ON QUASI-AFFINE TRANSFORMS OF SPECTRAL OPERATORS
C. K. Fong and M. Radjabalipour

Throughout this paper, “an operator” means a bounded linear transformation
defined on a fixed separable Hilbert space H.

It is known [6, Lemma 7] that a spectral subnormal operator is necessarily
normal. Here we show, among the other things, that if a quasi-affine transform of a
hyponormal (subspectral) operator T is spectral, then T is normal (spectral) (see
below for definitions). This, in particular, answers a question raised by J. G.
Stampfli in [7, Remark to Theorem 4].

Definitions. (1) An operator T is called speciral if T =S +Q, where S (called
the scalar part) is similar to a normal operator, Q is quasi-nilpotent, and SQ = QS.
Every spectral operator has a resolution of the identity which is the same as that of
its scalar part. The decomposition T =S + Q is called the canonical reduction of T
[2, page 1939].

(2) The restriction of a normal (spectral) operator to an invariant subspace is
called a subnoymal (subspectval) operator; a cosubnormal (cosubspectral) operator
is the adjoint of a subnormal (subspectral) operator.

(3) An operator T is called hyponormal (cohyponormal) if T*T - TT* >0
(T*T - TT*< 0).

(4) For an operator T and a closed subset F of the complex plane C, we define
X7(F) = {x € H : there exists an analytic function
f.: C\ F — H such that (A - T){,(A) = x} .
(5) An operator T is said to be a quasi-affine tvansform of an operator S if
there exists a one-to-one operator W such that WT = SW and WH is dense in H.

We need the following two lemmas.

LEMMA 1. Let A, B, and C be three opevators such that AC = CB. Lel g be

an H-valued function (not necessarily analytic) defined on a subset G of € .such that
(A - B)g(\) = x for some x € H. Then (A - A)Cg(x) = Cx.

The proof is trivial.

The next lemma plays an important role in this paper; our main results are easy
applications of this lemma and some results due to C. R. Putnam [4] and
Radjabalipour [5].

LEMMA 2. Let T be a spectral opevator with the vesolution of the identity E.
Let F be a closed subset of the plane. Let x € H, and assume theve exists a
bounded function g: C\ F — H such that A - T)g(A) = x. Then E(F)x = x.

Proof. We assume without loss of generality that the scalar part of T is nor-
mal. Let T =S+ Q be the canonical reduction of T. By [1, Theorem 1 (page 208)],
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there exist a family H, (z € 0(S)) of Hilbert spaces and a positive measure p on
0(S) such that H, N, and Q are unitarily equivalent to

SG) H, du(z), S® z1, dy.(z), and S@ Q. du(z),

respectively, where I, denotes the identity on H, and Q, is a quasi-nilpotent oper-

®
ator on H, for du-almost all z. Moreover, T = S T ,du(z), where T, =zI, +Q,

for dp-almost all z.
®
Choose a fixed sequence {A,} dense in C \ F. Let x = S x,du(z) and
®
gy = S g-Ap)du(z) (n=1, 2, -+). It is easy to see that

(1) O - THe,0) = %, and g, 0 )] <K (a=1,2, ),

for du-almost all z, where K = sup, ||g(\)]|.

Fix z ¢ F satisfying (1) for which Q, is quasi-nilpotent. Since ¢(T,) = {z},
the analytic function hd) = (A - z - Q;) ! x, (A # z) agrees with g,(A) on a dense
subset of C \ F and thus h(A) is bounded in a deleted neighbourhood of z. Hence
h(A) is an entire function. Therefore x, = 0, and

®

X = S x,du(z) € E(F)H.
F

COROLLARY 1. Lemma 2 vemains tvue if T is assumed o be a subspectral
operator.

Remark 1. Lemma 2 is true for normal operators with no boundedness condi-
tion on g [3, Theorem 1]. This is not true for a spectral operator in general: any
nonzero vector in the range of a quasi-nilpotent operator yields a counterexample.

Now we prove our generalizations. For convenience, we state the results in
terms of cohyponormal and cosubspectral operators.

THEOREM 1. Let T, S, D, and W be opevators satisfying the following condi-
tions:

(1) (T-2)(T*-2)>D >0 forall )€ C;
(ii) S is a subspectral operator;
(iii) W is one-to-one;
(iv) WT = SW.
Then D = 0.

Note. Any cohyponormal operator T satisfies condition (i) with D = TT* - T*T
[4, page 167].

Proof of Theorem 1, Since every eigenvalue of T is also an eigenvalue of S, it
follows that the point spectrum of T has no interior [2, page 1958]. Assume, if
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possible, that D # 0. By [4, Theorems 1 and 3] there exist a nonzero vector x and a
bounded function g: € — H suchthat (A - T)g(\) = x. In view of Lemma 1, Wg is

a bounded function from € into H with the property that (A - S) Wg{y) = Wx. Now it
follows from Corollary 1 that Wx € E(@)H = {0}, a contradiction.

THEOREM 2. Let T, S, and W be operators satisfying the following conditions:
(i) T is cosubspectral;

(ii) there exists a sequence {Gy} of open sets forming a base for the topology
of € such that X{aG,) ={0} (n=1,2, )

(iii) W is one-to-one;
(iv) WT = SW.
Then T is spectral.
Note. Any subspectral operator S satisfies condition (ii) of the theorem.

Proof of Theovem 2. In light of Lemma 1, WX1(3G,) C X0G,) = {0}
(n=1, 2, ---). The rest of the proof follows from [5, Theorem 2].

THEOREM 3. (a) If a cohyponormal operator T is a quasi-affine tvansform of
a subspectral opevator S, then T is novmal and S is similay to T.

(b) If a cosubspectral opevator T is a quasi-affine transform of a subspectral
operator S, then T and S ave spectval.

Pyoof. The normality of T follows from Theorem 1. By Theorem 2, applied to
the cosubspectral operator S*, the operator S is spectral. To finish the proof of (a),
we have to show that if A is a normal operator, if B is a spectral operator with a
normal scalar part, and if WA = BW for some one-to-one positive operator W, then
A =B. Let Ep and Eg be the resolutions of the identity for A and B, respectively.
Let F be a closed subset of € such that

(2) EA(dF) = Eg(dF) = 0.

It is easy to see that Xy (F) = Ey(F)H and Xy (C \ F) = Ey(C \ F) H, where V stands
for A and B. By Lemma 1 and the observations above,

W2XA(F) C WXB(F) = WX (F¥) C X, 4(F*) = Xa(F)

and, by a similar proof, W2 X, (C\ F) XA (C\ F). (Here F* denotes the set of
complex conjugates of the elements of F.) Thus W2 EA(F) = EA(F) W2 . Since every
closed set in the plane is the intersection of a decreasing sequence of closed sets
satisfying (2), it follows that W2 E, = E5 W% and hence W2 A = AW2 . Therefore
WA = AW = BW, which implies that A = B.

(b) Apply Theorem 2 to the cosubspectral operators T and S*.

We thank H. Radjavi for helpful conversations. J. G. Stampfli and B. L. Wadhwa
kindly informed us that they have proved our Theorem 1 in case S is a normal oper-
ator; although S is restricted to be normal, they allow T to be in a larger class of
operators containing cohyponormal operators. The results will appear in their

paper [8].
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