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1. INTRODUCTION

Our paper demonstrates that the topology of 3-manifolds as related to Heegaard
splittings is considerably more complex than previous positive results of Singer [14],
Reidemeister [10], and Waldhausen [17] had indicated it to be.

A closed, orientable 3-manifold admits a Heegaard splitting of genus g if
M=X,U X'g, where X and X'g are each handlebodies of genus g, and

XgNXg = 90Xy = 30X,

Two such Heegaard splittings M = XU X'g =YgU Y'g are equivalent if there is a
homeomorphism h: M — M such that h(Xg) =Yg or Yg, and h(Xg) = Yz or Yg.
The Heegaard genus of M is the smallest integer g such that M admits such a
representation. The purpose of this note is to exhibit an infinite family of prime 3-
manifolds, each being a homology sphere of Heegaard genus 2, each of which ex-
hibits at least two equivalence classes of Heegaard splittings of genus 2. Our mani-
folds also exhibit a second “bad” property: each may be represented as the 2-fold
covering space of S3 branched over a knot K3, and also over a second knot K‘é ,
where Kg and K{'g are inequivalent knot types. The nature of the examples leads us

to conjecture that this phenomenon is not an isolated one, and probably happens often
for 3-manifolds which are sufficiently complicated in structure.

We review briefly the historical background which motivated the question studied
here. In 1933 Reidemeister [10] and Singer [14] simultaneously published proofs that
all Heegaard splittings of a closed orientable 3-manifold are stably equivalent. (For
a definition of stable equivalence, see [17].) The question of interest to us is whether
the adjective “stably” can be dropped. No progress was made at all until 1968, when
Waldhausen improved the Reidemeister-Singer theorem for the special cases of
M; = 83 and M, = # S%2 X S!, establishing (in [17]) that any two Heegaard splittings

n
of the same genus of S3, or of # S2 X S!, are equivalent. (Note that Waldhausen’s

n
definition of equivalence of Heegaard splittings, as given in [17], is slightly stronger
than ours, since he requires that h be isotopic to the identity map.) In the opposite
direction, Engmann [4] found examples of connected sums of lens spaces which ex-
hibit inequivalent Heegaard splittings (see also [1]), but the situation for prime 3-
manifolds remained open. That latter question is laid to rest by our examples. The
question of whether Waldhausen’s positive results generalize to special classes of

closed, orientable 3-manifolds other than S3 or #82x S! remains an important
n
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one, because for any such manifold, invariants of equivalence classes of Heegaard
splittings (see, for example, [1]) would necessarily be topological invariants.

The related question of the correspondence between knot type and topological
type of the associated 2-fold branched covering spaces has a similar history. If K
is a tame knot in S3, then 7,(S3 - K) has a unique representation onto Z,, which in
furn defines a unique closed orientable 3-manifold K the 2-fold covering space of
S3 branched over K. Waldhausen’s positive results in [18] imply that if K is §3
then K is the trivial knot, while if K is # S2x S!, then K is the trivial link of

n

n + 1 components. Again in the positive direction, Birman and Hilden proved that

for the special case g = 2, each equivalence class of Heegaard splittings of K deter-
mines a unique knot type K (Theorem 8 of [3]); this result will play a crucial role in
our construction below. Weaker positive results of Birman and Hilden [2, 3] and of

Viro [15] relate the Heegaard genus of K to the bridge index of K. In the negative
direction, however, examples had been found simultaneously by Montesinos [7, p.
113] and by Viro (Sections 3, 7 of [15]) to show that if K is allowed to be a com-

posite link, then the topological type of K does nof determine the link type of K
uniquely. Our present examples remove the restriction “composite” and “link” from
Montesinos’ and Viro’s results. However, the question of whether there are special

classes of manifolds K for which the correspondence between K and K isa bijection
remains of considerable interest, because of the potential connections between invari-

ants of K and invariants of K. We remark that, by our examples given in Section 2
below, the genus of K is not, in general, an invariant of K.

2. THE CONSTRUCTION

Let 8 be an integer different from 0, -1, and let Kg denote the torus knot of
type (3, @), where q = |68 + 1|. Let Kb denote the knot which is illustrated in Fig-
ure 1(a) if B8 > 0. The portion of Figure 1 which is included in the brackets consists
of 8 “half-twists”. If 8 < -1 the knot diagram will be identical except that these
particular crossings should be reversed.

THEOREM. (i) The knots Kg and KZ; vepresent inequivalent knot types.

(ii) The 2-fold covering space IN{B of S3 branched over Kg is homeomorphic to
the 2-fold covering space Kg of S3 branched over Kg.

(iii) The manifold RB is prime.
(iv) The manifold f(ﬁ has Heegaavd genus 2,

(v) The manifold f{'[g admits at least two equivalence classes of genus 2
Heegaard splittings.

Proof. To see that Kg and Kb are inequivalent knot types, note first that the
genus of a torus knot of type (p, q) is (p - 1)(q - 1)/2 (see, for example, Theorem 1
of [9]). Thus the genus g of Kg is |68 + 1| - 1, which is greater than 5, since
B # 0 or -1. (It is easy to see that K_; and K.; are equivalent knot types.) We
now show that the genus g' of K;'g is at most 5, which implies that Kg and K['; are
inequivalent knot types. If we span an orientable surface in Kb, using the projection
of Figure 1(a), by the method described in [13], or on page 140 of [5], we find that the
number f of Seifert circles is 7+ |8] if B is even and 3 + |B| if B is odd. The

genus g of the orientable surface is (d - f + 1)/2, where d = 12 + 8 is the number of
crossings. Thus g' <3 if B is even and g' <5 if 8 is odd, establishing (i).
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(a) (b)
Figure 1.

To establish (iii), we note first that if K is a torus knot of type (p, @) with p
and ¢ both odd (and relatively prime), then K is the orientable Seifert fiber space
with base S? and three exceptional fibers of multiplicities 2, p, q and which is a ho-
mology sphere (Zusatz zu Satz 17 of [12]). In the case p =3 and q = |68 + 1] this
manifold may be described by the symbol (000 | -1; (2, 1), (3, 1), (Jes + 1[, IB[)) in
the notation of [12]. By Theorem 7.1 and Lemma 10.2 of [16], it then follows that K
is a prime 3-manifold.

To prove (ii), we note that ﬁé belongs to a class of manifolds studied by
Montesinos in [8]. Using the projection of Figure 1(b), we may recognize Ké as the
knot defined by the schematic diagram on page 6 of [8], with (1, b) = (1, -1),

(@, B1) =(2, 1), (@2, B2) =(3, 1), and (a3, B3) = (|68 + 1], |B]). It then follows
from the theorem in Section 2 of [8] that Kj is also the Seifert fiber space
(000 | -1; (2, 1), (3, 1), (|6 + 1], IB])), which establishes part (ii) of our theorem.

To prove (iv), note that the torus knot of type (3, q) has bridge index 3 (Theo-
rem 10 of [11]); hence by Lemma 2 of [3] it has plat index 6. Therefore, by Theo-
rem 5 of [3], ﬁﬁ has Heegaard genus < 2. Since f{ﬁ has a noncyclic fundamental
group [12], its Heegaard genus cannot be less than 2, which establishes (iv).

Finally, we prove (v). Note that the algorithm given in Section 5 of [3] allows
one to find in a natural way a Heegaard splitting of genus g - 1 for the 2-fold cov-
ering space K of a knot K, whenever K is presented as a 2g-plat. Thus we may
find a Heegaard splitting of genus 2 for 125 from any 6-plat presentation of Kﬁ s
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using that algorithm. A second Heegaard splitting of genus 2 may be found for
KB K[g from the presentation of Kﬁ in Figure 1(a), which is easily altered to a 6-
plat presentation. By Theorem 8 of [3], these Heegaard splittings are equivalent
only if Kg and KB are equivalent knot types. Since by (i) above the knots Kg and
KB are inequivalent, assertion (v) is established, and the proof of the theorem is
complete.

One may generalize (i), (ii), (iii), (iv) and show that the homology sphere Z, q,
which has a Seifert fibration with exceptional fibers of multiplicities 2, p, q, is a 2-
fold covering of S3 branched over the torus knot of type (p, q) and also over a
second knot with 3 bridges. We justify this assuming, as we may, that 3 <p <q,
since the case p = 3 was treated earlier.

Let b, 81, B2 be integers such that
2bpg +pq+28;q+282p =1 (0<B;<p, 0<B2<q).

Necessarily b = -1 or -2. If we replace b by -3-b, 81 by p-81, and B2 by
q-B2, the above equality still holds, so that we may assume b =-1. Then Z,

the manifold (000 | -1; (2, 1), (p, 31) (g, B2)) in Seifert’s notation (see page 208 of
[12]).

By Section 2 of [8] this manifold is the 2-fold covering of S3 branched over the
knot Kp g of Figure 2(a). (The portion of the diagram which is inside the circles will
be given explicitly below.) That same knot is represented in Figures 2(b) and 2(c),
where the portion labeled I'; (respectively, I';) in Figure 2(c) is obtained from the
portion labeled (p, 8) (respectively, (q, 8,)) in Figure 2(b) by a 90° counterclockwise
(respectively, clockwise) rotation about an axis perpendicular to the plane of projec-

tion.
@

2 ©

(a) (b) (c)

Figure 2,

We examine next the details of the schematic of Figure 2(c). A circle labeled
“m;” or “-m;” will be used to denote a portion of the knot diagram which contains a
2-braid with +mj; or -mj crossings, in the manner indicated in Figure 3. Note that
there are two possible orientations of the braid, depending on whether the symbol m;
is printed horizontally, or rotated through 90°. Details of the portion of the knot dia-
gram which is labeled I'; in Figure 2(c) are given in Figure 4. The integers
mj, ---, m, are obtained from a continued fraction expansion of p/Bi:
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Figure 3.

The schematic is slightly different in the cases r = 2s and r = 2s - 1, as indicated
in Figure 4. One may now deform Figure 4 and put the horizontal 2-braids into a
vertical position, as indicated in Figure 5. The 4-braid which is associated with the

diagram in Figure 5 is:

Figure 4. Figure 5.
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ognr o’zml‘-l 0302 oéml if r is even,
- m m ~Im . .
czmrc3 r-1 .. 0, 2 g 5 1 if r is odd.

This projection has precisely 2 local minima and no local maxima. Similarly,
one shows that the part of the knot containing I'; can be deformed so that it has pre-
cisely 2 local maxima and no local minima. It follows that Kp,q has a projection
with exactly 3 local maxima, so that K, ; has bridge index <3 [6].

The manifold Zp,q is also a 2-fold covering of S> branched over the torus knot
of type (p, q) (see [12, p. 222]). However, this knot has bridge index p (Theorem 10
of [11]), which we are assuming is greater than 3, and it is therefore not equivalent
to K

pP:q -

Since K 4 has bridge index < 3, by [3] it follows that, as in the case p = 3, the
manifold Zp,q has Heegaard genus 2.
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