APPROXIMATING DISKS IN 4-SPACE

Gerard A. Venema

1. INTRODUCTION

In this paper we show that certain topological embeddings of the (n — 2)-disk
into a PL n-manifold can be approximated by locally flat PL embeddings. The
problem of approximating topological embeddings has been studied extensively
and approximation theorems are already known in all codimensions other than
two: Miller [8] proved that all topological embeddings of manifolds can be PL
approximated in codimensions greater than or equal to 3, and Ancel and Cannon
[1] have recently used a technique of Stanko to prove a locally flat approximation
theorem for manifolds in codimension 1. Qur main theorem applies to 2-disks
embedded in a 4-manifold.

THEOREM 1. If D: I’ > M* is a topological embedding of a disk into a
PL 4-manifold, then D can be s-approximated by a locally flat PL embedding
E: I - M* for every € > 0. Furthermore, if D|0I° is PL and D(I?) C Int M*
then E can be chosen so that E|oI*> = D|I°.

If DI’) C aM*, we cannot have E|oI° = D|dI°. For example, if D is the cone
from the center of the 4-ball B* to a trefoil knot on B, then dD does not bound
a locally flat PL disk in B* [6]. However, it is still unknown whether it is possible
to have D (9I°) C aM* in this case.

It is natural to ask whether Theorem 1 is true when I” is replaced by some
other 2-manifold, since in codimension 3 an approximation theorem for manifolds
follows from one for disks. In general it is not; an example is given in [5] of
a topological embedding of the 2-torus S' X S' into the 4-sphere S* which cannot
be approximated arbitrarily closely by PL: embeddings (not even by PL embeddings
with non-locally flat points). The answer is unknown for embeddings of S in
S*. The following theorem, which can be proved in exactly the same fashion as
Theorem 1, gives a positive answer for certain 2-complexes.

THEOREM 2. If K is a finite 1-complex and h: K X I » M* is a topological
embedding, then h can be approximated by PL embeddings.

Any topological disk in a topological 4-manifold has a neighborhood which
can be immersed in R* [7]. This neighborhood inherits a PL structure from R*
and so Theorem 1 can be used to find an approximation which is locally flat
and PL with respect to the inherited structure. Since local flatness is a topological
property, the following theorem is a consequence of Theorem 1.

THEOREM 3. Any topological embedding of the 2-disk into a topological
4-manifold can be s-approximated by locally flat embeddings for every € > 0.
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In high dimensions we can prove the following theorem.

THEOREM 4. Suppose M" is a PL n-manifold and D: I'> - M" is a topological
embedding. If D|I"® X [0, 1/2] can be s-approximated by locally flat PL.embeddings
for every € > 0, then D has the same property. .

COROLLARY 1. IfD:I"?— M" is a topological embedding and if there exists
an open set U C I such that D|U can be s-approximated by a locally flat PL
embedding for every ¢ > 0, then D has the same property.

COROLLARY 2. If D:1"?— M" is a PL embedding, then D can be s-approxi-
mated by a locally flat PL. embedding for every € > 0.

Because of Corollary 2, the part of the hypothesis of Theorem 4 concerning
local flatness is unnecessary; i.e., it is enough to assume that D|I"? X [0, 1/2]
can be approximated by PL embeddings. A simpler proof of Corollary 2 is given
in [9].

The rest of this paper is organized as follows. All definitions and notation
are listed together in Section 2. In Section 3 an inductive lemma is stated and
the proof of Theorem 1 is reduced to this lemma. Two further lemmas are stated
in Section 4 and Lemma 1 is proved assuming them. Lemmas 2 and 3 are proved
in Section 5, and in Section 6 the modifications necessary to prove Theorem 4
are explained.

2. NOTATION

Throughout, M" will denote a piecewise linear (PL) manifold of dimension n.
The metricon Mis p,andif X C M ande > 0, thenN, (X) = {x € M|p(x, X) < £}. The
interval [0, 1] is denoted by I, and D denotes a topological disk. The same nota-
tion is used for both the embedding D: I"> — M" and for the image D = D(I"®) C M.
We say that E is an e-approximation of D if

pDx),E®) <e foreveryx € I"2

If we wish to approximate D, we can first push D into the interior of M and
then do the approximation there. Thus we will always assume that this has been
done and that we are working in the manifold-without-boundary int M. To say
that an isotopy h, of M moves points e-parallel to fibers of D means that for
every p € M, either h,(p) = p for every t or there exists one x € I"® such that
h,(p) € N (D(x X I)) for every t.

3. AN INDUCTIVE LEMMA

In Sections 3-5, M* will denote a PL 4-manifold and D: I? - M* a topological
embedding.

LEMMA 1. Suppose 0 =a, < a,_,<..<a,=a,=11is a partition of [0, 1]
and 0 <j=<Xk. For every ¢ >0 there exists a 8> 0 such that if E: I’ > M* is a
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locally flat PL embedding satisfying
(1) E(I X [a;, a;_4]) C N;(D(I X [a,, a;,_,])) foralli=]j,
(2) E(IX [0,3a]) C N,(D(IX [0, a])) foralli, and
3) EXDCN,DxXI)forallx €1,

then E can be replaced by a locally flat PL embedding E’ satisfying (1)-(3) with
j replaced by j + 1 and d replaced by .

Proof that Lemma 1 implies Theorem 1. Choose ¢, > 0 and a partition
O=a,<a.,<..<a=3,=1
of [0, 1] such that if E: I’ - M* is any embedding satisfying
E(IX [a;,a;_,]) C N, (DI X [a;, a;_,])) fori=1,..,k and
ExXI C NEI(D (x x1I)) for every x € 1,

then p(D, E) <e. Inductively apply Lemma 1 with j=k —iande=¢,_, for
1=2,3, ...,k —1to find g > 0 corresponding to the & of the conclusion. Now we
need only find E satisfying (1)-(3) with 8 = ¢,_, and j = 1, since then our choices
of ¢, will go to work for us and eventually produce an E’ satisfying (1)-(3) with
j = k — 1 and 8 = ¢,. This is enough by the choice of ¢,.

Choose g, > 0 such that any path lying in the union of the g,-neighborhoods
of 3 fibers of D lies in the ¢, ,-neighborhood of any one of these fibers. (Here
a fiber of D is D(x X I) for some x € 1.) Such an ¢, can be found using the uniform
continuity of D and D™.

There exists a neighborhood U of D(I X 0) which strong ¢, /2-deformation retracts
to DI X 0) in M. Let E: I X 0 — U be a PL g, /2-approximation of D|I X 0. Extend
E to E: I X I - U with the property that

ExXxI) C NEk/2 DxEXxI) for every x € 1.

(E will have very short fibers.) E can also be chosen so that E is locally flat.
By the choice of U, there is a homotopy of E(I X 1) first down to D(I X 0) and
then along D to D(I X 1). For each x € I, the path of E(x, 1) under this homotopy
will lie in the g,-neighborhood of one fiber of D. By general position, it may
be assumed that the track of the homotopy misses E(I X 0). By [2, Theorem 4.1]
there is a radial engulfing isotopy h, which pushes E(I X 1) down near D(I X 1)
and does not move E(I X 0). Furthermore, any point of M which is moved by
h stays g,-close to 2 fibers of D. Thus for any (x,y) € I X I, hE(x, y) lies in

(D (x X I)) union the g, -neighborhoods of two other fibers of D. The choice of
£, therefore implies that h,E(x, y) € N, (D (x X I)).

Finally, reparametrize I X I so that hlE(I X [0, a,]) C Nek_1 (DA x 0)). Thenh,E
is the locally flat PL embedding needed to complete the proof. If D|oI® is PL,
then D|3I? and E|oI” are close PL embeddings, so there is a small ambient isotopy
pushing E|dI? to D|8I® [3]. Thus we may assume that D|sI* = E|4I” in this case.
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4. PROOF OF LEMMA 1

LEMMA 2. Suppose that 0 < a =< 1. For every € > 0 there exists a 8 > 0 such
that if P and Q are disjoint, finite 1-polyhedra in N,(D({I X [0, a])), then there
is a PL isotopy h, of M* such that

(i) h,=1id,
(i) h,=1i1don N,(D( X [a, 1])) U Q and outside of N_(D(I X [0, a])),
(iii) h,((N,(D(I X [a,1]))) O P, and
' (iv) h, moves e-parallel to fibers of D.

LEMMA 3. Suppose that 0 = a, < a,, <...<a, =1 is a partition of [0, 1]
and 1 = j =< k. For every € > 0 there exists a & > 0 such that if E: 1> > M" is a
locally flat PL embedding satisfying (1)-(38) and L? is a finite 2-polyhedron in
M* then E can be replaced by E’ satisfying (1)-(3) with & replaced by € and having
the additional properties that E' (I X [a;,,, 3;]) N L’C N, (DI x [a;.1, 1])) and
E'lIx0=E|l X O0.

Proof of Lemma 1. Choose ¢, > 0 such that £, = ¢ and any path lying in the
union of the 2¢ -neighborhoods of two fibers of D lies in the e-neighborhood of
either one of them and such that

N, (DA X [0,a;,,1)) N N, (DI X [a;,1])) = §; and
N, DOIX0) NN, (DAX [a;,,,1]) = 9.
Let 3, > 0 (3, =< ¢,) be the 3 of the conclusion of Lemma 2 corresponding to

e =¢, and a = a;, ;. Let V be a PL manifold neighborhood of D(I X [0, a;,,]) lying
inside N, (D (I X [0, a;,,])). Choose 3, (0 < 3, < min{3,, ,}) such that

Naz(D (IX [0, a;,]) CV.
Let 3 > 0 be the & of the conclusion of Lemma 3 corresponding to € = 3,. Suppose

E satisfies (1)-(3) for this choice of 3.

Let T be a triangulation of V with mesh less than or equal to ¢, such that
no simplex of T intersects both Cl(NSZ(D (I X [a,,4, a;])) and the complement of
N,, (DI X [aj,,, a;])) and such that E N V is a subcomplex of T. Let L? be the
union of all 2-simplexes of T which do not intersect N, (D(I X [a;,,, aj])). Let V,
be the dual skeleton of V. Then dim(V, — N, (D(I X [a;,,, a]))) = 1.

By Lemma 3, there exists an E’ satisfying (1)-(3) with & = 3, and having the
property that E' (I X [a;,,, a;]) N L?>C N;, (D X [a;,,, 1])). In fact, since
L>’cvc N, (DI X [0, a;,,])), _
E'(IX [a;,,,3]) N L>C N, (DI X 2, 1)) N N, (DA X [0, a;,,]))
C N82 (DI X [a;,,, a;]1).

Because E'(IX 0 =E(IX0) CLEE(IX0NV,=4¢.
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Thus by Lemma 2 there exists an ambient PL isotopy h, such that

E’ (I X 0) is not moved by h, ,

h|N, (DI X [a;,, 1])) =1id,

h, = id outside N, (D(I X [0, a;,,])),

h, moves points ¢,-parallel to fibers of D, and

V. Ch (N.(DAX [a;,,, 1]))).

Now L’ C [M — E' (I X [a;44, 8])] U N, (DI X [a,, a;])),s0 let f, be a push
across the join structure between L? and V, so that
V C £ih, (N, (DA X [a;,, 1D U [M - E I X [a,1,3])] U N, , (DA X [a;,,, aj])) .
Note that f, is an €,-push, since the mesh of T is that small, and that

£, IN,, (DI X [a;,4, a;])) U L* = id.

The embedding E” = h;' f;' E satisfies parts (1) and (3) of the conclusion of
Lemma 1. E” also satisfies (2) for i = j + 1. Since E"(I X 0) = I(I X 0), a simple
reparametrization of I X [0, a;,,] gives an E” which satisfies (2) for all i.

5. PROOFS OF LEMMAS 2 AND 3
The proof of Lemma 2 is much like the proof of [4, Proposition 4.1], and
so only a brief outline is included here.
Proof of Lemma 2. As in [4], choose & > 0 so that N, (D(I X [0, a])) can be
homotoped in N, (D (I X [0, a])) to N, (D(I X [a, 1])) moving only points of
N, (DT X [0, a])) — N; (DI X [a, 1]))

and moving close to fibers of D. By general position, it may be assumed that
the track of the homotopy misses Q. Apply [2, Theorem 4.1] to get the desired
isotopy.

Proof of Lemma 3. Choose g, > 0 such that any path which lies in the union
of the ¢,-neighborhoods of three fibers of D lies in the e-neighborhood of any
one of them. Choose c,, c;, ..., ¢; such that ¢; > a; and

DI X [a;44, ¢]) C N.(DI X [a;,,, &]))
and let ¢;,, = a,,,. Choose ¢, > 0 such that the collection
{N,,(DA X [y, &N},

is pairwise disjoint. Choose £; > 0 such that any loop in N_ (D(x X [c;,,, a;]))
for some x €1 and some i=j bounds a singular disk in N_ (D(x X [c;,,, a;]))
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and such that N, ,(D(Ix¢) CN,_ (DIX [c;,a_,]) NN, DAIX [a,,, a])).
Choose €, > 0 such that any two points in N, (D(I X ¢))) N N,, (D(x X D)) for some
x € I and some i = j + 1 can be joined by an arc in N, (D (, ¢;)). Finally, choose
8> 0 (3 = ¢,) such that

N,(D(I x [0, a;,,])) N N, (DA X [a;,5, 8]) C N,,(D(I X a,,))

)

and such that N, (D(I X ¢;)) separates D(I X a;) from D(I X a;_,) in
N, (DI X [a,;, a;,_,]))

for all i = ;.

- Suppose E and L are as in the lemma. Put E(I X [a;,,, a]]) in general position
with respect to L keeping E(I X 0) fixed. Then E(I X [a;,,, a;]) N L consists of
a finite number of points, say {E(x,, t;)}. Consider the collection of arcs {A;} defined
by A; = E(x; X [a;,,, t;]). For each i, there is a finite collection {B;,} of disjoint

subarcs of A, such that A, — U B,,C N,(D(I X [0, a,,,])) and the ends of the
’ ;

arc B;, can be joined by an arc C;,C N,_,,(D(x; c;,,)). Now C, .U B; , bounds a

€

singular disk D; ,C N, (D(x; X [c;, 4, a])) .

Put all the disks D;, in general position with respect to E, each other, and
the arcs A;. D, N E( X [a;, a;_,]) consists of a finite number of points for each
pair «, say D, N E(I X [a; a;_,]) = {P, ;};. Let A, ;denote the fiber of E from
P ;to E(I X a;). As before, there is a finite collection {B,;,}, of disjoint subarcs

of A, such that A_, — U B,.,C N, (D(I X [a;,,, a;])). Join the ends of the arc
Id
B,:, with an ¢,/2-arc C_; ,. Now each C,; ,U B, ;  bounds a singular disk
D,;, C th D X [g, a;_,]1))

for some x.

Continue this process until a finite collection of singular disks is defined in
each of the sets N_(D(I X [¢;,;,8])), i=1,...,j.

Consider one D, C N,_(D( X [c,, a,])). Then 4D, = B, U C,. We wish to push
B, to C, with an ambient isotopy that only moves points near D,. This can easily
be done using the techniques of [3]. We must be careful, however, since there
will be one isotopy corresponding to each of the singular disks inN,_ (D(I X [c;, a,])),
and we do not want any point of E to be moved by more than two of these isotopies.

There are two kinds of points on E which are near to D, and consequently
must be moved by the isotopy: (a) points of E near a point of E N int D, and
(b) points of E near B,. D_ can be adjusted slightly so that no point of type
(a) is moved into a disk D, B # «, and thus these points will be moved only
once. A neighborhood of D_ on E will also be moved and after the isotopy may
intersect some of the disks D, B # a. However, on D, these points are now points
of type (a) and thus will be moved at most once more.
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After each of the arcs B, C N_(D(I X [c,, a,])) has been moved to the corre-
sponding C,, look at the disks D, C N, (D(I X [¢3, a,])). For each point of D; N E,
the fiber of E down to the a, level is now contained in N (D(I X [a,, a,])), so
by moving only points on the disk E itself, we can push the a, level through
D, and get that D, N E(I X [a,,a,]) = @. Do this for every intersection point
of every D;. Now get PL isotopies moving across the disks D, as above.

If this process is continued back to the very first disks chosen, the end result
will be a modified E which satisfies (1)-(3) with & replaced by &, agrees with
the original in I X 0, and has the property that the image of each arc A, is contained
in N.(D{ X [0, a;,,])). Furthermore, all the modification has been done in

N (D@ x [a;, 1])).

The proof of the lemma is now completed by simply pushing the a;,, level out
over each of the points of L N E(I X {a;,,, a;]) exactly as was done in clearing
the intersection of D, with E.

6. HIGH DIMENSIONS

We wish to use exactly the same techniques to prove Theorem 4 as were used
to prove Theorem 1. A problem arises in replacing Lemma 2 with a codimension
3 engulfing lemma: it is not possible in general to engulf one codimension 3 set
keeping another fixed. This difficulty is overcome using the additional hypothesis
of Theorem 4 to separate the two sets. We will not repeat the proof of Theorem
1 here, but will merely state the corresponding n-dimensional lemmas and indicate
the changes that must be made in the 4-dimensional proofs given earlier. The
procedure is much like that in [10].

In each of the following lemmas, D: I"">— M" is a topological embedding of
an (n — 2)-cell into a PL n-manifold.

LEMMA 1’. Suppose 0 =a, <a,_,<..<a,=a,=1 is a partition of [0, 1]
and 0 = j=Xk. For every € > 0 there exists a > 0 such that if E:I"">— M" is
a locally flat PL embedding satisfying

1) Eq"° X [a;, a;_,]) C Ny(DA** X [a;,a,_,1)) foralli=j,

2) Eq°° X [a;,8;,,]) C Ny(DI"® % [(1/2)a;,, 1/2)a,_,])) foriz=j+2,
(3") EI"? X [a;,,, 8]) € N;(DI*™® X [(1/2) a;,,, a])), and

(4’) E(x X I) € N,(D(x x I)) forallx € "%,

then E can be replaced by a locally flat PL. embedding E’ satisfying (1’)-(4") with
jreplaced by j + 1 and 3 replaced by «.

LEMMA 2’. Suppose that 0 <a <b < 1. For every ¢ > 0 there exists a $>0
such that if P* (k = n — 3) is a finite k-dimensional polyhedron in

N, (DI X [a, b])),

then there exists a PL isotopy h, of M" such that
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(i) h, = id,

(ii) h, = id on N (D(I"® X [b, 1])) and outside of N (D (I""? x [a, b])),
(iii) h,(N (DI*® x [b, 1]))) D P*, and
(iv) h, moves points e-parallel to fibers of D.

LEMMA 3’. Suppose that 0 =a, <a,_, <...<a, =1 is a partition of [0, 1]
and that 1 < j < k. For every € > 0 there exists a 8 > 0 such that if E: 1" > M"
is a locally flat PL embedding satisfying (1')-(4") and L? is any finite 2-polyhedron
in M", then E can be replaced by a locally flat PL embedding E’ satisfying

(@) E'I" X [a;,a,,]) C N(DI"® X [a;,a,,])) foralli<]j,

(b) E'(I"° X [a;,8,_,]) C N.(D(I"° X [(1/2)a;, (1/2)a;,,])) foriz=j+3,
() E'(I"° X [a;,, 3]) C NDA"° X [(1/2)a;,,,4]) fori=jj+1,

(d ExXI) CNMDxXxXI) forallx eI"?, and

(e) E'(I"° X [a;,,, a;]) N L C NDI"® X [a;,,,1])).

The proof of Lemma 3’ is exactly like that of Lemma 3. In fact, the argument
is a little easier for n = 5 since the singular disks D, in the proof of Lemma
3 can be realized as locally flat, pairwise disjoint, embedded disks. Similarly,
the proof of Lemma 2’ follows that of Lemma 2 and these two lemmas combine
to prove Lemma 1’.

To prove Theorem 4 using Lemma 1’, proceed as follows. First choose a partition
0=a,<..<a,=1 as in the proof of Theorem 1. Next use the hypothesis.of
Theorem 4 to find a locally flat PL. embedding E: I""?— M" which satisfies (2')
for alli. Then [2, Theorem 4.1] can be used to pull E(I"~? X 1) down near D(I"™? X 1)
keeping E(I"™® X [0, a,]) fixed. After that, it is just a matter of applying Lemma
1’ inductively to position the approximation one slice at a time.
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