SINGULARITY OBSTRUCTIONS TO IMMERSIONS

Bruce F. Golbus

1. INTRODUCTION

Let M™, N" be connected C* manifolds of dimension m and n, respectively,
with m <n and M™ closed (compact, without boundary). Let f: M™ — N" be a
continuous mapping. Our initial purpose here is to introduce three sets of (cohomo-
logical) homotopy invariants for f and show they are obstructions to the process
of deforming f to a smooth (C”) immersion g: M™— N". By Smale-Hirsch theory
[5] any obstruction to such a deformation must involve finding a vector bundle
embedding ¢: TM — TN covering f, and in fact the vanishing of these invariants
for an immersion is derived as a consequence of a more general proposition concerning
the existence of bundle epimorphisms §: £" — 1%, (" — M™, 7*— M™ real vector
bundles over M™ of rank n, p, respectively, n > p). Roughly speaking, our approach
to this problem involves decomposing the vector bundle Hom (¢, 1) - M™ into its
“singularity subbundles” S, (§,7), 0=i=<p, and asking when a section

o € T” (Hom (£, 7))

may be homotoped so as to avoid all the S;(§,7),i > 0. Using the (Poincare duals

of the) fundamental homology classes associated to each S;(§,;7) [13], obstructions
to such a deformation are defined.

In Sections 2.1 and 2.2 we give the necessary background information on the
homological properties of the S; (£,7) and prove the Proposition on bundle epimor-
phisms [Proposition 2.2.2]. The basic obstruction theorem is then given in (2.3)
[Theorem 2.3.2].

In Section 3, we use the obstruction theorem together with a result due to
R. Thom and I. Porteous [11] to study immersions of M™ into CP", complex projective
space of 2n real dimensions. The starting point here is the fact, which follows
from the well-known theorem of A. Haefliger ([3], Theorem 1, p. 109), that every
f: M™— CP™ deforms to a smooth immersion. The main result of this section
[Theorem 3.1.2] then, deals with the question of when this result may be improved
and when it is best possible.

Apart from its intrinsic interest, there is a second motivation for considering
C” immersions into CP”. Namely, in [6], A. Holme raised the question of computing
the minimal dimension n(V™) for which V™, a non-singular projective m-variety
(over C) may be embedded holomorphically in CP”. Since a negative result for
C” embeddings into CP" is necessarily one for holomorphic embeddings (for M™
complex) the results of (3.1) carry over to give information on this problem. Pursuing
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10 BRUCE F. GOLBUS

this question further, we conclude by utilizing the construction of Section 2 in
order to produce complex “singularity obstructions” to deforming f: V" — CP" (V™
any closed, connected complex m-manifold) to a holomorphic immersion provided
n =< 2m—1 [Theorem 3.2.2, Corollary 3.2.3].

The author would like to thank H. I. Levine for his helpful criticisms and
suggestions regarding some of the material in this paper.

2. THE SINGULARITY SUBBUNDLES

(2.1) Let M™ be a closed, connected C* m-manifold. For £" —» M™, 1°— M™
real vector bundles over M™ of rank n and p, respectively, with n > p, let

Hom (¢, v) > M™
denote the vector bundle over M™ of rank n - p with
Hom (g, 7), = fiber of Hom (£, 7) over x € M™ = {R-linear mapsd:£ ,— 7_}.

Set S;(¢,7) equal to the submanifold (subbundle) of Hom(&,7) consisting of those
elements with rank equal to p—i, for 0 < i < p. Similarly, forn"—- M™, 0®*—> M™
complex vector bundles over M™, one may form the complex vector bundle

N

Hom:(n,w)— M™

and then decompose this bundle into its complex singularity subbundles
S¢ (m,w). (For background on these first-order singularities, see [9], p- 372).

It is a consequence of the work of Borel-Haefliger ([13], p. 23-24; [4], p.
8-02) that for 0 < i =< p, the topological closure

Si(gsT) =Si(€',7) U Si+1 (g,’l') U .U Sp(ng)a

carries a fundamental class in H,( S;(,7 ); Z,), singular homology with closed
supports, where t = dim(S; (§, 7)). Also, if -M™ is orientable, the complex space

S¢ (m,») possesses such a class (Z coefficients). Further, according to [12], if the

bundle Hom (¢, 7) - M ™ is orientable, n—p = 2«, j = 2r, then S, () has a funda-
mental class over Z.

Let [S;(§7)] denote the image of the fundamental homology class of S;(¢57)
in H« (Hom(%, 1); Z ,) under the inclusion homomorphism. Also, denote by [S¢ (q,w) ]
(resp. [ S,, (§7)]) the element of H, (Hom; (n,w);Z) (resp. H,(Hom (¢,7 ); Z))which
is the image of the fundamental class of S¢ (n,w) (resp. S, (£5)). Finally, define
P.D.[S;(,7)] € H*(Hom(&, 7);Z,) to be the image of [S;(£,r)] under Poincare
Duality. (Since Hom(§,7) is a paracompact manifold, by [1], p. 20 and [14], Corollary
7, p. 341, one has that P.D.[S;(§,7)] is an ordinary singular cohomology class).
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Similarly define P.D.[ Sf (n, ) ] € H* (Hom¢ (v, w);Z) and

P.D.[S,, ¢,7)] € H*Hom ¢, );Z)

when the corresponding fundamental homology classes exist.

(2.2) Let M™ be, as usual, a closed, connected C” m-manifold and
IT: Hom(¢,7) > M™

the Hom bundle of rank n - p as in (2.1). To simplify notation, we make the following
definition:

Definition 2.2.1. (1) Let (I1*) “:H*(Hom(t, 7); Z,)— H*(M™;Z,) be the in-
verse of the cohomology isomorphism induced by the bundle projection I1. Define

b (g, 1) € H" PP (M™;Z,), O=i=p,
by b;(& 1) = (IT*) "'P.D. [S;(&,7)]. (2) Make the further assumption that M™
is orientable and denote by £, 7€ the complexification of the bundles & 7 re-
spectively. Then, for 0 < i < p, define b® (¢,7) € H¥* """ (M™;Z) by

bS (g, 7) = () ' P.D.[S] (¢, +°)].

(Here Hc:Homc(gc, 7¢)— M™ is the projection). (3) Suppose that both M™
and the bundle I1: Hom(§, ) —» M™ are orientable. Then for n—p = 2a, j = 2r,

define r; (£, 7) € H'® """ (M™; Z) to be (I1*) 'P.D.[S,, x)],0=j= p.
The meaning of these cohomological invariants is demonstrated by the following

result, which will be the main tool in defining obstructions for smooth immersions
in the next section.

PROPOSITION 2.2.2. Let M™, Hom(£,r) > M™ be as above. Then

(1) The classes b, (&,7), bf (¢,7) and r; (&) are invariants of the isomorphism
classes of £" and 1*; and

(2) Suppose there exists a bundle epimorphism ¢é: £ — 1%; i.e., a vector bundle
mapping ¢ such that for all x € M™, b, :&,— 7, is of maximal rank. Then, for
1 =1i,j = p, the above cohomology classes vanish.

Remark. This Proposition is a generalization of Theorem 4.2 of [2].

Proof. We will prove the proposition for the classes b, (& 1) (the proof for the
r; (§7) being identical) and indicate briefly the additional statements needed to
extend the proof to the complexified classes bf (¢,7). (1) It suffices to show that
if ,:&£€>¢&,¥,:7—> 7’ are vector bundle isomorphisms then there exists an
isomorphism ¢: Hom(§, 1) — Hom(¢’, v’ ) and sections

g EI'"(Hom(§, 7)), o €T"(Hom(’, "))

such that the following diagram commutes:
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Hom(§, 7) i Hom(¢/, 77)

Mm

Indeed, if 0 :M™ — Hom(£,7) is any section one has that ¢ * = (IT *) "' on cohomology.
Then the equality b; (£, 7) = b;(¢’,7"), 0 =< i < p, follows immediately noting that
¥ of maximal rank on each fiber implies that §(S; (¢ 7)) = S,(¢’,7'). To verify
the existence of the above diagram, however, one need only observe that if

o € I'"(Hom(§, 7)),

o’ = Yoo is the desired section of Hom (£’,7”), the isomorphism  being determined
in the obvious manner by ¥, and .

The proof of (2) is based on the following lemma:

LEMMA 1. Suppose that o € I'" (Hom(,7)) is transversal to each of the
submanifolds S, (&,7). Set S;(¢) = o 7' (S, (§,7)). Then for 0< i< p,

(1) S; (o) is a regular submanifold of M™ of codimension i(n—p-+i).
p—i
@ 8:(0) = | ] Susl0) =07 (5,7,

j=0

(3) S;(c) possesses a fundamental homology class (over Z,). Further, if | S;(o)]
denotes the image of this class in H,(M™;Z,), then

b; (£, 7) = (II*) 'P.D. [S;(¢,7)] =c*P.D.[S; ,7)]
= P.D. [S;(0)] € H'" " M™;Z,).

Proof. (1) follows from standard properties of S;(¢,7) and the transversality
of 0. (2) This may be found in ([9], p. 373). (3) By (2) and ([4], p. 8-02), it
suffices to show that S;(o) is an ANR. Further, according to a theorem of S.T.
Hu ([7], Theorem 7.1, p. 168) this is equivalent to showing that S,(c) is locally
contractible, which one accomplishes as follows: By (1), the manifold topology
of S;(0) agrees with the relative topology induced from the inclusion of S;(o)
into M™. Thus if x € S;(c) and V is any open set in S;(c) containing x, V is
of the form V' N S;(co) where V' is open in M™. Since M™ is locally contractible,
there exists an open set U’, x € U’ C V’, with U’ contractible to x in V’; ie.,
there is a continuous map G’: U’ X I - V’ with

G4 = inclusion and G;(U’) =x.

Setting U = U’ N S;(o) and G = G’ |U X I then provides the desired contraction,
proving the lemma.

Now, let ¢:£" — 7" be a bundle epimorphism. Define o, € I'"(Hom(%, t)) by
0,(x) =0¢,:£,— 7,. Then Image(c,) N S;(§,7) = B,1 =i=p, by the definition
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of the S;. As S,(§7) is open in Hom({,7), it follows that o, is transversal to
each S;(£,7). Hence lemma 1-3 may be applied and one has

bo(£ 1) = cXP.D.[S,(,7)] = P.D.[S,lo,)] =P.D.[M™],=1€ H°(M;Z,).

Further, for i>0, b;(§,7) = o2 P.D.[S;¢,7)] = P.D.[S;(c,)] =P.D.[#] =0, and
so the proposition is proved for b, (7).

To complete the proof for the classes bc (g;r), let o, o, € I'"Homg (¢ € 1%)) be
the complexification of o,. That is, if £€ (resp. %) is the complex bundle with
total space £® §_gresp 7@7) and complex multiplication i - (v, w) = (—w, v), then

o, 1s given by o, (v, w) = (U¢(V) g, (w)). As it is trivial to show that for x € M"™,

real rank (s ,) = complex rank (o, ), the sets S;(o,) and Sc (0' + ) will be identical
in M™ and the proof for this case will follow exactly as in the real case.

(2.3) Let M™ be a closed, connected C” m-manifold and N" a connected C*
n-manifold, (not necessarily compact), with n > m.

Definition 2.3.1. (1) Let f:M™ — N" be a continuous mapping. Define
b,(f) € H'®*™™YM™;Z,), O<i=m

by b;(f) = b;(f* TN, TM). Set B(f) =1®b, (f)@ -®b_(f)e H*M™;Z,). (2)
Assume that M™ is orientable. Then one defmes b (f ) to be

b® f*TN® T™F®), O=<i=m,

and B (f) to be 1®bS(f)® --- @b (f) € H* (M;Z). 3) Assume that both M™
and N" are orientable manifolds. Then for n—m = 2a, j = 2r, 0 < j = m, set

r;(f) =r;,(f*TN,TM), and R(f) =1® ---®r_ (f)€ H*M™;Z).

Using Proposition 2.2.2 one may now interpret these classes as obstructions
to deforming f to a C® map g: M™— N" such that the tangent map of g, T(g),
avoids all the singularity subbundles of positive codimension.

THEOREM 2.3.2. Let fM™— N" be a continuous mapping. Then (1) Each
of the total cohomology classes B(f)), B (f) and R(f) is a homotopy invariant of
f. (2) Suppose that f is homotopic to a smooth immersion g. Then

B(f)=1€ H°M™;Z,);
and B*(f) =R(f) =1 € H°M™;Z).
Proof. (1) is an immediate consequence of Proposition 2.2.2-1, since

f=g=f*TN = g*TN.

To see (2), note that if g: M™ — N" is an immersion, T(g) defines a vector bundle
embedding of TM into TN covering g or equivalently an isomorphism of TM onto
a subbundle of g*TN. There is thus defined an isomorphism
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¢,:g*TN-> TM®@v™" ™™,

where v"™™ is the subbundle of g*TN orthogonal to T(g)(TM) via a Riemannian
metric. ‘Clearly the bundle mapping ¢: g*TN — TM given by ¢, = (p,),.° (¢,),,
where (p,), is the linear projection TM, ® v, ,— TM,, is a bundle epimorphism.
Hence Proposition 2.2.2-2 may be applied to yield the theorem.

3. APPLICATIONS

(3.1) Let M™ be, as usual, a closed, connected C* m-manifold. In (3.1), as
an application of the techniques of Section 2, we restrict our attention to maps
f: M™ — CP" and study the problem of finding the minimal dimension n for which
every such f deforms to a C* immersion (resp. M™ immerses in CP"). Our results
are summarized in the following theorem:

THEOREM 3.1.1. Let M™ be as above. Then

(A) If M™ is 2k-connected with 2 <2k <m/2, every map f: M™— CP™ " is
homotopic to a C* embedding.

(B) There exists a map £:M™ — C P™ ' not homotopic to an immersion if either
of the following two conditions holds:

1) W__,(M™) #0;0r
(2) W,.._, M™) =0 and there is a class u € H? (M;Z) such that if u’ = p(u),

(p: H*(M;2Z) —» H? M; Z,,) reduction mod 2),

[(m-1)/2]

k m ~r . m .
then Z Ww)* 1 W, o1 (M™) is non-zero. (Here , is the mod
2

k=1 2
2 binomial coefficient). Moreover, in case (1) if in addition either

H?2M;Z)=0
or m = 2% then M™ does not immerse in CP™ ', (C) Suppose that M™ is 2-

connected, m = 7, and so embeds in CP™ ' by (A). Then if for some integer n,
with4 =(m+ 1)/2=n_ =< (3m — 4)/4, the class

(W2no—m+2 2 - W2no—m+1 ~ W2no—m+3 )(Mm) ¢O E H2(2n°—m+2) (Mm;z2)’

M™ does not immerse in CP"0,

Before supplying the proof of Theorem 3.1.1, we present examples to illustrate
(B) and (C) above.

Example 3.1.2. (B)-(1). Set M™ =RP™ m = 2% Then by ([8], p. 137),

W, , RP™) # 0, and so RP?*' does not immerse in CP** . (B)-(2). Let M® be a
closed, connected orientable 3-manifold. Then since W(M) = 1, if someu € H>(M;2)
satisfies p(u) # 0 € H?> (M; Z,), there is an element of [M? CP?] which does not
contain an immersion. (Note that since M? is parallelizable, by [5], Theorem 5.7,
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it is immersible in CP?). This condition is satisfied, for example, by the generator
of H2(RP?;2).(C).To illustrate the final condition, set M™ = HP **, even-dimensional
quaternionic projective space. HP* is a 3-connected 8s-manifold. Further, by ([10],
Theorem 8, p. 56), (W,>— W, v W, )(HP?) is the generator of H®(HP*;Z,)
and so HP?* does not immerse in CP****, When s = 1, since by part (A) HP? immerses
in CP’, only the case n = 6 is open.

Proof of the theorem. We begin with the following lemma:

LEMMA 3.1.3. Let M™ be as above, n a positive integer with 2n > m, and
o, the canonical generator of H*>(CP";Z) =Z. Then there is a 1-1 correspondence
between H?>(M;Z) and the set of homotopy classes [M™,CP"] given by u~ [f]
with f* (o) = u.

Proof. The lemma is an immediate consequence of (1) CP” is a K(Z,2) and
(2) the cellular approximation theorem.

Notation. For u € H?>(M;Z) denote by B the element of [M™ ,CP"] assigned
to it by Lemma 3.1.3.

Proof of (A). As M™is at least 2-connected, H*(M;Z) = 0. Thus by the lemma
any two maps of M™ into CP", 2n > m, are homotopic, and thus it suffices to
exhibit a single embedding f: M™ C CP™*. But by [3], the 2k-connectivity of
M™ implies that M™ embeds in R*®* and so composing this embedding with
any diffeomorphism of R®™~?* onto a small coordinate chart in CP™ yields (A).
B)-(1): Let f:M™— CP™ ! be a continuous map. Then according to Porteous ([11],
Proposition 1.3, p. 298)

b,f) =W, , ., *TCP™ ' — TM™) (the first Thom polynomial)

= > f5(W,€P™) v W, M™) € H™ ' (M;Z,).

i+j=m-—1
Suppose that f € ™7 '; i.e.,, f is homotopic to the constant map. Then

f*(WICP™ ") =1€ H°M;Z,)

and so b,(f) reduces to W__, (M™). Hence if W__, (M™)#0, Theorem 2.3.2
implies that B:,“—l does not contain an immersion. Further, if H*(M;Z) = 0,
any map deforms to the constant map and so M™ does not immerse in CP™ ',
Finally, if m = 29 the previously cited formula

n+1 .
Wm(GP")=( ; )(a;)‘, a,=pla,),

yields W(CP?*"') =1 and so, as before, W__, (M™) is the obstruction to de-
forming any map f: M™— CP™ ' to an immersion. (B)-(2): Let u €& H?*(M;Z)
and f € 77!, Since reduction mod 2 commutes with the homomorphism in-
duced by a continuous map, one has that u’ = f*(a’). Since it is assumed that

W.._, (M™) vanishes, the first singularity obstruction
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b,(f)= W__,M™) v f*(W,(CP™ ")+ W__, (M™) v f*(W,(CP™")) + - --

which, by the above formula for W(CP"), proves (B)-(2). (C): Let fM™— CP"° be
any continuous map. Then for 2(2n, — m + 2) =m; ie, n,= (3/4)m — 1, b, (f)
is defined and represents a possible nontrivial obstruction to deforming f to an
immersion. However, since M™ is assumed 2-connected, one has as above that
b, (f) depends only on M™ and, in fact, is given by

(W2n0—m+22 - W2n0—m+1 ~ WZnO—m+3)(Mm)'

Thus (C) follows directly from Theorem 2.3.2 and the proof is complete.

(3.2) A. Holme has shown [6] that if V™ is a non-singular projective variety
over C embedded in CPY via i: V™ — CPY, then the least integer n(V™, i) such
that V™ can be embedded in CP” via a linear projection of CP™ — CP", may
be computed effectively in terms of the degrees of the Chern classes of V™. As
such, it is reasonable to expect ¢(V™) to also play a large role in determining
n(V™), the least integer for which V™ embeds holomorphically in CP" (by any
means). More generally, for V™, W”" closed, connected complex manifolds and
f: V- W" a continuous mapping, we will realize the Thom polynomials in the
Chern classes of (f*T¢ W — T V) as obstructions to deforming f to a holomorphic
immersion. Specializing to W" = CP" will then give necessary conditions for

n(V*) = 2m — 1.

Definition 3.2.1. Let £:V™— W?" be as above and let TV (resp. T¢W) be the
complex tangent bundle of V™ (resp. W"). By a slight abuse of notation, set

b? (f) = det (cn—m+i—s+t (f*TCW - TC V)) st=1,...,i forO=i=< m,

andset BE(f) =1@®bS () @ - @bl (f) € H*(V;2Z).
The analogue of Theorem 2.3.2 is then

THEOREM 3.2.2. (1) B¢(f) is a homotopy invariant of f; and (2) Suppose that
fis homotopic to a holomorphic immersiong: V™ — W". ThenB* (f) = 1 € H°(V;Z).

Proof. The techniques used to prove Theorem 2.3.2 carry over to this situation
immediately after using [11] to identify b® (f) above with

(IT*) ' P.D.[ S (F*T, W, T¢ V) 1.

In particular, then, for W* = CP" and b¥ (f) this yields
COROLLARY 3.2.3. Let u € H*(V;Z) and let f: V™ — CP" be an element

n+1 . —
of B..Thenif u' v ¢; (V™) #0,fdoes not deform to a holomorphic
. J

i+j=n—m+1 1

immersion.
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