OMITTED VALUES OF SINGULAR INNER FUNCTIONS
Kenneth Stephenson

In this paper we investigate certain properties of measures on the unit circle
T associated with singular inner functions which omit values in the unit disc
U . Our results are used to resolve some open questions concerning inner functions;
in particular, we disprove a conjecture of Herrero concerning the structure of
the inner functions under the uniform topology of H” , the space of bounded analytic
functions on U . We assume that the reader is familiar with the basic theory
of H”, the notion of logarithmic capacity for plane sets, and the elementary
properties of universal covering surfaces for plane regions. Appropriate references
would be Duren [5], Tsuji [10], and Ahlfors 1], respectively.

We briefly describe our main results below. The preliminary material is discussed
in more detail and notations are established in Section 2.

1. MAIN RESULTS

If A is a (relatively) closed subset of U with (logarithmic) capacity zero, then
the universal covering surface of U\ A is conformally equivalent to U. If &,
is an uniformizer of U\ A (see 2.3), then ¢, is an inner function whose range
is precisely U\ A. For our main result we assume 0 € A, so that ¢, is a singular
inner function.

THEOREM 1. Let A be a closed subset of U of (logarithmic) capacity zero,
0 € A, and let p. be the singular measure on T associated with the conformal
mapping ¢, of U onto U\ A.

(a) If 0 is an isolated point of A, then . is discrete; i.e., it consists entirely
of point masses.

(b) If O is a limit point of A, then . is continuous; i.e., it has no point masses.

The proofs of parts (a) and (b) require entirely different techniques and are
given in Sections 3 and 4, respectively. Part (b) is actually a corollary to a stronger
result, Theorem 4.2. The main ingredient is a mapping theorem which may be
of some independent interest:

THEOREM II. Let F be an analytic function from U into the left half-plane
with the property that lim inf (1 — r)|F (xr)| > 0. Then, for each M > 0, the disc
r—1

{we C:|w—F()) <M} lies in the range of F for all r sufficiently close to 1,
O0<r<l1.

This study was originally motivated by certain conjectures of Herrero [8]
concerning inner functions under the uniform norm of H”. In Section 5 we use

Received April 19, 1977.

Michigan Math. J. 25 (1978).

91



92 KENNETH STEPHENSON

Theorem I to arrive at the following result, which proves false one of those
conjectures.

THEOREM III. The collection of discrete singular inner functions is not closed
in H”.
In Section 5, we also answer some other open questions, and we discuss our

results in relation to another conjecture of Herrero. We close with comments and
open questions in Section 6.

2. PRELIMINARIES

2.1. Inner Functions. A function f € H” is an inner function if it has unimodular
radial limits at almost all (Lebesgue measure) points of T. Every inner function
factors uniquely as a product f(z) = B(z) - S(z), z € U, where B is the inner
function, called a Blaschke product, formed by the zeros of f, and S is a singular
inner function; that is, one which does not vanish in U.

All singular measures we discuss are positive, finite, Borel measures on T
which are singular with respect to Lebesgue measure. Each singular measure
. gives rise to a singular inner function S, defined by

z+ &
S,(z) = exp{g gdu (&)}, z€ U;

TZ™—

and conversely, every singular inner function is a unimodular constant times S,
for some unique singular p. In the case that p is a unit mass concentrated at
1, S, is denoted S,. Specifically, S,(z) = exp{(z + 1)/(z — 1)}. If f is inner and if
it factors as f(z) = B (z)S, (z), then S, is said to be a singular factor of f if
p—v=0,sothatS, =S,  S,.

Two particular types of singular inner functions will be of interest to us. Let
f= eiGSu. If p is discrete (consists entirely of point masses), then f is termed
a discrete singular inner function; while if p has no discrete part, then f is termed
a continuous singular inner function. Following Herrero, we will denote the
collections of inner, singular inner, discrete singular inner, and continuous singular
inner functions by % %, %, and .%, respectively.

For each a € U, {_, will denote the Mobius transformation of U onto itself
given by ¢_(z) = (z — a) /(1 — az), z € U. Of course, these are inner functions.

Finally, for later reference we note the following properties of inner functions:
(a) Fand £ are closed in H”.

(b) £ U £ # % since, in general, a singular measure p may have both discrete
and continuous parts. # N % consists of trivial inner functions only (i.e., unimodular
constants).

(c) Iff € #and g € H”, |g||..= 1, then a necessary and sufficient condition
for fog € #is that g € %#. The sufficiency is well known (see [9, Appendix]),
and the necessity is clear by considering radial limits.
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(d) Foreachf € % U, of — Y of|[,—>0asa—BinU.

2.2. Omitted and Exceptional Values. .o/ will denote the collection of (relatively)
closed subsets of U with (logarithmic) capacity zero.

(a) Every closed countable subset of U is in &/ . However, .« also contains
uncountable subsets of U . Any closed subset of a set in .7 is in .27

(b) If A € &, then U\ A is connected.
(c) AeZifandonly if ¢ _(A) € & foralla € U.

For each f € # we define the exceptional set E (f) and the omitted set O (f)
as follows:

E(f) = {a« € U:y_of  has a nontrivial singular factor};
O (f) = {a € U:y_of is singular}.

Clearly, O(f) C E(f).

2.3. Frostman’s Construction. A famous theorem of O. Frostman [7] states:
If £ is inner, then E(f) is a set of capacity 0. Less well known is his converse:
For each A € <, there is an inner function f such that O() =E(f) = A. His
construction goes as follows (see [4, Ch. 2, Section 8]).

For A € &'let R, be the universal covering surface of U\ A with covering pro-
jection m: R, —» U\ A. By the uniformization theorem, R, is conformally equiv-
alent to U. If $,: U— R, is a mapping which realizes this equivalence, then
&4 :U — U defined by ¢, = 7 o &, is an inner function, and O ($,) = E(d,) = A. b,
is called an uniformizer of UNA . Note that ¢,, and hence ¢,, is determined
only up to composition with a conformal mapping of U. However, we will see
that our results are independent of the choice of ¢, , so all statements referring
to ¢, assume that some particular choice has been made.

The uniformizer of U\ A may be characterized as follows, the proof is standard.

2.4. PROPOSITION. Suppose A € & and & € #. Then ¢ = b, if and only
if, for each £ € H” with f(U) C U\A, there exists g € H”, |gll.= 1, such that
f=¢og.

2.5. COROLLARIES. (a) IfA € %o € U, andB =_(A), then by =0, 0 b, .

(b) If A € and f € % then O(f) D A if and only if there is a g € % with
f=0¢,08.

(c) IfA = {0}, thend, =S, . Tosee this, lete®S . be any singular inner fu nction
and write

g(z) = (loge®S, (2) + 1)/(log e S, (z) — 1)

using any determination of the logarithm. Clearly, ¢S L=8,0g.

2.6. Angular Derivatives. Througout this paper, r denotes a real number,
O0<r<1l.Letge H”, |gl.=1.

If g has radial limit 1 at the point 1 € T, it can be shown that
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. 1—-g() _ [1-g)]
lim——— = lim——— =,
1 1—pr =1 ]-—p

where the common limit ¢ is either real or infinite. Moreover, if ¢ < o, then also
c¢=1lim g’ (r), and we say g has the finite angular derivative ¢ at 1 . Note that
r—1

by Schwarz’s lemma, ¢ > 0. The properties of angular derivatives are developed
by Carathéodory [2, Sections 298-299].

Putting all of this together, we see that g has radial limit. 1 and finite angular
derivative ¢ at 1 if and only if

1-g()
(1) lim sup H-g®l =c<
S

" This allows a very concise statement of a result due to Fisher which is central
to the proof of Theorem I(b).

2.7. THEOREM. (Fisher [6]). Let g € H", ||g|l.< 1, and let S, be the singu-
lar inner factor of S,og . Then

(1} = lim inf 1-r
i = lim inf ————.
~1 |1 —g(r)

3. PROOF OF THEOREM I(a)

First we should point out why the conclusions of Theorem I do not depend
on the choice of the uniformizer ¢,. In [9, Section 5] it was shown that if
f € # and g € % then (fo g € %. Now, if 0 € A and if ¢, and ¢, are
any two uniformizers of U\ A, then there is a conformal mapping ¥ of U such
that

b, =0 and ¢, = ¢1°\,’—1-

We see then that ¢, € £ if and only if ¢, € #. Likewise, ¢, has a factor in
&% if and only if ¢, also has a factor in % that is, ¢, € # if and only if ¢, € Z.

3.1. THEOREM I(a). If A € & and 0 is an isolated point of A , then ¢,
is a discrete singular inner function.

Proof. For convenience choose ¢, so that ¢, (0) > 0. Then ¢, =S, for some
singular measure p . Let G consist of those points § € T for which liIIll S,@xE =0.

It is known that G has full p-measure (see [5, Theorem 1.2]); therefore, it will
suffice to prove that G is at most countable.

Choose & > 0 so that if B = {z:|z| < 8}, then A N B = {0}. Let Q be the open
set w1 (B) C R, with open components Q,, n =1, 2, .... The countability of this
collection follows from the fact that R, is separable. Observe that for each n,
R\, is connected. For suppose that a and b are arbitrary points of R,\Q,,.
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Since R, is connected, we can choose a path v: [0, 1] — R, with v(0) = a, y(1) = b,
and consider I' = w o . I is a path from m(a) to w(b) in U\ A and, because of
the conditions on B, is clearly homotopic in U\ A to a path I' from w(a) to (b)
which misses B. If ¥ is the lifting of I" to R, (i.e., w o ¥y = I') with 3(0) = a, then
4 (1) = b. Thus the path 7 lies in R ,\Q, and connects a to b.

Fix a point £ € G. If LL is the image on R, of the radial segment to £ under
the mapping ¢,, then from some point on, the curve L will lie entirely within
one of the components of Q; call it Q . . The countability of G follows if we
show that the map £— n () is one-to-one. Defining VC U by V=4¢,"(Q,y),
it is enough to prove that VN T = {¢&} .

Clearly ¢ € V N T. Suppose there exists &, # £ with £, € VN T . Because ¢,
has radial limits of modulus 1 almost everywhere on T , we can choose p € T
so that p and —p lie in different arcs of T\ {£,, £} and so that

(2) lrl_)nll |palp)) =1= lanll [da(—1p)] .

Since V is connected, the choice of p ensures that the line segment [p, —p] intersects
V , while (2) ensures that the segment leaves V near both ends. However, this
implies that U\V is not connected, contradicting the fact that

43A (UN\V) =R, \Q n(

is connected. Therefore, VN T = {£}, and the pro'of is complete.

3.2. Remarks. .When A is not a singleton, the measure p above is not a “typical”
discrete singular measure. Results of Seidel and Lohwater (see [4, Theorems 5.13
and 5.14]) imply, for example, that the closed support of pn is a perfect subset
of T with positive (logarithmic) capacity. Moreover, our proof shows that p has
a countable number of points of density, which is strictly stronger than the conclusion
that p is discrete.

4. PROOF OF THEOREM I(b)

4.1. THEOREMII. LetF be an analytic function from U into the left half-plane
{w € C:Rew < 0} such that

(3) lim ilnf(l —1)|F(r)]|>0.

Then, for each M > 0, the disc {w € C:|w — F(xr)] <M} lies in the range of F
for all r sufficiently closeto 1.

Proof. First observe that it is sufficient to prove the conclusion in the case
that M =1/3. For other values of M, just apply this result to an appropriate
dilation F, of F, F,(z) = tF (z), 0 < t < 0. Let ¥ denote the Mobius transformation
Yz =(z+1)/(z—1),z# 1.V is its own inverse and maps the left half plane
conformally onto U . Define g:U— U by g = ¥oF. Condition (3) on F implies
liminf (1 — r)|1 — F(r)| > 0 which converts precisely to the condition (1) on g,

r—1
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so we know that asr — 1,

@) |1—-g@)|—0, |g'(¥)—¢c and
[1-g@|/QA—-1)>c for some ¢, 0 < ¢ < oo,

Choose r sufficiently near 1 that g’ (r) # 0, and define the auxiliary functions

_8.(z) —g)

(2) = (geY,)z); h,(2)
8- 8 lb ’ ’ g,r(o)

Then |g’ (0)| = |g’ @)|(1 — r®) # 0, so h, is well-defined and satisfies

(1) h,(0) =0
(2) h;(0) =1

Now, by a result of Dieudonné (see Tsuji ([10, Theorem VI. 10.]),
h, (U) D {w:|w| <|g.(0)]/16} . Unraveling our auxiliary functions, we see that
g (U) contains the disc D, = {w: |w — g(r)] < |g’ @)|*(1 — r®)®(16) '} and hence
that F (U) contains the set B, = ¥ (D). Of course, F(r) € B, and B, is a disc
because ¥ is a Mobius transformation. We will be finished if we can show that
for r sufficiently near 1 , the distance d, = inf {|F (r) — w|: w € 9B,} is larger
than 1/3.

Fix r temporarily. Let C,, C,, and C, be circles centered at 1 with radii,
respectively,

@ 1-g@ +|g®*Q~-r>)*16)7",

(i) |1 —g(@)], and

(i) |1 —g@)] - g @)*>Q - r*)*@e6) .
We see that C, passes through g (r), the center of D, while C, and C, are tangent
to D, . The images ¥ (C,), ¥ (C,), and ¥ (C;) are also circles centered at 1; and
of course ¥ (C,) passes through F(r), and ¥ (C,) and ¥ (C,) are tangent to B,.
A moment’s reflection shows that the distance d, is either the distance from ¥ (C,)
to ¥ (C,) or from ¥ (C,) to ¥ (C,) . Furthermore, it is clear that the latter distance
is smaller. Let

s;=1—|1—-g@)|-|g’@®*Q-r??*16)7",
S, =1—|1—-g()].

Then

d, =|¥(s,;) — ¥(s,)
[2— I1-g@)] - lg’®]>@ —r?)2(16) " ]_ [2— 11— g@) H
—1-g@| - [g’'®|*Q ~r*)*@6)~" —|1 - g @)




OMITTED VALUES OF SINGULAR INNER FUNCTIONS 97

B g’ @[*1 - 1)*1 +1)* |

1
8|1 —g)|? +—2—|1 —gM|g’ ®*A-1>Q1 +1)?

3 g’ ()] *(1 +1r)* |
1-g@|® 1-g@lg’ ®*A+r)*

8|———| +

l1—r 2

Finally,let r — 1 .The conditions (4) implyd, — 1/2.In particular, for r sufficiently
close to 1, d, > 1/3, proving Theorem II.

4.2. THEOREM. Leth be a nonvanishing functionin H” ||, =< 1, and assume
its singular inner factor has a nontrivial discrete part. Then, for each integer
N = 1, there exists 8 = 3 (N) > O such that h assumes every value w, 0 < |w| <38,
at least N times.

Proof. Let S, be the singular inner factor of h, and assume without loss of
generality that . {1} > 0. By Proposition 2.4 and Theorem 2.7, h = S, o g, where

r

(5) lim inf —— =p {1} .
r—1 |1 -g (r)l

F = ¥ o g then satisfies the hypotheses of Theorem II.

We need one additional property of F . We know from the properties of angular
derivatives that (5) implies lim (1 —g(r))/(1 —r) =¢,0<c¢ <. Therefore,
r—1

].iIIll Img())/(1 —Reg(r))=0. But Img(r)/(1 — Re g(r)) is the tangent of the

angle the line from g(r) to 1 makes with the real axis, so we see that g maps
the radial segment to 1 onto an arc which is tangent to the real axis at 1. As
for F = ¥ o g, this means that

|F(x)| = asr— 1

and that, for each 0, w/2 < 6 <, for r sufficiently near 1,0 < arg F(r) < 2m — 0) .
That is,

(6) ReF(1r)— —o asr— 1.

If N is any positive integer, then by the conclusion of Theorem II, there exists
Iy, 0 <r,<1,suchthat forallr,r,=<r<1,

(7) F(@U) D {w:|jw — F(r)|] < 2wN}.

Let & = exp{Re F(r,)}. Then (6) and (7) imply that exp {F} assumes each w,
0 < |w| < d, at least N times. But h = exp {F} , so we are finished.

4.3. THEOREM I(b). If A € & and 0 is a limit point of A , then ¢, is a
continuous singular inner function.
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Proof. Assume ¢, has a nontrivial discrete factor and apply Theorem 4.2 with
N = 1. We conclude that ¢, assumes every value w # 0 in some neighborhood
of 0, contradicting the fact that 0 is a limit point of omitted values of ¢, . Therefore,
¢, must be a continuous singular inner function.

5. APPLICATIONS

5.1. Inner Functions in H”. In [8], Herrero conjectured that the collections
% and % are closed in H”. Using Theorem I, we prove this is not true for .%,.

5.2. THEOREM III. % is not closed in H”.

Proof: Let A = {0, 1/2,1/3,1/4, ...} C U. Then A € &/ and 0 is .a limit
point of A. For n = 2, let a,, = 1/n and define f, = {, ©$, . Each f, is a singular
inner function, and ||p, — f,[|.— 0 as n — . By Theorem I(b), , € £, so it suffices
to prove that f, € % , n = 2. But this follows from Theorem I(a) since, by Corollary
2.5(a), f, is the uniformizer of U\l[!an (A) and O is an isolated point of U, (A).

5.3. Herrero’s conjecture that % = .% remains open. Our results seem to lend
support to this conjecture in the following sense. According to Theorem 4.2,

5.4. If f is a singular inner function with a nontrivial discrete factor, then
there is a & > 0 such that o f fails to be singular if |a| < 3.

That is, f is isolated in H” from any singular inner functions of the form
Y, of. Can it be that f is isolated from all singular inner functions (except possibly
those with a common factor)? For example, if f € % , must there exist an £ > 0

such that ||f — g||., = ¢ for every g € % which is not a unimodular constant times
£?

5.5. We can also use Theorem I to answer two questions raised by Caughran
and Shields. In [3] they asked whether a discrete singular inner function can
omit an uncountable number of values in U. The answer is yes; ¢, is such a
function whenever A € 7 is an uncountable set with 0 as an isolated point.

Seidel proved (see [4, Theorem 5.13]) that if p is a singular measure whose
closed support in R has an isolated point, then S, omits no value in U other
than 0 . In an unpublished manuscript Caughran and Shields suggest that this
conclusion may hold under the weaker hypothesis that the discrete part of p. has
a closed support with an isolated point. The following example shows this to be
false.

Choose A € &7 to be uncountable with 0 as an isolated point. Then ¢, is
a discrete singular inner function, and without loss of generality we may assume
¢, =S, with p {1} = 1. Construct an inner function g so that

(a) g has radial limit 1 at 1;
(b) g has a finite angular derivative at 1; and
(c) g has a finite angular derivative at no other point of T.

Such a function can be constructed, for example, by an easy modification of the
method of Lemma 5.9 in [9].
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Now consider S, =S o g . It was shown in [9, Section 5] that v can have
a point mass only at a point where g has a finite angular derivative. Thus v
has at most one mass point. Since p {1} =1, S, is a factor of S, , so by Theorem
2.7, v does have point mass at 1. We conclude that v has precisely one point
mass, yet S, = ¢, o g omits the uncountable set A.

5.6. In [6] Fisher proved that forh € H”, ||h||,, = 1, the set of a in U for which
¥, oh has a discrete singular inner factor is at most countable. Let {p;};_, be
the (countable) collection of masses associated with all the discrete singular factors
of {, oh: a e U}. In Theorem 2 of [6], Fisher proves that at most a finite number
of the masses p; exceed each 3 > 0. In a private communication, Fisher asked

whether, in fact, 2 p; <. We can answer this in the negative. Note first
j=1

that if p is a singular measure, then w(T) = —log |S, (0)] . Using the set A and

the notation from the proof of Theorem III, let h = &, . Since each f, =y, oh

is totally discrete, the associated masses sum to —log|f,(0)|. But as n— o,

I£.(0)] —> [h(0)| # 1, s0 > —log [£, (0)] = 0.

6. COMMENTS AND QUESTIONS

6.1. Let p be a singular measure with nontrivial discrete part. Define 8 (p.)
to be the largest value of & for which the conclusion of 5.4 above holds with
f=S,. What can one say about the map p— 8 (n) ?

For instance, what are necessary and sufficient conditions for & () to be less
than 1 ? It is necessary that the closed support of u be a perfect set of positive
capacity in T (see Remark 3.2); however, this is far from sufficient. Using the
methods of Herrero [8], for example, it can be shown that if p has a point mass
at the endpoint of any arc where S, is analytic, then 3 (n) = 1.

When 8 () < 1, its size would seem to depend on characteristics of the discrete
part of n . To be specific, perhaps if we normalize p in an appropriate way,
3 (i) will necessarily be larger than some absolute constant. This would not be
too surprising since the existence of 8 (i) depends on Theorem II, which is a result
of Bloch type.

6.2 Wehave been concerned primarily with the omitted values of inner functions.
To what extent do our results carry over to exceptional values of inner functions?
More generally, the exceptional set E (h) makes sense whenever ||h|, < 1. Do our
results have analogues in the general case?

Consider this result, for example: If f € %, then the set
{a € O(f): ¥_o f has a factor in #, }

is at most countable. This follows trivially from our work because this set is
discrete, but it also is a special case of Fisher’s result quoted in Section 5.6. Does
Fisher’s result hold because the o’s for which ¢ _oh has a discrete singular inner
factor form a discrete set?
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