A CLASS OF PURE SUBNORMAL OPERATORS
Robert F. Olin

Preliminaries. If T is a bounded operator on a Hilbert space &, its spectrum
and point spectrum will be denoted by ¢(T) and ¢ (T) respectively. An operator S
on g is subnormal if there exists a normal operator N on a Hilbert space < con-
taining & such that N agrees with S on . That is, N leaves & invariant and
N restricted to o# is S. N is called the minimal normal extension of S if A is
the smallest reducing subspace for N containing #. S is said to be pure sub-
novmal if there exists no nontrivial subspace of & which reduces S and on which
S is normal. It is easy to see that the point spectrum of a pure subnormal operator
is empty. For further properties of subnormal operators, consult P. Halmos [6] and
J. Bram [1].

If K is a compact set in the plane, C(K) denotes the set of (complex-valued)
continuous functions on K and R(K) represents the uniform closure of the set of
rational functions with poles off K. If F is a closed subset of K and there exists a
function f in R(K) such that f(z) =1 for z in F and If(z)l <1 for z in K\F, then
F is called a peak set for R(K). A peak set consisting of a single point is called a
peak point, For a detailed exposition of these ideas, consult T. Gamelin [5].

Let S be a pure subnormal operator with minimal normal extension N. If z is
any boundary point of a component of the complement of ¢ (S), then o ,(N) N {z} = &.
(See [4, p. 34].) This was generalized by C. Putnam [9, p. 9] in the followmg way: If
Q denotes the set of peak points of R(c(S)) then @ N op(N) = @. For another related
result, consult M. Radjabalipour [10, p. 388].

It was asked in both papers, [4, p. 95] and [9, p. 10], whether a stronger result
is true. That is, if S and N are as above, is it true that 0 ,(N) N 30(S) = @ ? (Here
o denotes the boundary.) The purpose of this paper is to prov1de a large class of
pure subnormal operators S for which ¢ (N) Nao(S) + A.

We close this section by mentioning the well-known fact that the minimal normal
extension of a pure subnormal operator can have a nonempty point spectrum. The
first example of this is due to J. Wermer. He exhibited [12, Theorems 1 and 2] a
pure subnormal operator S such that eigenvectors of N span 2. However, the
eigenvalues of N in this example all lie in the interior of ¢(S). Another example of
this phenomenon was given by D. Sarason. (See [6], Problem 156 and its solution.)
The methods of this paper will provide another proof to Sarason’s example.

THEOREM. Lelt K be a compact set in the plane which contains a point x which
is not a peak point for R(K). Then theve exists a puve subnovmal opevator S with
minimal novmal extension N such that

(i) o(8) CK,
and
(ii) Gp(N) N o(s) D {x}.
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Proof. Without loss of generality one can assume that x = 0. Choose a repre-
senting measure p at 0 for R(K) that is not the point-mass measure [13, p. 5] and
such that the support of y is on the boundary of K. Let 6, denote the point mass at
0, and set A = + 6y5. Let R%(A) denote the LZ2(\) closure of R(K). If S is the sub-
normal operator defined by multiplication by z on R2(}), it is easy to see that N,
multiplication by z on L2(d), is its minimal normal extension. We shall show that
these operators satisfy the conclusion of the theorem.

It is easy to see that 0(S) CK and 0 € © (N) Let R2(u) be the L2(u) closure
of R(K), and let S; be the operator of mult1p11cat10n by z on R2(u).

We first show that S is similar to S; . Define T: R?(p + 65) — R2(p) by inclu-
sion. Now observe that for any g € R%(A) we have ”Tg”% = 5 lg|2dp and
oK
alels = S lg|2dy + |g(0)|2. (Here glitll, denotes the L2(8) norm of f.)
oK

Let g € R%(A) and choose a sequence {g_ } of functions in R(K) such that
g, —¢gin L2(\) norm. By dropping to a subsequence if need be, we may assume
g — g almost everywhere (\). Since u is a representing measure at 0 for R(K),
and L2 convergence implies L! convergence, it follows that

1) 50 = | edu.

Some simple computations now show that T is an invertible operator between
R2(2) and R?(y), and it induces a similarity between S and S, .

Remark. Notice that the above arguments show the existence of a bounded
(L2() norm) evaluation at 0 for functions in R2(u).

J. Stampfli [11] has shown that every subnormal operator similar to a normal
operator must be normal. (In fact, he has shown that every spectral subnormal
operator is normal.) Hence, similarity preserves purity. Combining this with the
fact that similarity also preserves spectrum, it is sufficient to show S; is pure and
0e¢€ O'(Sl)

Let 4 be a reducing subspace of S; such that the restriction of S; to .« is

normal, and let m € . Clearly, then, Zm and zm belong to .#. Hence for any
continuous function g on 9K, it follows that gm € 4. By (1) it now follows that

S gzmdy = 0. Since the continuous functions are dense in LZ(u), it follows that

zm = 0. Therefore, m = 0 almost everywhere (u). This establishes the fact that
S, 1is pure.

The only thing left to show is that 0 € U(S ). This follows because 8, fails to
have dense range; observe that 1 is orthogonal to the closed span of zR%(u). (See
the remark in the beginning of the proof.)

Before commenting on the applications of this theorem, the author would like to
mention that some of the ideas used in the proof were strongly motivated by Sara-
son’s example [6, solution to problem 156] and by the paper of K. Clancey and
C. Putnam [2].
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For one application of the theorem above, take K to be the closed unit disk and
let x = 0. Letting ¢ be normalized Lebesgue measure on the boundary of the disk,
and following the proof above, we obtain Sarason’s example.

Now let A denote the closed unit disk. For n = 1, 2, .-+, let A, denote the open

o0
disk with center at 3/2™%! and radius r =1/2%" Setting K = 4\ (UnZl An) and
applying Melnikov’s criterion [5, p. 205], we see that 0 is not a peak point of R(K).
Therefore, we can find a pure subnormal operator S with minimal normal extension
N such that op(N) N a(a(8)) # @. (If one follows the proof of the theorem, one sees
that o(N) c 9K. Since R(0K) = C(9K) and ¢ (S) C K, it must be the case that
o(S) = K. (See [7], Corollary 2, p. 73.))

ADDENDUM

M. Radjabalipour has (independenily) discovered the theorem above. I would
like to thank him for supplying the following corollary and remark.

COROLLARY. Let K be a compact set in the plane with the following property:
if D is any open disk with K N D # @, then R(K N D) # C(K N D). Then there exists
a puve subnovmal operator S defined on a separable Hilbert space such that
0 (S) = K and the eigenvalues of the minimal normal extension of S ave dense in K.

Proof. The proof follows immediately from the theorem and a simple applica-
tion of Bishop’s theorem [5, p. 54].

Remark. If R(K) # C(K) and P is the set of peak points of R(K), then by
Bishop’s theorem K\P has positive area. Therefore, in the corollary, the set of
eigenvalues of N cannot contain P. However, if we allow & to be nonseparable,
then this is possible.
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