H,,, that is, if and only if 1/\ is an eigenvalue and v is a correspond-
ing eigenvector of M (u). It follows that the eigenvalues of v—ALv+DN(u)v=0
are 1/p;(u), which are the A;(u) given in (1.1). (That there are really maxima and
minima and not merely sup and inf results from the compactness of M —use
[3: (1.3.12)(iii), p. 31 (add hypothesis “closed”), and (1.3.31), p. 35].)

To prove (e) replace (v, ), by (v, ¥, =V, @>pr + cD>N(0) (u, u, v), .
Since 2DN(u)-v =D3N(0) (u, u, v), { , Yc,u 18 bilinear by (0.1)(3)(a)(c)(e). ]

1.3. REMARK. The eigenvectors v;(u) are an orthogonal basis of H,, (use [18,
pp- 349-350, Proposition 27.1, first line of the proof]), and thus they are linearly
independent in H. For standard A they are orthonormal in L2(Q), and

Me(10) =inf{Dule]: [l =1, (o, v:(1)), =0 (i=1,2,..., k—1)}.
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1.4. DEFINITION. Let E and E be Banach spaces and let U be open in E. A
function \: U — E is called locally Lipschitzian [19: (10.4.6), p. 285] if, for every
w e U, there are an open neighborhood W of w in U and C(W') > 0 such that, for
every u,ie W,

IN(u) = N(@)| = C(W) |u—l.

1.5. THEOREM.
(a) Forabstract A, the singular set SA is the union of the graphs of \;: H - R

(Jj=12,...).

(b) Assuming, in addition, that A is C? and (0.1)(3)(c), then each \ j:H—-RIis
locally Lipschitzian; in particular, it is continuous (j=1,2,...).

(c) Assuming, in addition, (0.1)(3)(c)(e) (e.g. standard A), then for all u,ie H

N G0 =N @] <N @ D NO (@l lu—al g+ lu—ald)  (=1,2,...).
(d) In particular,
N () =N (1L+ [ DPN(O)] [ul ),

that is, the growth of \;(u) for large u is at most quadratic in u (j = 1; 2,...). For
standard A (n<4), | D>N(0)| = 6(K(2))*, where |v|s<K(Q)|v|y for allve H
[1, p. 97].

Actually the continuity of A; follows directly from [22: IV, §3, subsec. 5, p.
213].

Proof. For (a) note that SA=UJ, SA4, [9: (2.5)] and u e SA, if and only if
DA, (u)-v=0 for some v 0; that is, v=ANLv+DN(u)-v=0 for some v#0.
For (b), by (1.2)(c),

D, [eFr,u]l—N(#1) = Dyl 1 — Daler,zl = Dyler,z]1 — Daler, 4]
= ([DN(u)~DN(#1)1¢F, 5, ¢F,z)u < | DN(u) — DN(i1)| HSDF,L‘:"%-
From (1.1) |¢|4 =< D,l¢] for all u e H and ¢ € H, and thus
ler, al#r < Daler, al < \; (@)

by (1.2)(c) for all Fe §;_,.
As a result,

DylerF, 1 —N\;(71) = \;(i1) | DN(u) — DN (@)
for all Fe §;_,, so by (1.2)(c) and the mean value theorem [19: (8.5.4), p. 153]
(1) N () =N (@) = N (@) | DPN(E)| Ju— |

for some £ on the line segment joining u# and #. In case \;(u) = \; (i), (1) implies
that

) INi (@)= \; ()| < \; @) | DAN(E)| |u— | g1

For the case \;(u) <\;(i7), we note that (1) is true with the roles of u and & re-
versed; now replace \;(u) on the right side by \;(#&) to obtain (2).
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Since N is C?, for any e > 0 there is a §(&) > 0 such that for lu—i|y <é(a),
|D2N(£)—D2N(i1)|;; < €; as a result

3) I\ () =N (@) = Ci(a) \u—ii| g,

where C;(#) = )\j(ﬁ)(||D2N(ﬁ)|[H+ €). In particular, \;: H — R is continuous.
For n>0 and we H, let B,(w)={ue H: |u—w| <n}. There exists >0 such
that for every £ € B, (w), | D2N(£)| < | D2N(w)| + 1, and for every @ € B, (w),
Nj(i1) = N\;(w)+1. From (2), \; is locally Lipschitzian at w with W= B,(w) and
C=(N\j(w)+1)| D2N(w)| +1.
For (c), use the mean value theorem [19: (8.5.4), p. 153] and (0.1)(3)(c)(e) to
note that in (2)

| D>N(E) = | DNl 12 < | DN (J2) g1+ |u— 8] 1),

where 7 is on the line segment joining 0 and &.
For (d) set # =0 in (c). For standard 4 (0.2), {(D3N(0)(v;, v,, U3), U0 =
6 §q U V20304, SO

|D3*N(0)| = 65sup {Sﬂ VU304 v p=1 (i=1,2,3, 4)],

and the conclusion results from the Holder inequality [3: (1.3.3), p. 28] and [1,
p. 97, first paragraph and (4)]. O

1.6. LEMMA. For standard A (0.2) (n<4) and each ue H, \(u) (1.1) is a
simple eigenvalue of v—NLv+DN(u)v =0, and its eigenspace is spanned by an
eigenfunction v(u) which is positive a.e. on .

Proof. The first eigenvalue \;(v) =inf{D,[¢]: |¢|, =1}, where
— 2 2 2.
Du[ﬂo]—gﬂ Vo +359u ©°;

the conclusion results from [21, p. 214, Thm. 8.38]. For n <3 the Harnack in-
equality used is that given in [21, p. 199, Cor. 8.21] but with the hypotheses of
[21, p. 209, paragraph after Thm. 8.31] (b=c=0 and d=3u?e L*(Q) by the
Sobolev imbedding theorem [1, p. 97]). For n=4 use the proof of [21, p. 214,
Thm. 8.38] with the Harnack inequality citation replaced by [30].

1.7. PROPOSITION. For abstract A assuming A is C? and (0.1)(3)c), if the
graph of \; is a C* submanifold of codimension one in a neighborhood of
(@, \; (1)) e HXR, then \;is a C* map in a neighborhood of i (k=2,3,... or ©
orw, j=1,2,...).

Proof. Assume that the graph of N\;, T';={(u, \;(u)):ue HYC HXR, is a Ck
manifold (of codimension 1 in H X R) near (i, \;(&%)). Let 7: HXR — H be pro-
jection; if D= D(x| I';)(@, N\;j(%)) is an isomorphism of the tangent space 7=
TT;(u, N\;j(i1)) onto H, it follows from the inverse function theorem [19: (10.2.5),
pp- 268-269] that 7 |I'; has a C* inverse near #, and thus \jis C* near 1.
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Hence we may suppose that D is not an isomorphism. Suppose that (0,1) ¢
T; then T and (0,1) span H X R. For each (u,\) €e HXR there exist (w,{)eT
and c;, c; € R such that (¢, \) =c;(w, ) +c,(0, 1); it follows that ¢,w = u. Since
(ciw,c1$)e T, D is surjective. Let i: T'; > H X R be inclusion; since

D= D=(u, \j(u))-Di(iz, \j(#)) and ker Dw (@1, \;j(u#))
is spanned by (0, 1), D isinjective, and by the open mapping theorem [32, p. 777,
(36)] is an isomorphism, contradicting our assumption.

As a result we may suppose that (0,1) e TC HXR. There exists a C¥ curve
©:(—46,06) — I such that 6>0, ©(0)= (&, \;(#)) and DO(0)-1=(0, 1), where
O(2) = (u(?), ©(¢r)). Since ©(¢) = \;(u(?)), the locally Lipschitzian property of N/
(1.5) becomes
¢)) |©(¢)— 6(0)| = Cl|u(t)—u(0)| 4,

where C >0 and |¢| <7 for some 7 < 8. We may suppose that C = 1. There exists
f (0 <t <) such that for every ¢ with 0 < ¢ <?, DO(¢) = L and | Du(¢)|; <1/3C.
By the mean value theorem applied to O, there exists ¢ (0< &< t) such that
O(r)—6(0)=DO(&)t, so that

(2) |©(2)—6(0)| =1/2;

while from the mean value theorem [3: (2.1.21), p. 70] applied to u,

A3) |u(2) —u(0)| = t/3C.

Inequalities (1), (2) and (3) are contradictory and the lemma is proved. ]

In general the graph of a function may be a smooth submanifold even though
the function itself is not smooth, for example, f: R — R defined by f(z)=1¢1/3.
Thus the locally Lipschitzian property (or some other condition) is needed.

1.8. LEMMA. Consider the C* (k=2,3,...) [resp., C®, C®] map abstract A,
and let ue H with \;(it) (1.1) a simple eigenvalue. Then there is an open neigh-
borhood U of u in H such that \;: U—R is C*~1 [resp., C=, C¥). Moreover,
given an eigenvector U; of \;(i1) with |U;| =1, there is a C*~! [resp., C™, C*]
Junction v;: U— H such that v;(u) is an eigenvector of \;j(u) with |v;(u)|g=1
and vi(t)=0; (j=1,2,...).

Proof. Let A= \;(@1), let ¥ be an eigenvector of
v—ALv+DN(@@#)-v=0

with eigenvalue N\, and let H, be the orthogonal complement of ¥ in H. Define
F:HXRXH,— H by

F(u,\, w)=DA,(u)-v=v—ANLv+DN(u)-v,
where v=0+w. Now (i, \, 0) € F~1(0) and
D()\,W)F(l_la X’ 0)'(0, s 1//) = —,[LLE'I‘DAX(L_I)' \b
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[19: (8.9.1), p. 167]. Since ¥ generates ker DAx (&) and since DAy (i) is self-adjoint
and Fredholm ([9: (2.2), (2.4)]) of index 0, DAx(if): H;— H, is a bijection. By
the positivity of L, Lv ¢ H;. It follows that

Do, w) F(@1,X,0): 0OXRX Hy; > H

is a bijection, and by the open mapping theorem [32, p. 777, (36)] is an iso-
morphism. By the implicit function theorem [32, p. 150, Thm. 4.B], there is an
open neighborhood U of e H and a unique C*~! [resp., C*®, C“] function
I'U—-»RXxH, with I'(u) = (A (u), w(u)), where the graph of I"' coincides with
F~1(0) in a neighborhood of (i, \,0) in HxXR X H,.

Since \;(i1) = \is a simple eigenvalue, Ni_(@) < Nj(u) < N (@) (if j =1, elim-
inate A\;_;), and we may choose U small enough that N\;_;(z) <X(u) <\;1,(u)
for all ue U (by (1.2)). Since \,,(#) < \,,,1(u) for all ue H, it follows that ()
must be the eigenvalue A;(u) for all u € U. Since {: H— {0} - R defined by {(v)=
1/|v| g is real analytic, v;(u) = (D+w(u))/|0+w(u)|y is Ck—1 [resp., C*=, C¥]
on U. 1

Alternatively, we could prove (1.8) using [17, p. 163, Lemma 1.3], but the proof
uses the additional hypotheses (0.1)(3)(c)(e).

1.9. THEOREM.

(@) For standard A (with n<4) the first eigenvalue map \,: H— R is real
analytic. Moreover, there is a real analytic map v,: H — H such that
lv )| =1, vi(u) is positive a.e. on Q, and v,(u) is an eigenvector of
Av+Nv—3u?v=0 with A=\ (u).

(b) For the Ck (k=2,3,...) [resp., C®, C®] map abstract A with
©.DR)B)(cy), let U={ue H: \j(u)<\,}. Then \: U—-R is C*¥~!
[resp., C*=,C®], N(u) is simple for ue U, and there is a ck-1 [resp.,
C=, C*¥] eigenvector map v,: U— H with |v(u)|g=1. Thus for A<X\,
the singular set SA is the graph of the real analytic map \,: U— R.

Assuming (0.1)(3)(b)(c)(e) in addition, in (2.4) we will prove that U is an open
star-shaped region about 0. For standard A there exist # € H such that v;(#): 2—>R
is not real analytic; however the map v;: H — H is real analytic.

Proof. Conclusion (a) follows from (1.6) and (1.8). Now u € SA, with
DA,(u)-v=0 for v#0

if and only if A\ is an eigenvalue of v—NLv+ DN(u)-v=0 with eigenvector v.
From [9: (2.4)] A= A\(u) is a simple eigenvalue if \;(#) < \,. From (0.1)(2)(3)(cy)
A(0) =X\, <\, so that 0 e U. Conclusion (b) results from (1.8).

1.10. PROPOSITION. In (a) and (b) consider abstract A with (0.1)(2) and sup-
pose that dim ker DA, (&7) =1 with generator 0.

(@) Let \: U— R be the function given on a neighborhood of i in H by (1.8).
Then 1 is a fold point [9: (3.1)] of A if and only if D\(1)-v # 0, and is a precusp
point of A if and only if D\(u1)-v=0.
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(b) If w: U — R is the function given in the proof of (1.8), v(u) =0+ w(u), and
@1 is a precusp point, then Dv(ii)-0=Dw(1)-U= —y, the element defined in the
proof of [9: (3.6)] chosen to be in H,, the H-orthogonal complement of v =e.

(c) For standard A and @i € H with dim ker DA, (1) = 1, & is a singular point of
Nifand only if i =0.

(d) Thus, for standard A the real analytic map \,: H— R has i =0 as its only
singular point.

(e) For standard A and for 0 ti € H and c € R with dim ker DA,(cit) =1, the
Sunction & defined by £(c) = \(cit) has derivative D£(c) >0 for ¢ >0, D&(c) <0
for c<0, and D£(0)=0.

According to (a) for abstract A and & € H with 0 U generating ker DA, (i7),
U is transverse [resp., tangent] to the level surface through # of the function A
through # if and only if # is a fold [resp., precusp] point. It is important to real-
ize that v(u) is the e of [19, §3], but it is normalized in a certain way.

Proof. From the proof of (1.8), the implicit function theorem [3, p. 115, Corol-
lary], w(it) =0 and v(if) =D,

D\, w)(#E)- ¢ = —[Dg, v F (@, \(@), 0)]1 7' D, F(#, \(#), 0) - ¢

for every ¢ € H. Now D, F(ii, N(&1), 0) - ¢ = D> Ay () (D, ¢). By the self-adjoint-
ness DAy (#1): Hy— H, is an isomorphism; and D24, () (7, ¢) € H; if and
only if

—[Dy, wy F (i1, (i), 0)] 7' D* Ay, (i) (T, )

= (0, —[DA\@ ()] ' DAy () (D, ¢)).

Since Range DA, ;) (1) = H,, if we set ¢ =1, D?‘AM,,—,)(Q)(E, v) ¢ H, if and only
if & is a fold point [9: (3.1)]. Conclusions (a) and (b) follow from [9: (3.5)].

Suppose that DA(#) =0. By the above argument, DZA)\(,—,)(L‘:)(U, p)eH, for
every ¢ € H. Set ¢ =# and use the fact that H, is the orthogonal complement
of ¥ to obtain 6 | 7202 =0. Since 7> 0 a.e. (1.6), # =0, and conclusions (c) and
(d) result.

From the previous paragraph, for &0, DZA)\(C;,)(CE)(E, u)e H, if c#0, so
that D\(ciz)-#1 # 0. By the chain rule D&(c) = D\(cir) -, and since each \;(cu) is
a strictly increasing function of ¢=0 (2.3), D£(c) >0 for ¢> 0. Since Mcit) =
N(—cii) (see (1.1)), the rest of conclusion (e) results. 1

1.11. PROPOSITION. Consider standard A (n<4) with the boundary of Q a
compact C* manifold 99.

(i) Forany j (j=1,2,...) there is an open dense subset V; of H such that \;(u)
is a simple eigenvalue of every ue V;. Thus \; | V;: V; = R is real analytic (1.8).

(ii) Moreover, there is a subset I' C(\; V; dense in H such that, for every ueT’
and every j (j=1,2,...), (@) \j(u) is a simple eigenvalue, (b) v;(u) |int @ (1.8) is
a Morse function, (c) 0 is not a critical value of v;(u) |int Q, and (d) the normal
derivative of vj(u) on dQ has 0 as a regular value.
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Proof. Since C5’(2) is dense in H, it suffices to prove that there is a dense sub-
set I' of C&(Q), where k > n+2, satisfying (ii). We modify the argument of [31,
p. 1074, Thm. 7], with L=A, U=Q, M=Q, B=C§(Q)—{0} (k>n+2), and
L+b replaced by A—3u? (our u is different from the u in [31, p. 1074]!). Here
(1) (v, \,u)=Av—3u?v+Av=0, and D,o(v,\, u)-(0,0, z) = —6uvz. Since v
is continuous by the Sobolev imbedding theorem [1, p. 97], uw, v, and z are all
continuous. We use [31, p. 1067, Prop. (2.10)]: Suppose that there is a

we L'{(@)NC*(Q—y)

such that (2) fo 6uvzw =0 for all z € C&(Q); it suffices to prove that B)w=0on
some open set of 2.

(4) Suppose that uv =0 on Q. From (1) v is an eigenvector of —A; since v is real
analytic [11, p. 136, pp. 207-210], its set of zeros has measure 0, and from (4),
u=0on Q. Since {0} ¢ B, =0 and so uv*0on 1.

Thus there are an open ball X C Q2 —y and e > 0 such that |(uv)(x)| =€ for all
xeX. If w|. X =0, our desired conclusion (3) results; thus we may suppose that
there are an open ball in Y C X and 6 >0 such that |w(x)| =6 for all xe Y. Let
Z be an open ball in Y, and let z: R”"—> R be C* such that z(x)=1 for xe Z,
z(x)=0 for xe R"—7Y, and z(x) =0 for x e R". Thus |{q 6uvzw|=6e6p(Z) >0,
contradicting (2), so our supposition that w | X # 0 was false, and conclusion (3)
results. ]

1.12. COROLLARY. Consider standard A (n < 4) with dQ a compact C* man-
ifold. Then there is an open dense subset W of the singular set SA such that for
every (u,\) € W, dim ker DA,(u) =1.

Proof. Let A\g=0. Since SA=U7_., graph \; (1.5), by (1.11)(i)
| k
W= Ul f(u, Nj(u)):ueV; and Ny < Nj(u) <Nyl
J=

is the desired open dense subset of
f(u,\):ueSA, and N1 <N<N¢y1} (K=1,2,...).
Let W=Up7-; W,. Ol

2. The curves \;(cu) as functions of c.

2.1. LEMMA. For abstract A assuming (0.1)(3)(c)(e) and ue H, each \;(cu)
land \; .(u) (1.2)(e)] is an increasing function of c =0, that is, 0 <a < b implies
N(au)=N\;(bu) (j=1,2,...).

Proof. By (0.1)(3)(c)(e) and Taylor’s theorem [32, p. 148, Thm. 4.A], 3!N(u) =
D3N(0)(u, u, u), so that 2DN(u)-v=D3N(0)(u, u, v). By (1.1),
)] Nj(cu) = sup inf (el +c*(DN(u)- o, 0)n).
Fefi’j_l deF,(Lo,pdy=1
Now (DN(u)-¢, ¢)y =0 by (0.1)(3)(a), and there exists (1.2)(c)(d) F=F(au)e

§;_1 and ¢g, 4, = v;(au) € F such that \;(au) =D,,[¢F, 4,]1. By (1),
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)\j(au) =Dau[‘PF,au] Sl)au[‘lpF,bu] = Dbu[ﬁaF,bu] SDbu[‘PF(.!:Ju),bu] = )\J(bu)

2.2. THEOREM. Consider abstract A with (0.1)(3)(b)(c)(e). Then, for each
O0#ueH and each j (j=1,2,...), N\j(cu) [and \; (u)(1.2)(e}] is a strictly in-
creasing function of c; that is, 0 <a <b implies \; = \;(au) < \;(bu).

Proof. By (2.1), N\;(au) = \;(bu). Suppose that strict inequality is not true, so
that A;(cu) is constant for a < c =< b. If we define

Du[v’ 50] = (U, ‘P)H"‘ (DN(U)U, ¢>H
for all v, ¢ € H, then
1) D, [vi(cu), o]l =N\;(cu){Lv;(cu), >y

for all ¢ € H (see (1.2) and its proof). From the self-adjointness of L and DN(u),
(0.1), and the first line of the proof of (1.2), for a<c, d=<b,

0= (N\;(cu)—N\;(du)){Lv;(cu), v;(du))y
=D, [vj(cu}, v;(du)] — Dy,lv;(cu), v;(du)]
= (3)(c?—d*){DN(u)-v;(cu), v;(du)) 4
(see the first line of the proof of (2.1)). Thus for c#d,
2) {DN(u)-v;(cu), v;(du))y=0.

Define a bounded bilinear form B on H by B(v, w) ={(DN(u)-v, w)y for all
v,we H and let |v|z=B(v,w). Then B satisfies all the properties of an inner
product except that |v| =0 need not imply v=0. In particular, (3) |B(v, w)| <
lvlglw| g for every v, we H [20, p. 248].

We will prove that (4) for some ¢>0, a<c=<b, |vj(cu)|p=0. If vi(cu)=
vj(du) for some c#d, then (4) results from (2). Thus we may suppose that the
vectors v;(cu) for a<c=b are all distinct with |v;(cu)|z# 0. Let w.= k.v;(cu),
where k.>0 is so chosen that |w.z=1; by (2), {w.} are B-orthonormal. For
c#d,

2=|wl3+Iwals=Iwe—wal3 = Clw.—wal&

by the boundedness of B. Since |w,—wy|g=[2/C1Y2, H fails to satisfy the
Lindel6f property, contradicting by [20, pp. 12, 21] the separability of H (0.1)(1),
and (4) results.

Now consider a ¢> 0 such that |v;(cu)|z=0; B(v;(cu), ¢) =0 for all o H by
(3) and

(vi(cu), p) = Nj(cu){Lvi(cu), p)y

for all o€ H by (1). Thus \;(cu) is an eigenvalue \; of w=XLw and v;(cu) is
a corresponding eigenvector u;. By (4), (DN(u)u;, u;),; =0 and by hypothesis
(0.1)(3)(b), cu=0; since u# 0, ¢c=0, contradicting its choice.

For the \; () version (1.2)(e), 2DN(u)-v=D3N(0)(u, u, v) and the proof is
identical except for multiplying the parameter ¢ by a factor of 2!/2. For example,
(2) becomes
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29 (D3N(0) (u, u, v; (1)), v;, 4(u)) =0.

2.3. COROLLARY. For standard A and 0# ue H, \;j(cu) is a strictly increas-
ing function of c=0 (j=1,2,...).

Proof. Use (0.2) and (2.1). ‘ Ll
2.4. COROLLARY. For abstract A with (0.1)(2)(3)(b)(c)(e), the set
U={ue H: \(u)<\,}
of (1.9)(b) is an open star-shaped region about 0.
The following result is a generalization of [9: (3.11)].

2.5. COROLLARY. Counsider abstract A satisfying (0.1)(3)(b)(c)(e).
(@ If0#ueHand \<\;,,, then

S, dim(ker DA,(cu)) < j;

c=0

(b) in particular, the ray {cu:c=0} meets SA, in at most j points.

Proof. The singular set SA=UJ, SA, [9: (2.5)] is the union of the graphs of
the A, H—-R (m=1,2,...) by (1.5), and the ray {cu:c=0} meets SA) at cu
if and only if dim{ker DA,(cu)) =1, that is, if and only if A=\, (cu) for some
m. For each m the map ¢ — \,,,(cu) is strictly increasing for c=0 by (2.1), so
the ray meets the graph of \,, in at most one point. Since A<\;;;=\;;1(0) <
Nj1(cu) =N\, (cu) for j+1=m, the ray cannot meet the graph of A, for m>j,
and conclusion (b) results.

If dim(ker DA, (cu)) =r >0, then for some least natural number s the eigen-
value N\ =\ (cu) has eigenspace of dimension r. Thus A= N;(cu) =N, (cu)=
o+ =Ngy,—1(cu) <\;j;1, and conclusion (a) results. O

For A<\, the ray {cu:c=0} meets SA, in at most one point, as shown in
[9: (3.11)]. We now note that “at most one” cannot be replaced by “precisely

$

onec.

2.6. EXAMPLE. Consider standard A with dQ a (compact) C*® manifold.
Given any A€ R, there is a 0 # ue W*3(Q) such that the line {cu: ceR} is dis-
Joint from the singular set SA, if N\#\;, and for N\=\; meets it only in (0, \;)
(J/=12,...).

Proof. If A <)\,, the conclusion for any « # 0 results from [9: (2.3) and (2.7)(i)],
so we may suppose that A\ <\. Let m (m=1,2,...) be the largest number such
that \,, < \. Pick @’ @ a domain with ’C Q and Q" a C* manifold close
enough to 4% that \,,(2') <\ also [16, p. 421, Thm. 10]. Pick U an open n-ball
with UC Q—Q’, and let u be any eigenfunction of minus the Laplacian —A on U
with null boundary conditions; thus « is C* on U [21, p. 187, Thm. 8.13], and we
may extend it to © to be 0 on Q—U, so ue Wg>%(Q2). Any ve W-?(Q’) can also
be extended to 2 to be 0 on 2—Q’, so that fq #?v?=0; thus from (1.1),
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1) 1)w[v]=§Q [|Vv|2+3c2u202]=SQ,IVv|2

for every ve Wg2(Q').
We now prove: If F;(Q) is the set of codimension i hyperspaces in Wg'%(Q), then

Jj
2) (FONWSXQ): Fe F;_ ()} C -U1 F_(Q) (=1,2,...).
Suppose, on the contrary, that (*) Fe §;_(2), while FN W 2(Q’) has codi-
mension at least j; that is, Wg*2(2’) has a subspace I' such that dim I" = j and
T' N(FNW2(Q')) ={0}. Since TN(FNWEX(Q)) =T NWEAQ)NF=TNF,
I"'NF={0}, contradicting (*); statement (2) results.

From (1), (2) and (1.1),

Nio(cu)y=sup inf {D.[v]: |v]; =1}
Fe&; () veF

< sup inf (D, [v]: |v]ze=1)
Fe§;_((Q) ve FNW (@)
= sup inf {D.,[v]: |v], o =1}

Fe Ul i@ ver”

= sup sup  inf 8 [Vul|2: |]v||2’9,=1}
l<i<j F'eF;_(Q) veFr ¥
= sup N(Q)=N(Q) <A
1<i<j
(/j=1,2,...,m). Thus \; o(cu)=N\;(cu) <\, so that the line {(cu, N\):csR} 1S
disjoint from the graphs of \;: H—> R for j=1,2,...,m.

If j=m+1, then A=<\;<\;(cu) for ¢#0 by (2.1). Thus the line is disjoint
from the graph of \; if A# \;, and if A= \; they meet only in (0, A;). Since SA is
the union of the graphs of \;: H—»R (j=1,2,...) by (1.5)(a), the conclusion
results. O

2.7. REMARK. If the line {(cu, N\): ce R} meets the graph of \; (i.e., if there
exists €= 0 such that \;(¢u) = \), then for any / = j with A; <, the line also meets
the graph of \; (since by (2.1), N\;(Cu) = \;j(Cu) =N>N;=N;(0-u) and \;: H >R
is continuous (1.5)).

For each fixed u e Wg-2(Q) the map c¢— A;j(cu) for ¢=0 is strictly increasing
(2.1). Example (2.6) shows that, for every A with A, <\, there exists a direction
u0in H such that \j(cu) <AforallceRand j=1,2,..., m. Onthe other hand,
there are directions u# # 0 such that \,,(cu) > as c—>o for all m (m=1,2,...)
by (2.8) below (although the growth is at most quadratic (1.5)(d)).

2.8. EXAMPLE. Lef u; be the jth eigenfunction of —A on Q with null boundary
conditions. For standard A (withn=4), N\, (cu;) > as |c| > (j,m=1,2,...).

Proof. Fix j and m. Since \,,(cu;) is a strictly increasing function of ¢=0
(2.1) and \,,(—cu;) = \,,(cu;), it suffices to prove that there is no bound M=
M(j, m) >0 with \,,(cu;) <M for all ¢ =0. Suppose the contrary. Since (1.2)
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M Mn(€t7) = Doy, [0(cu)) = [vn(cup)fr+3c? | uP(vnleu;))?
{vn(cu;)} is bounded in H = W 2(Q). By Rellich’s lemma [1, p. 144] there exist

c(k) — oo as k — oo such that v,,(c(k)u;) converges in L?(Q) to some vo=vy(J, m)
with |v|,=1. Since u; is bounded on © [21, p. 189, Thm. 8.15], fu u/v§ exists and

’ SQ ufz(vm(c(k)uj))z_ SQ ujzv(%

@)
= (mSX ujz) [2"1)0“2+ C] " v,,,(c(k)uj) - UOIIZ -0

as k — oo. Since

A COUMEE 0

M
—_—
3(c(k))?
as k — oo by (1), fq u?v§ =0 Dby (2). Now u; is real analytic on Q [11, pp. 136, 207-
210] so that its zeros have measure 0; thus vy=0 a.e., contradicting |vg|,=1.

More generally, this argument will work for u; replaced by any

ue Wi Q)NL>(Q)

whose set of zeros has measure 0. Alternatively, we might assume that » <3 and
use the Rellich-Krondrachov embedding H — L* [1, p. 144] and the Holder in-
equality [3: (1.3.3), p. 28] to conclude that the result is true for n <3 and any
u € W¢2(Q) whose set of zeros has measure 0. O

2.9. PROPOSITION. Consider standard A, 0 # ue W3 2(), and A€ R.

(@) Suppose that the ray {cu: c =0} meets the singular set SA in a point (ii, \)
with dim ker DA, (iZ) = 1. Then the intersection is transverse, except at the
points (0,\;) (j=1,2,...).

(b) (i) In particular, if the ray meets the graph {(w, \{(w)): we H}, then they
meet transversely, except at (0, \). (ii) Thus for A <\,, if the ray meeis
SA then it meets transversely, except at (0, \).

In some neighborhood of (i, \) in HXR, SA is the graph {(w, \;(w))} for
somej (j=1,2,...) by (1.5) and (1.2)(b), and thus (1.8) is a real analytic subman-
ifold of codimension one. Hence the proposition is meaningful.

Proof. We assume that (&, N\)# (0,N;) (j=1,2,...). By (1.5), A\=\;(#7) is a
simple eigenvalue of (1) Av—\v+ 3u?v =0 with eigenvector v;(ir).

We will prove that (2) {q & 2(vj(ﬁ))2 > 0. Suppose the integral is 0 so that #7v; (7Z) =
Oa.e.on Q. From (1), A=X\; (i=1,2,...) and v;(#) is a corresponding eigenvec-
tor of minus the Laplacian —A with null boundary conditions. Since v;(#): 2 —»R
is real analytic [11, pp. 136, 207-210], its zeros constitute a set of measure 0; since
the integral is assumed 0, & =0 contradicting our assumption that (iz, ) # (0, \;)
(j=1,2,...), and (2) results.

Now v; (&) generates ker DA, (i), and from (0.2) and (2) above,

(D2ANT) (0 (@), @), 0Dy = 6 | 72(0;(7)*> 05
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from the self-adjointness of DA, (i), the orthogonal complement of its range is
spanned by v;(i7). Thus

3) D2A, (1) (v;(#1), 1) & range DA\ (i7).

Suppose v;(it) is not a multiple of #; then by (3) i is a good point of A,; that
is, it satisfies [8: (1.6)(0)(1)(3)]. If we replace “precusp” by “good” in [8: (3.3)] and
omit conclusions (ii) and (b), then that lemma is still true with the same proof.
Thus there is a C® germ of a diffeomorphism 3: H —» H at X = A, (&) such that
B(x)=u, H=R?*XE, DB(X)-(1,0,0)= v(it;), DB(x)-(0,1,0) =g,

A\B:R*XE—-R*XE=H, (1, y,v) > (h(t, y,0), y,v);

(a) (8k/dt)(xX) =0 and (b) (3%h/3t dy)(xX) # 0. From the implicit function theo-
rem [3, p. 115], the set of zeros of dh/ad¢ at X, that is, S(A, B), is the graph of a
map germ y = y(¢,v). Since the unit vector (0, 1,0) in the y-direction is trans-
verse to this graph, and DB(x)(0,1,0) =i, conclusion (a) results.

Now suppose that v;(#) is a multiple of i&; then by (3) (&, \) is a fold point
[8: (1.4)] of A, and by [8: (1.5)] v;(#) is transverse to SA at (i1, ). Again, con-
clusion (a) results.

Conclusion (b)(i) follows from (1.6), and conclusion (b)(ii) follows from [9:
(2.4)]. ]

2.10. REMARK. Consider standard A and the real analytic map (1.9) \;: H - R
whose only singular point is its absolute minimum # = 0 (1.10)(d). Define {: H >R
by ¢ (u) =N (u)— X\, so that {(0) = 0. Suppose that A, satisfies the Palais—-Smale con-
dition (C) [26, p. 300] and 0 is a nondegenerate singular (critical) point [26, p. 301].
According to the Morse lemma [26, p. 301] there would be a C* diffeomorphism
¥ : U~ V on neighborhoods of 0 in A such that {(y ~!(u)) = |Pu|*—|(I—P)u|?,
where P is an orthogonal projection in H. Since 0 is the absolute minimum of ¢,
¢ (¢ ~1(u)) = |u|?. We now prove that this conclusion is not true (so that \, either
fails to satisfy (C) or is degenerate).

Suppose that { satisfies the conclusion of the Morse lemma at u=0. If D, =
fue H: |u| g <e}, then D, C y(D;) for some 6 >0and e > 0. Thus for everyu e H
with {(u#) <e, thatis, \j(u#) <A +¢€, ue Ds. Choose \, \;<A<\;+¢€ and let 0 #
u € H be as given in (2.6) for A; then for every ¢ =0, \,(cu) <\ by the continuity
of N\: H—R (L.5) and N\(0) =X\;. A contradiction of u € Dy results. If \; is a
simple eigenvalue of —A with null boundary conditions, then \;: H — R is real
analytic on a neighborhood of 0 by (1.8), and the analogous conclusion holds.

2.11. REMARK. Condition (C) [26, p. 300], as applied here, states: If X is any
subset of H on which A\;: H — R is bounded but on which |DX\,| is not bounded
away from zero, then there is a singular point adherent to X. Let 0 u € H be
as given in (2.6) for some A >\, and define £: R— R by £(¢) = \(cu). Since
DE&(c)>0for all c>0(1.10)(e) and £(c) = N\ (cu) < X for all ce R((2.6) and (2.7)),
there is a sequence ¢; — oo such that D&(c;) — 0. Since D&(c) = D\ (cu)-u by the
chain rule, this is consistent with (C) failing. (Using the Ekeland variational prin-
ciple, Szulkin [29] has shown that A\, fails to satisfy condition (C) at ¥ =0.)
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3. Further results.

3.1. PROPOSITION. Consider abstract A with (0.1)(3)(b)(c)(e).
(1) If ueH, N\< X\, A\(u)=0, and u is in the singular set SA,, then

k—2
(u’ )\) €< U graph )\l) U{(O’ )\k—l)’ (09 )‘k)}-
i=1
(i) In particular, if N<\,, then ue SA,N A5 (0) if and only if (u, \) = (0, ;)
or (0, \,).

For \{ <A<\, and a similar A4, Berger [4, p. 692, Thm. 2] noted that
SA,NATY(0)=D.

Proof. By [9: (2.6)], 0e SA, if and only A=\; (j=1,2,...); since \;(0) =\,
(see (1.1) and (0.1)(3)(c)), we may assume that « = 0. By (0.1)(3)(e) 3!N(u) =
D3N(0)(u, u, u), so that 2DN(u)-v=D3N(0)(u, u, v). Since u € SA,, A= \;(u)
for somei (i=1,2,...); that is, A is the ith eigenvalue of v—ALv+ DN(u)-v =0,
equivalently, of v —NLv+(3)D3N(0) (4, u, v) = 0. Since

0=Ay(u)=u—NLu+N(u),

u is an eigenvector and X\ is the jth eigenvalue p;(u) (for some j=1,2,...) of
U—>\LU+(é)D3N(O)(u, U, v) =0. By (2.2) )\J,(ll) = )\j,l/z(u) > )\J, 1/6(u) = [JLJ(U)>
Nj,o(u) =\;, so that i < j <k, and i < k—2 as desired. R

3.2. REMARK. For n =<3 standard A is proper [9: (2.8)], so A(graph \;) is
closed in H X R. Since (0, \,) ¢ A(graph \,) (by (3.1)) there is € > 0 such that for
all A\<X,+€, N#N;, (0,N) ¢ A(graph A\;). In case N, is simple this is a special
case of a result of Ambrosetti and Mancini [2].
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