SYMMETRIC POWERS AND LEFSCHETZ NUMBERS
Benjamin Halpern

0. INTRODUCTION

In this note we point out several ramifications of a result of Dold’s [1] concern-
ing the Lefschetz numbers of the symmetric powers of a map. In [2], many conse-
quences were deduced from a connection between the Lefschetz numbers of iterates
of a map and a certain characteristic rational function. In [1], Dold provides a simi-
lar connection between the Lefschetz numbers of symmetric powers of a map and
this same characteristic function. Consequently, a portion of [2] can be carried over
to symmetric powers. Theorem 3.1 is an answer to a question raised by Dold in [1].
The author is indebted to A. Dold for stimulating conversations and for shortening
some of the proofs.

1. NOTATION AND CONVENTIONS

We denote the rationals by #. Homology is denoted by H and coefficients are
taken in #. If { is a linear self-mapping of a finite dimensional vector space over
R, then X(f) = X(f; t) denotes its characteristic polynomial. Throughout this note Y
is a compact CW-space and g: Y — Y is a continuous map.

A(g) = trace((Hg)eyen) - trace((Hg)oqq)

is the Lefschetz number of g, and X(g) = X((Hg)even) /X((Hg)oqq) is its characteris-
tic rational function. X(g) is an element of & (t)*, the multiplicative group of the
field #(t) of rational functions over # in one indeterminate t. The Euler charac-
teristic of Y is denoted by eY.

The nth symmetric power of Y is PS(n)y = yn /~, where two elements a and
b of Y" are equivalent under ~ provided some permutation of the coordinates takes
a to b. The nth symmetric power of g is the map PS{n)(g): PS(n)y — pS(n)y, in-
duced from g: Y® — Y™, where g(y;, -+, ¥yn) = (g(y1), -+, glyn)).

We denote the nth iterate of g by gt =gogo ---0 g, n times.

2. PRELIMINARY RESULTS

First we state Theorem 5.9 of Dold [1].

w -1 «©
THEOREM 2.1 (Dold). [ter(g; tl)] = 2o A(PSin)(g)) tn.
n=0
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Next we state the result from Kelley-Spanier [3], on which [2] is based. This
result essentially goes back to Newton.

ti(teYX(g. l)) 0
dt ' ¢ _
THEOREM 2.2. - = 27 A(gn) tn,

1
ter(g; ;) n=1

We also note that if we write

o0
1
tEYX(g;E—) = 2 a t",
n=0

then ag =1 and for n > 1, the a, are the canonical coefficients as defined in
Halpern [2].

3. RESULTS

Our first two results are concerned with how certain Lefschetz numbers and
characteristic functions can be explicitly calculated from other such information.
The theoretical determination of these numbers and functions is established in Dold

[1].
THEOREM 3.1. Theve is an explicit way (descvibed below) to calculate
X(Ps(n)(g)) in terms of X(g). (We consider eY as known.)

Proof. The equation of Theorem 2.2 means
-na, = 4, +ta; &,y tagln2t+--+an1 4y for n > 1,

where £; = A(gi). These equations may be solved recursively for the a,’s in terms
of the ¢ ’s. Hence, Theorem 2.2 gives an effective means of calculating the A(g™)’s
in terms of X(g), and vice versa.

By “determines effectively” we will mean “gives an effective procedure for,
calculating”.

Suppose now we are given X(g). Theorem 2.2 determines effectively the num-
bers A(g?) for n > 0, and hence the numbers A((g™)?) for n, m > 0. Theorem 2.2
now determines effectively X(g™) for m > 0. Next, Theorem 2.1 determines effec-
tively A(PS(n)(gm)) for all n, m > 0. Since PS(M) is a functor,

PS(n) (gm) = (PS(n) (g))m.

Finally, Theorem 2.2 determines effectively X(PS()(g)) for all n > 0. (By Theorem
5.7 of Dold [1], ePS{n)(y) = (eY +nn - 1) )

THEOREM 3.2. Given bounds on dim H(Y)eyen and dim H(Y)oq4, that is,
dim H(Y)oyen < p and dim H(Y)oq4q < q, theve is an explicit way (described below)
to calculate X(g) and hence all A(PS(n)(g)), for n> 0, in teyms of the numbers
A(PSn)(g)) for 0 <n<p+q. We consider €Y as known.)

Proof. First we will show that there is exactly one rational function R(t) of the

form R(t) = -3%,

where P and Q are monic polynomials with deg P < p and
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deg Q < q, such that if

W) _ y
™ QO =~ Pt
then b, = A(PS()(g)) for 0 <n<p+aq.

It is easy to see from Theorem 2.1 that X = [ teYX(g; _{1_) :| is one such rational

function. Suppose R =% and R == are two such rational functions. Then

Qi

P(t) _ P(t) , .prq+l
Q0 - 50 + tPTaTE Z(t)

for some rational function Z(t) = 2in.o z,t®. It follows that
P(t) Q) - P(t) Q) = tP* 1 z(H) Q) Q(t) .

The left-hand side is a polynomial whose degree is less than or equal to p +q. ThlS
implies Z(t) Q(t) Q(t) = 0. Since Q and Q are monic, we can conclude that Z(t) =
Hence R = g =§ = R and uniqueness is established.

Now that we know that X is the only rational function of the form P with P

— Q
and Q satisfying (*), we can effectively calculate X, and hence X, by effectively
calculating any two polynomials P and Q which satisfy (*¥). Let Py =Qq = 1, let

P q
P(t) = 27,,-0 Pot", and let Q(t) = 27 _¢ Q,t"; then condition (¥) reduces to the fol-
lowing set of equations.

n
. P, = Z; AP () Q  for 1<n<p+q,
1:

where P, =0 for p+1<n<p-+q. From basic linear algebra we know that we can
effectively calculate a solution Q;, Q2, ***, Qq to the equations Epy,

Epst2, oty Epiq, because at least one solution exists. Now the equations Ep,

Ez, ---, Ep effectively determine P;, P;, -, Pp . This completes the proof.

The proofs of the next three theorems are so closely parallel to the proofs of
the analogous results in Halpern [2] that we only indicate the analogous results and
leave the proofs to the reader.

A. Dold has observed that if in Theorem 3.2 we do not assume eY as known,
then we may still calculate X(g) up to a factor ti. This factor does not enter into
the calculation of A(PS(n)(g)), and hence one can calculate all the A(PS(nXg)) in
terms of A(PS(i)g)) with 0 <i < p+ q without knowing eY.

THEOREM 3.3 (Analogous to Theorem 4 of [2]). If (Hg) g4 is nilpotent, then
A(PS(n)(g)) # 0 for some n, where 1 <n < dim H(Y),yep -

THEOREM 3.4 (Analogous to Corollary 9 of [2]). If Hg is an isomovphism and
eY # 0, then
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A(PSn)(g)) # 0 for some n,

where 1 <n < max(dim H(Y) dim H(Y)_g44)-

THEOREM 3.5 (Analogous to Theorem 30 of [2]). Suppose Y is another CW-

space and g: Y — Y another continuous map. If Hg and HE are isomorphisms and
A(PS()(g)) = A(PS(n)(g)) for all n, then eY = eY.

Our last theorem can be geometrically motivated by comparing the numbers of
fixed points for g and PS(n)(g) under the supposition that g!, g2, +-+, g®-1 are
fixed point free.

even’?

THEOREM 3.6. The smallest n > 1 such that A(g™ + 0 is equal to the small-
est n > 1 such that A(PS(0)(g)) #+ 0. Let m be this common value, Then
nA(PS(n)(g)) = Alg") for m <n <2m - 1.

[ o]
Proof. Let A =A®) =tV X (g —tl-) let B = B(t) = 2o, Algt?, and let
[~ o]
C=C() = Enzo A(PS(0)(g))t". Theorems 2.1 and 2.2 may now be written as

A-l =¢C and —tAX=B.

It follows that t %— = B. Since A(PS(0)(g)) = 1, the theorem now follows.
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