# GOLDIE CENTRALIZERS OF SEPARABLE SUBALGEBRAS

### Miriam Cohen

#### 1. INTRODUCTION

In this paper we shall discuss some relations between the structure of an algebra R and a certain subalgebra of R.

Before stating our results, let us recall some of the definitions and known results. Let R be a ring. The center of R is denoted Z(R). The ring R is semi-prime if R has no nontrivial nilpotent ideals; it is prime if the relation AB=0 for ideals A and B implies A=0 or B=0. The ring R is a (right) *Goldie* ring provided R satisfies the maximum condition on right annihilators and R contains no infinite direct sum of right ideals.

For x in R, we set

$$\mathbf{r}(\mathbf{x}) = \{ \mathbf{y} \in \mathbf{R} \mid \mathbf{x}\mathbf{y} = 0 \}$$
 and  $\ell(\mathbf{x}) = \{ \mathbf{y} \in \mathbf{R} \mid \mathbf{y}\mathbf{x} = 0 \}$ .

An element x of R is regular if  $r(x) = \ell(x) = 0$ .

If A is a subset of R, the centralizer of A in R is

$$C_R(A) = \{x \in R \mid xa = ax \text{ for all } a \in A\}.$$

In [8], S. Montgomery explored some relations between the structure of an algebra R over a field and the structure of the centralizer  $C_R(A)$  of a finite-dimensional separable subalgebra A. In [2] we showed that if R is a semiprime n-torsion-free ring, a is an element of R such that  $a^n \in Z(R)$ , and  $C_R(A)$  is a semiprime (prime) Goldie ring, then R is a semiprime (prime) Goldie ring.

In this paper we shall show that if R is a semiprime algebra over a field and A is a finite-dimensional separable subalgebra, then  $C_R(A)$  is a Goldie ring if and only if R is a Goldie ring.

As a consequence we can extend the results of [2] to the case where Z(R) is a field and a is a zero of a separable polynomial over Z(R).

We shall use localizations later. Let T be a nonempty set of regular elements of R. Then T is a *right denominator set* if T is closed under multiplication and if  $xT \cap tR \neq 0$  for each nonzero x in R and each t in T. P. M. Cohn [3, p. 21], has shown that the *localization* of R by T,

$$R_T = \{xt^{-1} \mid x \in R, t \in T\}$$

exists for such a T and  $R \subseteq R_{\rm T}$  .

Received September 2, 1975.

This is part of the author's dissertation written at Tel Aviv University under the supervision of Dr. A. A. Klein.

Michigan Math. J. 23 (1976).

A ring  $Q(R) \supseteq R$  is a *right quotient ring* of R. If Q(R) has an identity, each regular element of R is invertible in Q(R), and for each  $q \in Q(R)$  there exist a, b  $\in R$  with b regular and  $q = ab^{-1}$ .

If Q(R) satisfies the conditions above, R is said to be a *right order* in Q(R).

As usual,  $R_n$  denotes the ring of all n-by-n matrices over R. If R has a unit element 1, then  $R \subset R_n$  via  $r \to rI$ , where  $e_{ij}$  denotes the n-by-n matrix with 1 in the ij-th place and 0 elsewhere, and  $I = \sum_{i=1}^n e_{ii}$  denotes the identity matrix.

A right ideal E of a ring R is said to be an *essential* right ideal if E intersects every nonzero right ideal of R.

# 2. PRELIMINARY LEMMAS

We start with a necessary and sufficient condition for a ring to be a semiprime Goldie ring.

LEMMA 1. A ring R is a semiprime Goldie ring if and only if R contains a multiplicative subsemigroup T satisfying the conditions

- (1) the elements of T are regular in R,
- (2) every essential right ideal of R contains an element of T,
- (3) for each  $t \in T$ , the right ideal tR is essential.

*Proof.* If R is a semiprime Goldie ring, then the set of all regular elements of R satisfies the conditions above [4, pp. 174-175].

Now assume that T exists and satisfies (1) to (3). For  $t \in T$  and  $x \in R$  ( $x \neq 0$ ), let  $W = \{r \in R \mid xr \in tR\}$ . By (3), tR is an essential right ideal; hence W is essential, and by (2),  $W \cap T \neq \emptyset$ . Thus  $tR \cap xT \neq 0$  whenever  $t \in T$  and  $0 \neq x \in R$ . Therefore T is a right denominator set for R, and  $R_T$  exists.

If E is any essential right ideal of  $R_T$ , then  $E \cap R$  is an essential right ideal of R. Hence, by (2),  $E \cap R$  contains an element of T that is invertible in  $R_T$ , and therefore  $E = R_T$ . Since  $R_T$  has no proper essential right ideals,  $R_T$  is a semisimple Artinian ring [7, p. 61]. In an Artinian ring with an identity, every right-regular element is invertible. Since every regular element of R is right-regular in  $R_T$ , we see as a consequence that every regular element of R is invertible in  $R_T$ . Therefore R is an order in a semisimple Artinian ring, and it is thus a semiprime Goldie ring [4, p. 177].

LEMMA 2. Let R be a ring with an identity. If R is a semiprime Goldie ring, then each essential right ideal of  $R_n$  contains a regular element of R.

*Proof.* Let E be an essential right ideal of  $R_n$ . Let  $E_i = \{r \in R \mid re_{ii} \in E\}$ , and let J be a nonzero right ideal of R. Since  $\left(\sum_{j=1}^n Je_{ij}\right) \cap E \neq 0$ , we see that

$$\left(\sum_{j=1}^{n} Je_{ij}\right)e_{m_{i}} \cap E \neq 0$$
 for some m;

therefore  $E_i \cap J \neq 0$ . We have shown that  $E_i$  is an essential right ideal of R for each  $i = 1, \dots, n$ . Since  $\bigcap_{i=1}^n E_i$  is an essential right ideal of the semiprime

Goldie ring R, it contains a regular element t of R, and  $te_{ii} \in E$  for each  $i = 1, \dots, n$ . Consequently  $t = tI \in E$ .

LEMMA 3. Let R be a ring with an identity. Then R is a semiprime (prime) Goldie ring if and only if the matrix ring  $R_n$  is a semiprime (prime) Goldie ring.

*Proof.* By [9, p. 606],  $R_n$  is a semiprime Goldie ring whenever R is a semiprime Goldie ring. The converse is also true, since R is a subring of  $R_n$  and hence inherits the maximum condition on right annihilators. Also, since every direct sum of right ideals of R gives rise to a direct sum of right ideals in  $R_n$ , the ring R contains no infinite direct sums of right ideals.

The fact that R is semiprime (prime) if and only if  $R_n$  is semiprime (prime) stems from the well-known result that every ideal of  $R_n$  is of the form  $J_n$ , where J is an ideal of R.

LEMMA 4. Let R be an algebra over a field F, and let K be a finite separable extension of F. Then R is a semiprime Goldie ring if and only if  $R \otimes_F K$  is a semiprime Goldie ring.

*Proof.* If R is a semiprime Goldie ring and Q(R) its ring of quotients, then Q(R) is semisimple Artinian. The tensor product Q(R)  $\otimes_F$  K is semisimple Artinian, since K is a finite separable extension of F, and by [6, p. 116 and p. 252]. Hence every regular element of  $R \otimes_F K$  is invertible in Q(R)  $\otimes_F K$ . Also, by the common-multiple property of R, every element of Q(R)  $\otimes_F K$  is of the form ab<sup>-1</sup>, where a  $\in R \otimes_F K$  and b is a regular element of R. Hence  $R \otimes_F K$  is an order in Q(R)  $\otimes_F K$  that is a semisimple Artinian ring, and thus  $R \otimes_F K$  is a semiprime Goldie ring.

The converse can easily be verified.

LEMMA 5. Let R be a semiprime (prime) Goldie ring, let M be a right ideal of R, and let  $L = M \cap \ell(M)$ . Then M/L is a semiprime (prime) Goldie ring. In particular, if  $e \in R$  is a nonzero idempotent, then for M = eR we have eRe, which is isomorphic to M/L, a semiprime (prime) Goldie ring.

*Proof.* Each nonzero right ideal of M/L is the image  $\overline{V}$  of some right ideal V of M, where VM is a nonzero right ideal of R. Hence M/L is a semiprime (prime) ring. Now, since L is a two-sided ideal of M and in addition is a left annihilator in M, there exists an order-preserving correspondence between the left annihilators of M/L and certain left annihilators of M [5, p. 74]. Since the maximum condition on right annihilators is equivalent to the minimum condition on left annihilators, M as a subring of R satisfies this minimum condition. By the argument above, M/L satisfies the maximum condition on right annihilators.

If  $\overline{V}_1 \oplus \overline{V}_2 \oplus \cdots$  is a direct sum of right ideals of M/L, then  $V_1 M + V_2 M + \cdots$  is a direct sum of right ideals of R. To prove this we must show that the right ideal  $W_j = \left(\sum_{i \neq j} V_i M\right) \cap V_j M$  is 0 for each j. Now,

$$\overline{W}_{j} \subset \left(\sum_{i \neq j} \overline{V_{i}}\right) \cap \overline{V_{j}} = 0;$$

hence  $W_j^2 = 0$  because  $W_j M = 0$ . Semiprimeness of R now implies  $W_j = 0$ . Therefore M/L has no infinite direct sum of right ideals, since R does not.

### 3. THE MAIN THEOREM

We now turn to the situation described in [8]. In the following, R will denote an algebra over a field F, and A a finite-dimensional, separable subalgebra of R. By [1, p. 45], there exists a finite separable field extension K of F (called a *splitting field* for A) such that

$$A \otimes_{F} K = K_{n_{1}} \oplus \cdots \oplus K_{n_{m}}$$

where  $K_{n_i}$  denotes the  $n_i$ -by- $n_i$  matrix ring over K. The algebra A is called *split* if it is already a direct sum of complete matrix rings over F.

LEMMA 6. If 
$$A = F_{n_1} \oplus \cdots \oplus F_{n_m}$$
, then

(1)  $C = C_R(A) = e_1 C + \dots + e_m C + \left(1 - \sum_{i=1}^m e_i\right) C$ , where  $e_i$  is the  $n_i$ -by- $n_i$  identity matrix, and  $\left(1 - \sum_{i=1}^m e_i\right) C = \left\{x - \sum_{i=1}^m e_i x \mid x \in C\right\}$ ,

(2) 
$$e_i Re_i = (e_i C)_{n_i}$$
 for  $i = 1, \dots, m$ ,

(3) 
$$\left(1 - \sum_{i=1}^{m} e_i\right) R \left(1 - \sum_{i=1}^{m} e_i\right) = \left(1 - \sum_{i=1}^{m} e_i\right) C$$
.

*Proof.* Since  $e_i \in Z(A)$ , we see that  $e_i \in Z(C)$ , and (1) follows.

Next, by [4, p. 112] we have the isomorphism

$$e_i Re_i \cong e_i Ae_i \otimes C_{e_i Re_i} (e_i Ae_i);$$

but  $e_i A e_i = F_{n_i}$  and  $C_{e_i R e_i}(e_i A e_i) = e_i C e_i = e_i C$ , hence

$$\mathbf{e_i} \, \mathbf{R} \, \mathbf{e_i} \, \stackrel{\scriptscriptstyle \mathbf{Z}}{=} \, \mathbf{F_{n_i}} \, \otimes \, \mathbf{e_i} \, \mathbf{C} \, \stackrel{\scriptscriptstyle \mathbf{Z}}{=} \, \left( \mathbf{e_i} \, \mathbf{C} \right)_{n_i} \, .$$

Since the isomorphisms are natural, we may identify  $e_i R e_i$  with  $(e_i C)_{n_i}$ , and (2) follows. Finally, since

$$\left(1-\sum_{i=1}^{m}e_{i}\right)R\left(1-\sum_{i=1}^{m}e_{i}\right)\subset C,$$

the rest follows.

We are ready to prove the main result of this paper.

THEOREM. Let R be a semiprime algebra over a field F, and let A be a separable, finite-dimensional subalgebra of R. Then R is a Goldie ring if and only if  $C_R(A)$  is a Goldie ring.

*Proof.* First, let us show that we can assume that A is split. If K is a splitting field of A, then  $R \otimes_F K$  is semiprime if and only if R is semiprime [8, p. 16]. By Lemma 4,  $R \otimes_F K$  is a semiprime Goldie ring if and only if the same is true of R. Since

$$C_{R \bigotimes_{F} K}(A \bigotimes_{F} K) = C_{R}(A) \bigotimes_{F} K$$
,

we see by Lemma 4 that  $C_{R\bigotimes_F K}(A\bigotimes_F K)$  is a semiprime Goldie ring if and only if  $C_R(A)$  is.

Second, by [8, p. 19], it is not necessary to specify that  $C_R(A)$  is semiprime, for semiprimeness of R implies that of  $C_R(A)$ .

Therefore, let  $A = F_{n_1} \oplus \cdots \oplus F_{n_m}$ , and assume R is a Goldie ring. Denote  $C_R(A)$  by C, and  $1 - \sum_{i=1}^m e_i$  by  $e_{m+1}$ , and let  $n_{m+1} = 1$ . Then by (2) and (3) of Lemma 6,

$$e_i R e_i = (e_i C)_{n_i}$$
 (i = 1, ..., m + 1).

Since  $e_{m+1}$  acts as an idempotent and since the  $e_i$ 's are idempotents, it follows from Lemma 5 that  $e_i$  Re $_i$  is a semiprime Goldie ring for  $i=1, \cdots, m+1$ . Thus, by Lemma 3,  $e_i$  C is a semiprime Goldie ring for  $i=1, \cdots, m+1$ . Since every right ideal M of C is a direct sum of  $M_i$ , where  $M_i$  is a right ideal of  $e_i$  C ( $i=1, \cdots, m+1$ ), and since these are Goldie rings, C is a Goldie ring.

Conversely, assume that C is a Goldie ring. As we noted earlier, C is actually a semiprime Goldie ring. Let T denote the set of all regular elements of C. We shall show that T satisfies conditions (1) to (3) of Lemma 1 and thus prove that R is a Goldie ring.

Condition (1) was established in [8, p. 22]. Here we shall give a shortened proof. Since  $\sum_{i=1}^{m+1} e_i x = x$  for each  $x \in R$ , we see that if J is a nonzero right (left) ideal of R, then there exists an i for which  $e_i J \neq 0$ . Since R is semiprime,  $e_i J e_i \neq 0$ . Now, if  $t \in T$ , then

$$e_i t = te_i \epsilon (e_i C)_{n_i} = e_i Re_i$$
.

Since t is regular in C and  $e_i \in Z(C)$ , we see that  $e_i t$  is regular in  $e_i C$ ; hence  $e_i t$  is regular in  $(e_i C)_{n_i} = e_i R e_i$ . Therefore, if J = r(t) is nonzero, then by the argument above,  $e_i r(t) e_i \neq 0$  for some i. But  $e_i t(e_i r(t) e_i) = e_i t r(t) e_i = 0$ ; hence by the regularity of  $e_i t$  in  $e_i R e_i$  we see that  $e_i r(t) e_i = 0$ , a contradiction. Therefore r(t) = 0, and similarly  $\ell(t) = 0$ .

Next we establish condition (2). Let E be an essential right ideal of R. We shall show that  $E \cap T \neq \emptyset$ . Since E is an essential right ideal of R and  $e_i$  R is nonzero,  $e_i$  R  $\cap$  E  $\neq$  0. Let  $E_i$  =  $e_i$  R  $\cap$  E, and note that  $e_i$   $E_i$  =  $E_i$   $\subset$  E. We shall show that  $E_i$   $e_i$  is an essential right ideal of  $e_i$  R  $e_i$ . If J is a nonzero right ideal of  $e_i$  R  $e_i$ , then J =  $e_i$  N  $e_i$ , where N is a right ideal of  $e_i$  R and N  $e_i$  R  $\neq$  0 by the semiprimeness of R. The essentiality of E implies that Ne<sub>i</sub> R  $\cap$  E  $\neq$  0; but N  $\subset$   $e_i$  R. Hence

$$0 \neq Ne_i R \cap E = Ne_i R \cap e_i R \cap E = Ne_i R \cap E_i$$
.

By the semiprimeness of R, this implies that  $e_i(Ne_i R \cap E_i)e_i \neq 0$ . Thus,

$$0 \neq e_i N e_i \cap e_i E_i e_i = J \cap E_i e_i$$

and consequently  $E_i e_i$  is an essential right ideal of  $e_i R e_i$ .

Now, since  $e_i R e_i = (e_i C)_{n_i}$  ( $i = 1, \dots, m+1$ ), and since  $e_i C$  is by Lemma 5 a semiprime Goldie ring, we see by Lemma 2 that  $E_i e_i$  contains a regular element of  $e_i C$  ( $i = 1, \dots, m+1$ ). Thus we have for each i an element  $e_i x_i$  such that

 $e_i \, x_i \, \epsilon \, \, E_i \, e_i \subset E$  , where  $\, x_i \, \epsilon \, \, C \,$  and  $\, e_i \, x_i \,$  is a regular element of  $\, e_i \, C$  .

Let  $t = \sum_{i=1}^{m+1} e_i x_i$ , and note that  $t \in E \cap C$ . We claim that t is a regular element of C. To see this, assume ty = 0, where  $y \in C$ . Since  $y = \sum_{i=1}^{m+1} e_i y$  we have the relations

$$0 = ty = \left(\sum_{i=1}^{m+1} e_i x_i\right) \left(\sum_{i=1}^{m+1} e_i y\right) = \sum_{i=1}^{m+1} (e_i x_i) (e_i y),$$

where the right equality holds since  $e_i e_j = 0$  whenever  $i \neq j$ . Since the sum  $\sum_{i=1}^{m+1} e_i C$  is direct,  $(e_i x_i)(e_i y) = 0$  for each i; but since  $e_i x_i$  is regular in  $e_i C$ , we see that  $e_i y = 0$  ( $i = 1, \dots, m+1$ ). Hence y = 0 and we have shown that t is right-regular in C. Similarly, t is left-regular in C; thus  $t \in T$ , and  $E \cap T \neq \emptyset$ .

Finally, we show (3). Let  $t \in T$ , and let  $0 \neq x \in R$ . We must show that  $tR \cap xR \neq 0$ . Since  $x = e_1 x + \dots + e_{m+1} x \neq 0$ , we see that  $e_i x \neq 0$  for some i; hence, by the semiprimeness of R,  $e_i xRe_i \neq 0$ . Let  $0 \neq e_i xr_i e_i \in e_i xRe_i$ ; then  $e_i xr_i e_i \in (e_i C)_{n_i}$ . As we noted earlier,  $e_i t = te_i$  is a regular element of the semiprime Goldie ring  $(e_i C)_{n_i}$ . Hence there exist  $s_i$  and  $w_i$  in  $(e_i C)_{n_i}$  such that  $(e_i xr_i e_i)w_i = ts_i \neq 0$ . Therefore,

$$0 \neq x(r_i e_i w_i) = ts_i + \sum_{i \neq i} e_j x r_i e_i w_i.$$

If  $\sum_{j \neq i} e_j x r_i e_i w_i = 0$ , then  $xR \cap tR \neq 0$ , and the proof ends. If

$$\sum_{i \neq i} e_j x r_i e_i w_i \neq 0,$$

then  $e_k x r_i e_i w_i \neq 0$  for some  $k \neq i$ . Denote  $r_i e_i w_i$  by  $y_i$ ; then

$$0 \neq xy_i = ts_i + \sum_{j \neq i} e_j xy_i,$$

and  $e_k x y_i \neq 0$  for some  $k \neq i$ .

By an argument similar to that above, there are elements  $r_k$  and  $w_k$  with  $y_k = r_k e_k w_k$  such that  $(e_k x y_i) y_k = t s_k \neq 0$ , and

$$0 \neq xy_iy_k = ts_iy_k + ts_k + \sum_{i \neq i,k} e_jxy_iy_k.$$

Continuing this process, we deduce after at most m + 1 steps that  $0 \neq xw = ts$ , and (3) is established. The proof is now completed.

Acknowledgement. I wish to thank S. Montgomery for suggesting the problem, and I. N. Herstein and A. A. Klein for their continued encouragement.

#### REFERENCES

- 1. A. A. Albert, Structure of algebras. Amer. Math. Soc. Coll. Publ., Vol. XXIV. Amer. Math. Soc., Providence, R.I., 1961.
- 2. M. Cohen, Semiprime Goldie centralizers. Israel J. Math. 20 (1975), 37-45.
- 3. P. M. Cohn, Free rings and their relations. Academic Press, London-New York, 1971.
- 4. I. N. Herstein, *Noncommutative rings*. The Carus Mathematical Monographs, No. 15. Mathematical Association of America (distributed by Wiley, New York), 1968.
- 5. ——, Topics in ring theory. Univ. of Chicago Press, Chicago, Ill., 1969.
- 6. N. Jacobson, Structure of rings. Amer. Math. Soc. Coll. Publ., Vol. 37. Revised edition. Amer. Math. Soc., Providence, R. I., 1964.
- 7. J. Lambek, Lectures on rings and modules. Blaisdell, Waltham, Mass., 1966.
- 8. S. Montgomery, Centralizers of separable subalgebras. Michigan Math. J. 22 (1975), 15-24.
- 9. J. C. Robson, Artinian quotient rings. Proc. London Math. Soc. (3) 17 (1967), 600-616.

Tel Aviv University, Ramat Aviv, Israel