REMARKS ON FLAT MODULES
David E. Rush

0. INTRODUCTION

The property of a commutative ring A that finitely generated flat A-modules be
projective is known to be a property of the topology of Spec(A), the set of prime
ideals of A [10]. Similarly, the property that pure ideals be generated by idempo-
tents depends only on the topology of Spec(A) [8]. In fact these properties do not
depend on the Zariski topology as much as on a weaker topology on Spec(A). In re-
cent years several results have been obtained about the stability of these properties.
The purpose of this note is to determine the extent to which these results follow from
topological properties.

In Section 1, we show that the above properties are equivalent to very simple
conditions on a certain quotient space of Spec(A). In Section 2, we study the extent
to which the above properties are inherited from an A-algebra, or by an A-algebra,
in terms of these quotient spaces. It becomes apparent that more than just the map
induced on the quotient spaces by the structure homomorphism A — B is involved in
this stability. In Section 3, we show that the fact that a polynomial ring or power
series ring over A has either of these properties if and only if A does, is due to the
fact that the relevant topological spaces are homeomorphic. We conclude with some
remarks about the relationship between the property that finitely generated flat A-
modules be projective and the property that finite type flat A-algebras be finitely
presented.

In this note all rings are commutative with identity. If M is an A-module and
p € Spec(A), then rkyp) denotes the dimension of M &), k(p) as a vector space

over k(p) = R, /pRp . We will label the conditions we are interested in as in [18] and
[19].

(F) Every pure ideal of A is generated by an idempotent.
(f) Every pure ideal of A is generated by idempotents.

A ring A satisfies (F) if and only if every finitely generated flat A-module is
projective. The papers [3], [10], [16], [17], and [18] are good references for F-
rings. See [8] and [19] for f-rings.

The author wishes to thank Sam Cox for his help on this paper.

1. TOPOLOGICAL, CRITERIA

We consider the C- and D-relations of Lazard on a topological space X. The
D-»elation on X is the equivalence relation generated by the relation x € {y}
(x, y € X), where W denotes the closure of a subset W of X. We put the quotient
topology on the set X/D of D-equivalence classes of X. The weak topology on X
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induced by the canonical map p: X — X/D is called the D-fopology on X. We call a
subset W of X D-open or D-closed if it is open or closed in the D-topology.

The C-velation on X is obtained by taking the equivalence class of a point
X € X to be the intersection of the D-open sets and the D-closed sets of X contain-
ing x. We give X/C the quotient topology obtained from the canonical map
A: X — X/C. The quotient topology on X/C induced from the original topology on X
is the same as the quotient topology on X/C induced by the D-topology on X. Also,
since the D-closed sets and D-open sets of X are stable under the C-relation, A is
an open and closed map when X is given the D-topology. Thus, the weak topology
on X induced by A is just the D-topology; that is, we need not consider a C-topology
on X,

If ut' Y — X is a continuous map, then we get a commutative diagram:

u
Y > X

p(Y) ©(X)
Y up Y
Y/D ———> X/D

7(Y) T(X)
Y uC Y
Y/C ——— X/C

Further, if X and Y are given the D-topologies, then u is continuous, and u, 7,
and A = 7 o u are open and closed as well as continuous. In fact, if we let @ (X)
denote the space X with the D-topology, we get the following commutative diagram
of natural transformations of functors on the category of topological spaces and
continuous maps:

X —> 9(X)

|

X/D —> X/C

The use of the C- and D-relations in the study of flat and projective modules
goes back: at least to H. Bass [1] and D. Lazard [10]. Lazard showed that if
p, q € X = Spec(R), then p and q are C-related if and only if rkys(p) = rkys(q) for
every finitely generated flat R-module M if and only if rkyf(p) = rkpm(q) for every
projective R-module M. He also showed that the property (F) is a property of the
space X with the D-topology. S. Jgndrup [8] showed that (f) is also a property of
this space. Thus, one is led to consider the space X/C, where the properties (F)
and (f) become very simple.

For the rest of this section, A is a ring and X = Spec(A).
THEOREM 1.1. The following properties of A ave equivalent.
(1) A satisfies (F).

(2) The D-open sets of X are closed.

(3) X/C is discrete, thus finite.

Proof. (1) <> (2) [10, Theorem 5.7].
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(2) = (3) Since X is compact, (2) implies that X with the D-topology is a finite
disjoint union of trivial spaces which are the C-equivalence classes of X. Thus
X/C is finite and discrete.

(3) = (1) Since for every D-open or D-closed set W of X, A-1 A (W) =W,
(3) = (1).

THEOREM 1.2. The following properties of A ave equivalent.

(1) A satisfies (f).

(2) Any D-closed subset of X is an intersection of open-closed subsets of X.
(3) X/C has a basis of open-closed sets.

(4) X/C is totally disconnected.

Proof. (1) <= (2) [8, Theorem 3.3].

(4) = (3) This follows since X/C is compact [11, p. 46, Prcposition 8.6].

The other implications follow immediately since A: X — X/C is open and closed
when X is given the D-topology.

2. STABILITY

For the rest of this note, we let ¢: A — B be a homomorphism of commutative
rings. We denote the map Spec(s): Spec(B) — Spec(A) by u: Y — X and let
up: Y/D — X/D and ug: Y/C — X/C be the induced maps. We use M for both the
map X — X/C and the map Y — Y/C when no confusion can arise. We do the same
for ¢ and 7. If I is an ideal of a ring R, then V(I) denotes the closed set
{p € Spec(R): I C p} of Spec(R). The D-closed subsets of Spec(R) are of the form
V(I) where I is a pure ideal of R, and the map I +— V(I) gives a one-to-one corres-
pondence between the pure ideals of R and the D-closed subsets of Spec(R) [3,
Corollary 3.6]. If I is a principal ideal of R, we call the closed set V(I) a princi-
pal closed set and its complement a principal open set.

We will need the following result.
LEMMA 2.1. Let I be an ideal of B. Then pu(V{I N A)) = u o u(V(D).

Proof. Clearly u(V(I)) € V(IN A), so p o u(V(I)) € p(V(I N A)). Now let
z € p(V(IN A)). Let p € V(I N A) be such that u(p) =z. Then p contains a prime
ideal p' which is minimal over I N A. Since A/(A N I) — B/I is injective, there
exists q € V(I) such that u(q) =p' [9, p. 41, Exercise 1]. Then

poulg = pp') = ulp =z,

and hence z € u o u(V(I)).
Remavk., It follows also that A V(I N A) = xu(V(I)).
PROPOSITION 2.2. If A satisfies (f), then uc is a closed map.
Proof. This follows since Y/C is compact and X/C is a Hausdorff space.

COROLLARY 2.3. If B is an F-ving and uc is onto, then the following are
equivalent.

(1) uc is closed.
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(2) A is an F-ving.

(3) A is an f-ving.

(4) X/C is a Hausdovff space.

Proof, This is immediate from Theorems 1.1 and 1.2.

It is well known that if either B D A or B = A/J, where J lies in the Jacobson
radical of A, and if M is a finitely generated flat A-module such that B (X, M is
B-projective, then M is A-projective. In particular, if B satisfies (F), then so
does A. A topological result which includes these theorems would require condi-
tions on u which imply that if Y/C is discrete then X/C is discrete, or more gen-
erally, if W € X/C is closed and u(‘:l (W) is open, then W is open. To get substan-
tial information about X/C from Y/C, one should have uc onto, as is the case of
either A C B or B = A/J, where J is contained in the Jacobson radical of A. A suf-
ficient condition on u is that uc be closed and onto. But this does not always hold
for A C B, since uc closed and onto would imply that the condition (f) passes from
B to the subring A, and this is false [8]. A difficulty is that since V(ker ¢) is not
necessarily D-closed, the C-relation on V(ker ¢) = Spec(A/ker ¢) is not in general
the same as the C-relation on V(ker ¢) induced by the C-relation on X. What is
needed is a slightly stronger condition on u than u¢ being onto.

LEMMA 2.4. If ¢: A —> B, 1 C A s pure, and IB = eB, wheve e is an idem-
potent, then e € ¢(I). Thus, ¢(I) = edp(A).

n
Proof. Let e = Eizl ajb; (a; € I, b; € B). Then since I is a pure ideal of A,
there exists eg € I such that ega; =a;, i =1, 2, -*-, n [2, Chapter 1, Section 2,
Exercise 23]. Then

e = €gp E aibi = €egpge.

Further, ¢(eg) € IB implies ¢(eq) = ¢pleg)e = ege = e. Thus, e € ¢(I).

To show ¢(I) = ep(A), let a € I. Then ¢(a) = e¢(a), since e is an idempotent
and IB = eB.

It follows from the above lemma that if B satisfies (F) and ker ¢ lies in the
Jacobson radical of A, then A satisfies (F). The next three results are generaliza-
tions of this.

THEOREM 2.5. If for every principal Zaviski closed subset W of X such that
u-1(W) is open and closed, and for every p € W, there exists py € W N u(Y) such
that x(p) = M(p,), and if H C X is D-closed and u-1(H) is open, then H is open.

Proof. Let IS A be pure. Then IB = ey B for some ey € I with ¢(ey) idem-
potent. To show egA =1, it suffices to show V(egA) € V(I). Let p € V(egA). Since
u-1v(egA) = V(egB) is open-closed, there exists p; € V(egA) N u(Y) such that
Alp) =A(py). Then

p; € uwu-1(V(eya)) = u(V(egB)) = uv(IB) = wu-1v() € v({).

But A(p) =A(p;) and p; € V(I) imply p € V(I).

COROLLARY 2.6. If for every principal Zaviski closed subset W of X such
that W N Viker ¢) is open-closed in V(ker ¢), and for every p € W, theve exists
p1 € W NuY) such that x(p) =Ap4), and if 1 is a pure ideal of A and IB is B-
projective, then 1 is A-projective.
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Proof. If W N V(ker ¢) is open-closed, then u-1(W) = u-1(W N V(ker ¢)) is
open-closed.

COROLLARY 2.7. If Y/C — Spec (A/aA)/C is onto for every a € ker ¢, if I
is a puve ideal of A, and if 1B is B-projective, then 1 is projective.

Proof. By Lemma 2.4, IB = ¢ B, where ey € I and ¢(eg) is idempotent. Thus
a=eg- el € ker . To show V(egA) C V(I), let p € V(egA). By hypothesis, there
exists p; € V(a) N u(Y) with p; C-related to p in Spec(A/aA). But V(egA) N V(aA)
is open and closed in V(a) and p € V(eyA), so p; € V(egA). Thus

p; € uwu ! V{egA) = wu ! v(I) € V(D).

Since p; is C-related to p in V(aA), p; is C-related to p in X. Thus p € V(I).

It is clear that the conclusions of Theorem 2.5 and Corollaries 2.6 and 2.7 im-
ply that if L is a finitely generated flat A-module such that B (X, L is B-projec-
tive, then L is A-projective.

The question of when condition (F) is inherited by B reduces to the question of
when X/C discrete implies Y/C discrete, and similarly for condition (f). Since uc
is closed whenever A satisfies (f), the question reduces to when uc is one-to-one.
If A satisfies (F) and each pure ideal I of B is of the form Iy B, where I is a
pure ideal of A, then clearly B satisfies (F), and similarly for (f). If uc is onto,
then this is exactly the condition that uc be one-to-one (and thus a homeomorphism).

THEOREM 2.8. If uc: Y/C — X/C is a closed suvjective map, then uc is a
homeomovphism if and only if every purve ideal 1 of B is of the form I,B for some
puve ideal 1y of A.

Proof. (<=) Let q;, q2 € Y with Au(q;) =2rulgp). Let V(I) be a D-closed set
containing q;, with IC B pure. Then I =13B, where Iy C A is a pure ideal, and
uV(I) € V(Ip). But V(Iy) is D-closed and contains u(q,), so u(q,) € V(I5). Thus
az € u ! v(Iy) = V(I3 B) = V(I). Hence, every D-closed set containing q; contains
dz . The same holds for D-open sets by reversing the roles of q; and q,. Thus
AMar) = 2lq2).

(=) Let I be a pure ideal of B. Then since uc is closed, ucAV(D) =au(V(1))
is closed. Thus A-1 Au(V(I)) is a D-closed subset of X, and so A-1xu(V(I) = v(1,),
where Iy is a pure ideal of A. Since I and Iy B are pure, to show I=1,B, it suf-
fices to show V(I) = V(Ig B), or AV(I) = AV(Iy B), since these sets are C-saturated.
But since uc is a homeomorphism, it suffices to show that ucAV(I) = ucAV(I, B);
that is, AuV(I) = AuV(Iy B). This holds if and only if A~1xu(V(D)) = r-1au(V(1, B)).
By the definition of Iy, A-!xu(V(I)) = V(I5). Thus we need only show that
V(Ip) =x"1xu(v(IyB)). Since

V(Ip) = A1 a(V(Ip) and  a-1au(V(IpB)) = A-1A(V(Ip B n A)),

it is clear that x-1xu(V(IyB)) € V(Iy). Let p € V(Iy). Since uc is onto, there exists
q € Y such that uga(q) =A(p). Thus Au(q) = A(p), and since V(Iy) is C-saturated,
u(q) € V(Iy) = q € V(IpB) = p e A-1xu(v(1, B)).

Remarks. The “if” part of the above proof did not use the assumption that uc
is onto. A condition related to the condition in the above theorem is that for every
pure ideal I of B, the radical of I N A coincides with the radical of I, for some
pure ideal I, of A. This condition is implied by u being closed and implies up and
u- are closed maps.
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3. POLYNOMIAL AND POWER SERIES RINGS

It is known that a ring A has property (F) if and only if a polynomial or power
series ring over A has this property [3], [17], [18]. Similarly, a ring A satisfies
(f) if and only if a polynomial ring satisfies (f), and a power series ring over A
satisfies (f) if A does [8]. In this section, we show that these results are due to the
fact that the relevant topological spaces are homeomorphic. In particular, a ring A
inherits the property (f) from a power series ring, and any other property of rings
which depends on the D-topology is also stable under polynomial and power series
extension.

For the polynomial ring case, we generalize a little and work in the setting of
weak content algebras. First we recall the definition of content module [5], [13].

Definition. Let M be an A-module. For x € M, let c(x) be the intersection of
all ideals I of A for which x € IM. We call M a content A-module if x € c(x) M
for every x € M. If ¢: A — B is an A-algebra which is a content A-module, then B
is called a weak content A-algebra if for every prime ideal p of A, pB is either B
or a prime ideal of B.

In [13] an A-algebra B is called a content A-algebra if B is a faithfully flat
content A-module such that for every X, y € B, the content formula
clxy) e(y)® = c(x)cly)*t!
holds, for some integer n > 0. The weak content algebra condition is equivalent to
the condition that c(x) c(y) be contained in the radical of c(xy) for every X, y € B.
So it follows that every content A-algebra is a weak content A-algebra, but not con-

versely. The following lemma usually allows us to consider only the weak content
A-algebras B for which c¢(B) = A.

LEMMA 3.1. Let B be an A-algebva which is a content A-module. Then
c(B) = c(1g) and is generated by an idempotent. Further,

{p € Spec(A): pB =B} = V(c(B)),
and thus is open and closed.

Proof. If X € B, then writing x = 27 a;b; (a; € c(x), b; € B), we get that
c(x) = (a;, *++, a,). It follows that c(xy) C c(x)c(y) for every x, y € B. In particu-
lar, c(1p) C c(1g)2. It now follows that c(1g) = eA, where e is an idempotent. But
b € B => c(b) =clb-1g) < clb)-c(1). Thus ¢(B) = c(1g). The last statement follows
from

pB=B <> 1€ pB <> c(1) Cp.

Let ¢: A — B be an A-algebra and denote the map Spec(¢): Spec(B) — Spec(A)
by u: Y — X. If there is a continuous map v: X — Y such that for every p € X and
q € Y, uov(p) is D-related to p and v o u(q) is D-related to q, then it follows that
Y/D is homeomorphic to X/D. This is essentially what happens if B is either a
weak content A-algebra, or a power series ring over A.

THEOREM 3.2. If ¢: A — B is a weak content A-algebra, then Y/D is homeo-
movphic to an open-closed subset of X/D.

Proof. Let c(B) = eA, where e is an idempotent of A. Since eA — eB =B isa
weak content eA-algebra and Spec(eA) is an open-closed subset of X, we may
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assume c¢(B) = A, and show Y/D is homeomorphic to X/D. Then pB is a prime
ideal of B for every prime ideal p of A. Let v: X — Y be defined by v(p) = pB.

We will show that v is an inverse to u modulo the D-relation. To show v is con-
tinuous under the Zariski topologies, let D(b)={y € Y: b ¢ y} be a basic open set of
Y and suppose pB € D(b). Then b ¢ pB = c(b) Zp. Let t € c(b)\p. Then

p € D(t) and v(D(t)) € D(b). If t ¢ q, then c(b) ¥ q = b ¢ qB. Thus v is contin-
uous and so induces a continuous map vp: X/D - Y/D. If p € X, then

uovip) = pBNADpP,

so u o v(p) and p are D-related. If q € Y, then v ou(q) =(q N A)B Cq, so q and
v o u(g) are D-related. '

THEOREM 3.3. If B is a power sevies ving ovey A in any set of indetermi-
nates, then Y/D £ X/D.

Proof. Here we define v: X =Y by
v(p) = p[[X]] = {b € B: the coefficients of b are in p} .

It v(p) = p[[X]] € D(b) (b € B), then b ¢ p[[X]] = t ¢ p for some coefficient t of b.
Then p € D(t) and v(D(t)) € D(b), for if q € D(t),

t¢q = b¢qllX]] = v(g) e D).

Further, for p € X, uov(p) =p[[X]]Nn A=p, andfor q € Y, voulg) = (g n A)[[X]].
Thus we must show that q and (q N A)[[X]] are D-related, and for this it will suf-
fice to show that they are not comaximal. If by +by =1 (b € q, bz € (g N A) [[X]]),
let ¢; and c, be the constant terms of b; and b,, respectively. Then

cjtep, =1 => 1-¢c;=creq => by+(1-¢y)eq.

But this is impossible, since b + (1 - ¢y) has constant term 1 and hence is a unit
of B.

PROPOSITION 3.4. Let H be the functor from the category of commutative
rings lo the category of topological spaces defined by H(A) = Spec(A)/D. If

A f, B ,’—D* C ave ring homomorphisms such that H(y¢): H(C) — H(A) is a homeo-

movphism and H(Y) is surjective, then H{(¢) is a homeomorphism.
Proof., This is a consequence of the following lemma.

v u
LEMMA. If Z —» Y — X ave movrphisms in some category with v an epimor-

phism and u o v an isomorvphism, then u is an isomovphism.

Proof. Let w: X — Z be the inverse of u o v. Then
1y =(uov)ow = uo (vow);
1, =wo (uo v) implies v=v o wo uo v, and then v an epimorphism implies
ly =vowou. Thus vo w is the inverse of u.

It follows from Theorems 3.2 and 3.3 and Proposition 3.4 that, for instance, if
A CB C C are subrings and C is either a weak content A-algebra or a power
series ring over A, then B satisfies (f) if A does.
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4. FINITE PRESENTATION OF FLAT A-ALGEBRAS

It is well known that a finitely presented flat nette A-algebra B is étale [14,
p. 55, Corollary 1]. In [4] it is shown that a flat nette A-algebra B is formally
étale, and an example is given showing that B is not necessarily étale because it
may not be finitely presented. The following result shows that the condition (F)
plays a role in this.

THEOREM 4.1. Etale A-algebrvas satisfy (F) if and only if flat nette A-
algebras are étale.

Proof. (=) Let B be a flat nette A-algebra. To show B is étale, it suffices to
show that for every prime q of B there exists a € B - q such that B, is étale over
A [14, p. 17, Proposition 6]. Then B, is nette over A [14, p. 13, Proposition 1}, so
we have an exact sequence 0 =1 — G — B, — 0, where G is an étale A-algebra
[14, p. 51, Theorem 1, and p. 13, Proposition 1]. But since B, is A-flat and G is
étale, B, is G-flat [7, p. 9, Proposition 2.7]. Thus I is a finitely generated ideal of
G. Since G is finitely presented, it follows that B, is finitely presented over A
and thus étale.

(<) Let B be an étale A-algebra and I a pure ideal of B. Then B/I is flat
and nette over A and thus finitely presented over A. Thus I is finitely generated
[7, p. 49, F.4, F.5].

As the above result indicates, the condition (F) is intimately connected to the
finite presentation of A-algebras. In [6, Lemma 2.1] it was shown that if every flat
A-algebra generated by a single element over A is finitely presented, then every
such A-algebra satisfies (F). The same argument shows that if every finite type
flat A-algebra is finitely presented, then every finite type flat A-algebra satisfies
(F). We do not know whether the converse of this statement holds, but the above
theorem could be considered a partial result in this direction. The class of rings A
for which every finite type flat A-algebra is finitely presented is known to contain
all rings with finitely many minimal primes [15, p. 25, Theorem 3.4.6] and to be
closed under taking subrings [L. Gruson, unpublished]. This is also clearly the case
for the class of rings A for which every finite type flat A-algebra satisfies (F).

The condition (F) is more easily inherited by projective A-algebras than by flat
ones. For example:

PROPOSITION 4.2. (1) If A satisfies (F), then any projective A-algebra which
is generated by one element satisfies (F).

(2) (S. H. Cox) If A is quasilocal, then any finite type projective A-algebra
satisfies (F).

Proof, (1) If 0 =1 — A[X] — B — 0 is exact with B projective, then the con-
tent c(I), being a pure ideal of A [12, Corollary 1.3], is generated by an idempotent
e of A. By considering the ring eA, we may reduce to the case e = 1. But then B
satisfies (F) by [12, Theorem 4.9].

(2) Let B be a finite type projective A-algebra and let m be the maximal ideal
of A. If b € B is such that b + mB is a regular element of B/mB, then b is regu-
lar in B [15, p. 16, Lemma 3.16]. Thus, if we let S be the set of s € B for which
s + mB is regular in B/mB, then S consists of regular elements and is a finite
union of primes, since B/mB is noetherian. So S-! B is quasisemilocal and B sat-
isfies (F).

Remark. The argument in Proposition 4.2-(2) can be extended from the quasi-
local case to the case that A/J is artinian, where J is the Jacobson radical of A.
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