GOLDIE CENTRALIZERS OF SEPARABLE SUBALGEBRAS
Miriam Cohen

1. INTRODUCTION

In this paper we shall discuss some relations between the structure of an alge-
bra R and a certain subalgebra of R.

Before stating our results, let us recall some of the definitions and known re-
sults. Let R be a ring. The center of R is denoted Z(R). The ring R is semi-
prime if R has no nontrivial nilpotent ideals; it is p#ime if the relation AB = 0 for
ideals A and B implies A =0 or B =0. The ring R is a (right) Goldie ring pro-
vided R satisfies the maximum condition on right annihilators and R contains no in-
finite direct sum of right ideals.

For x in R, we set
r(x) = {ye R xy=0} and (x) = {y e R| yx=0}.

An element x of R is vegular if r(x) = 2(x) = 0.

If A is a subset of R, the centralizer of A in R is
Cr(A) = {x e R| xa=ax forall a e A}.

In [8], S. Montgomery explored some relations between the structure of an alge-
bra R over a field and the structure of the centralizer Cr(A) of a finite-dimensional
separable subalgebra A. In [2] we showed that if R is a semiprime n-torsion-free
ring, a is an element of R such that an € Z(R), and CRr(A) is a semiprime (prime)
Goldie ring, then R is a semiprime (prime) Goldie ring.

In this paper we shall show that if R is a semiprime algebra over a field and A
is a finite-dimensional separable subalgebra, then Cr(A) is a Goldie ring if and only
if R is a Goldie ring.

As a consequence we can extend the results of [2] to the case where Z(R) is a
field and a is a zero of a separable polynomial over Z(R).

We shall use localizations later. Let T be a nonempty set of regular elements
of R. Then T is a vight denominator set if T is closed under multiplication and if
xT NtR # 0 for each nonzero x in R and each t in T. P. M. Cohn [3, p. 21), has
shown that the localization of R by T,

Rr = {xt"!| xe R, te T}

exists for sucha T and R C Rp.
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A ring Q(R) D R is a vight quotient ving of R. If Q(R) has an identity, each
regular element of R is invertible in Q(R), and for each q € Q(R) there exist
a, b € R with b regular and q = ab-!,

If Q(R) satisfies the conditions above, R is said to be a 7ight order in Q(R).

As usual, R, denotes the ring of all n-by-n matrices over R. If R has a unit
element 1, then R G, R,, via r — rlI, where e;; denotes the n-by-n matrix with 1

in the ij-th place and 0 elsewhere, and I = E?zl e;j; denotes the identity matrix.

- A right ideal E of a ring R is said to be an essential right ideal if E inter-
sects every nonzero right ideal of R.

2. PRELIMINARY LEMMAS

We start with a necessary and sufficient condition for a ring to be a semiprime
Goldie ring.

LEMMA 1. A ving R is a semiprime Goldie ving if and only if R contains a
multiplicative subsemigroup T satisfying the conditions

(1) the elements of T arve regular in R,
(2) every essential vight ideal of R contains an element of T,
(3) for each t € T, the right ideal tR is essential.

Proof. If R is a semiprime Goldie ring, then the set of all regular elements of
R satisfies the conditions above [4, pp. 174-175].

Now assume that T exists and satisfies (1) to (3). For t € T and x € R (x # 0),
let W={re RI xr € tR}. By (3), tR is an essential right ideal; hence W is essen-
tial, and by (2), WN T # @. Thus tRN XT # 0 whenever t € T and 0 # x € R.
Therefore T is a right denominator set for R, and R exists.

If E is any essential right ideal of Ry, then E N R is an essential right ideal
of R. Hence, by (2), E N R contains an element of T that is invertible in R, and
therefore E = Rt. Since RT has no proper essential right ideals, R is a semi-
simple Artinian ring [7, p. 61]. In an Artinian ring with an identity, every right-
regular element is invertible. Since every regular element of R is right-regular in
R, we see as a consequence that every regular element of R is invertible in R.
Therefore R is an order in a semisimple Artinian ring, and it is thus a semiprime
Goldie ring [4, p. 177].

LEMMA 2. Let R be a ring with an identity. If R is a semiprime Goldie ving,
then each essential vight ideal of R, contains a vegulay element of R.

Proof. Let E be an essential right ideal of R,. Let E; = {r € R| rej; € E},
and let J be a nonzero right ideal of R. Since (E?zl Jeij) NE # 0, we see that

n
( Zl Jeij)emi NE # 0 for some m;
J:

therefore E; NJ # 0. We have shown that E; is an es’sential right ideal of R for

each i=1, -, n. Since ﬂl 1 E; is an essential right ideal of the semiprime
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Goldie ring R, it contains a regular element t of R, and te;; € E for each
i=1, ---, n. Consequently t =tI € E.

LEMMA 3. Let R be a ving with an identity. Then R is a semiprime (prime)
Goldie ving if and only if the matrix ving R, is a semiprime (prime) Goldie ring.

Proof. By [9, p. 606], R, is a semiprime Goldie ring whenever R is a semi-
prime Goldie ring. The converse is also true, since R is a subring of R, and hence
inherits the maximum condition on right annihilators. Also, since every direct sum
of right ideals of R gives rise to a direct sum of right ideals in R,, the ring R con-
tains no infinite direct sums of right ideals.

The fact that R is semiprime (prime) if and only if R, is semiprime (prime)
stems from the well-known result that every ideal of R, is of the form J,, where J
is an ideal of R.

LEMMA 4. Let R be an algebra ovev a field ¥, and let K be a finite sepavable
extension of F. Then R is a semiprime Goldie ving if and only if RQr K is a
semiprime Goldie ving.

Proof. If R is a semiprime Goldie ring and Q(R) its ring of quotients, then
Q(R) is semisimple Artinian. The tensor product Q(R) ®F K is semisimple Artin-
ian, since K is a finite separable extension of F, and by [6, p. 116 and p. 252].
Hence every regular element of R ®F K is invertible in QR) ®r K. Also, by the
common-multiple property of R, every element of Q(R) ®F K is of the form ab-1,
where a € R ®r K and b is a regular element of R. Hence R ®r K is an order in
Q(R) ®F K that is a semisimple Artinian ring, and thus R @r K is a semiprime
Goldie ring.

The converse can easily be verified.

LEMMA 5. Let R be a semiprime (prime) Goldie ving, let M be a vight ideal
of R, and let L =M N ¢(M). Then M/L is a semiprime (prime) Goldie ring. In
particular, if e € R is a nonzevo idempotent, then for M = eR we have eRe, which
is isomovphic to M/L, a semiprime (prime) Goldie ving.

Proof. Each nonzero right ideal of M/L is the image V of some right ideal V
of M, where VM is a nonzero right ideal of R. Hence M/L is a semiprime (prime)
ring. Now, since L is a two-sided ideal of M and in addition is a left annihilator in
M, there exists an order-preserving correspondence between the left annihilators of
M/L and certain left annihilators of M [5, p. 74]. Since the maximum condition on
right annihilators is equivalent to the minimum condition on left annihilators, M as a
subring of R satisfies this minimum condition. By the argument above, M/L satis-
fies the maximum condition on right annihilators.

If Vi ®V, @ - is a direct sum of right ideals of M/L, then V{ M + VM + -+
is a direct sum of right ideals of R. To prove this we must show that the right ideal

Wj = (Z)i;ej ViM) N V;M is 0 for each j. Now,

\_V-jC(Ev—i)ﬂ\_f;=0;

i#j

hence Ws-?‘ =0 because W;M = 0. Semiprimeness of R now implies Wj = 0. There-
fore M/L has no infinite direct sum of right ideals, since R does not.
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3. THE MAIN THEOREM

We now turn to the situation described in [8]. In the following, R will denote an
algebra over a field F, and A a finite-dimensional, separable subalgebra of R. By
[1, p. 45], there exists a finite separable field extension K of F (called a splitting
field for A) such that

A®F K = Knl @ - ®Knm’

where Kni denotes the n;-by-n; matrix ring over K. The algebra A is called split

if it is already a direct sum of complete matrix rings over F.
LEMMA 6. If A= Fnl @--DF, , then
m

m
(1) C=Cr(A)=e;CH+ -+ +e,C+ (1 - 2iq ei) C, where e; is the n;-by-n;
m m
tdentity matvix, and (1 - Ei:l ei) C= {x - Eizl e; x| x € C},

(2) eiRei = (eiC)ni foy i= 1, e, m,

(3) (1‘ 2 ei)R(l“ 2 ei) = (1“ 2iia ei)C-
Proof. Since e; € Z(A), we see that e; € Z(C), and (1) follows.
Next, by [4, p. 112] we have the isomorphism

e;Re; T e;Ae; ® CeiRei/(eiAei);

‘but e; Ae; = Fp, and CeiRei(eiAei) = e; Ce; = ; C, hence

e;Re; = Fp, ®eC = (eiC)ni.

Since the isomorphisms are natural, we may identify e;Re; with (e; C),,, and
(2) follows. Finally, since '

(1-2) ei)R<1—E ei)CC,
i=1 i=1

We are ready to prove the main result of this paper.

the rest follows.

THEOREM. Lelt R be a semiprime algebra over a field ¥, ard let A be a
separable, finite-dimensional subalgebva of R. Then R is a Goldie ving if and only
if Cr(A) is a Goldie ring.

Proof, First, let us show that we can assume that A is split. If K is a split-
ting field of A, then R @y K is semiprime if and only if R is semiprime [8, p. 16].
By Lemma 4, R QF K is a semiprime Goldie ring if and only if the same is true of
R. Since

CrpxA®y K) = CR(4) ®p K,
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we see by Lemma 4 that CR®FK(A ®F K) is a semiprime Goldie ring if and only if
CR(A) is.

Second, by [8, p. 19], it is not necessary to specify that Cr(A) is semiprime, for
semiprimeness of R implies that of Cyr(A).

Therefore, let A = Fnl @ - @ F, ,and assume R is a Goldie ring. Denote
m

m
Cr(A) by C,and 1- 27;_; e; by e+, and let n4; = 1. Then by (2) and (3) of
Lemma 6,

e;Re; = (eiC)ni i=1, -, m+1).
Since e,,;; acts as an idempotent and since the e;’s are idempotents, it follows
from Lemma 5 that e; Re; is a semiprime Goldie ring for i =1, ---, m+ 1. Thus,
by Lemma 3, e; C is a semiprime Goldie ring for i =1, ---, m + 1. Since every
right ideal M of C is a direct sum of M;, where M; is a right ideal of e; C
(i=1, ---, m + 1), and since these are Goldie rings, C is a Goldie ring.

Conversely, assume that C is a Goldie ring. As we noted earlier, C is actually
a semiprime Goldie ring. Let T denote the set of all regular elements of C. We
shall show that T satisfies conditions (1) to (3) of Lemma 1 and thus prove that R is
a Goldie ring.

Condition (1) was established in [8, p. 22]. Here we shall give a shortened proof.

m+1 .
Since 2Ji-; e;x = x for each x € R, we see that if J is a nonzero right (left) ideal

of R, then there exists an i for which e;J # 0. Since R is semiprime, e;Je; # 0.
Now, if t € T, then

e;t = te; € (eiC)ni = e;Re;.

Since t is regular in C and e; € Z(C), we see that e;t is regular in e;C; hence e;t
is regular in (e; C)rli = e;Re;. Therefore, if J = r(t) is nonzero, then by the argu-

ment above, e;r(t)e; #+ 0 for some i. But e;t(e;r(t) e;) = e;tr(t) e; = 0; hence by the
regularity of e;t in e;Re; we see that e;r(t)e; = 0, a contradiction. Therefore
r(t) = 0, and similarly £(t) = 0.

Next we establish condition (2). Let E be an essential right ideal of R. We
shall show that E N'T # ¢. Since E is an essential right ideal of R and e; R is
nonzero, ¢, RN E # 0. Let E; =e; R N E, and note that e; E; = E; C E. We shall
show that E;e; is an essential right ideal of e;Re;. If J is a nonzero right ideal of
e;iRej, then J = e;Ne;, where N is a right ideal of e; R and Ne;R # 0 by the
semiprimeness of R. The essentiality of E implies that Ne;R N E # 0; but
N C e; R. Hence

0 # NeiRﬂ E = NeiRﬂ eiRﬂ E = NeiR ﬂEi.
By the semiprimeness of R, this implies that e;(Ne;R N Ej)e; # 0. Thus,
0 # e;Ne; NejEje; = I N Eje;,

and consequently E;e; is an essential right ideal of e;Re;.
Now, since e;Re; = (e; C)ni (i=1, ---, m+ 1), and since e; C is by Lemma 5 a

semiprime Goldie ring, we see by Lemma 2 that E;e; contains a regular element of
e;C (i=1, ---, m+1). Thus we have for each i an element e;x; such that
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e;X;€ Eje; CE, where x;€ C and e;X; is a regular element of e;C.

m+1
Let t= Z)i 1 €ijXj, andnote that t € E N C. We claim that t is a regular element

+1
of C. To see this, assume ty = 0, where y € C. Since y = Em e;y we have the

relations
m+1 m+l m+1
0=ty = ( Z} eixi) Z} eiY) = E (eixi) (eiY) ’

i=1 i=1 i=1

where the right equality holds since eje; = 0 whenever i # j. Since the sum

inl e; C is direct, (e;x;)(e;y) =0 for each i; but since e;x; is regular in e;C,

we see that e;y =0 (i=1, ---, m+ 1). Hence y = 0 and we have shown that t is
right-regular in C. Similarly, t is left-regular in C; thus t € T, and E N T # Q.

Finally, we show (3). Let t € T, and let 0 # x € R. We must show that
tRNXR # 0. Since x=e; X+ t+empmt1 X # 0, we see that e;x # 0 for some i;
hence, by the semiprimeness of R, e;xRe; # 0. Let 0 # e;xrje; € e;xRej; then
e;jxr;e; € (e; C)ni' As we noted earlier, e;t = te; is a regular element of the semi-

prime Goldie ring (eiC)ni. Hence there exist s; and w; in (eiC)ni such that

(e;xr;e;)w; =ts; # 0. Therefore,
0 # x(rje;w;) = ts;+ 2o ejXrie;wj.
j#i
If 24j4;e;xrie;w; = 0, then xR N tR # 0, and the proof ends. If
22 ejxrie;w; # 0,
j#i
then e, xr;e;w; # 0 for some k # i. Denote r;e;w; by y;; then
0 # xy; = tsi+2 ejXyi,
j#i

and e, xy; # 0 for some k # i.

By an argument similar to that above, there are elements ry and wy with
Vi = T'p€p Wy such that (ekxy )Yk =ts, # 0, and

0 # Xy;Vk = tsjyk +tsk+ 27 €;XY¥iVk-
j#i,k

Continuing this process, we deduce after at most m + 1 steps that 0 # xw =ts, and

(3) is established. The proof is now completed.
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