TWO-GENERATOR GROUPS, I
J. L. Brenner and James Wiegold

1. INTRODUCTION

The theory of generators for discrete groups has a long history: an authorita-
tive text is Coxeter and Moser [5]. Miller [9] found two-element bases for alter-
nating and symmetric groups. He showed that nearly all these groups can be gen-
erated by an element of order 2 and an element of order 3. Explicit generators of
this type are given in [6]. Brahana [4] showed that every known finite nonabelian
simple group G of order less than 10 has a two-element basis: G = < a, b>,

where a has order 2. The same result was established for the projective special
linear groups PSL(n, q) ((n, q) # (2, 2), (2, 3)) by Albert and Thompson in [1].
Steinberg proved that every known finite simple group has a two-element basis [12],
and as far as we know, the same is true for every simple group discovered since
that time. In another direction, Binder [2], [3] showed that for any two nontrivial
elements x;, X, of the symmetric group &, , n > 4, there exists a third element y

such that &, = <x1 s y) = <x2 s y> . Thus the element y acts simultaneously as a

mate for either x; or x; . In fact, he proved a little more, and his work inspires
the following definition:

1.01 Definition. Let r be any positive integer. A finite nonabelian group G is
said to have spread r if, for every set {x;, xp, -, X, } of nontrivial elements of
G, an element y of G can be found such that (xi, y ) = G for each i. Let I', de-
note the collection of groups having spread r.

The content of Binder’s cited work is that the symmetric group ¥2, is in
I'; \ I's, while £2m+1 isin I'3 \ T'4, apart from a few easy exceptions.

Clearly I'. D TI'.;; for each r. The structure of groups of this sort is very re-
stricted. We recall that a group is monolithic if the intersection of all nontrivial
normal subgroups is nontrivial; the monolith is this intersection.

1.02 LEMMA. Let G be any group of spread 1: G € T'y. Then G is mono-
lithic, the derived group G' is the monolith, and G/G' is cyclic.

Proof. Let A be a nontrivial normal subgroup of G; let x be any nontrivial
element of A. Then (x, y > = G for some y in G, so that G/A is cyclic. From
this it follows that G' C A. ||

In section 2 we give a characterization of those groups G that lie in I'} and
have abelian monolith. This category is precisely the set of JM-groups of M. F.
Newman [11]; the structure of these groups is therefore completely determined. It
will appear that every JM-group is in I'3, so that every solvable group of spread
1 is already of spread 3.

As we just saw, Binder dealt with the symmetric groups. The situation for
alternating groups is radically different. In section 3, we shall prove that the alter-
nating group , . isin I'y \ I's for m =2 and m > 4, while ¢ (ever the
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exception!) is in I'; \ I'3. The proof that 2., is in T'4 for m > 4 is a relatively
easy combinatorial argument based on a result of Williamson [14]. For alternating
groups of odd degree, we are at a loss to make a sensible conjecture. The group
/5 has spread 2 (and not 3). It is easy to see that «,, cannot have spread as
great as (n - 2)! + 3, and that this bound can be improved in many cases. For
example, let t denote the integer 17!/(346!). Then ;g has spread t - 1 (that is,
6, 098, 892, 799), but not spread t + 3, as we shall see in section 4. Moreover, if p
is any prime such that the only unsolvable transitive groups of degree p are «/,
and SPP, then dp also has vast spread. We shall treat ;9 in detail in section 4;
the result for any prime p with the property mentioned in the preceding sentence
will be roughly similar.

The tracking-down of the primes with the property just mentioned (the “good”
primes, we shall call them) is a difficult task indeed—see P. M. Neumann [10] and
the literature cited there. Dr. M. D. Atkinson has informed us that he and Neumann
are studying the primes up to 100 with the aid of Cardiff’s ICL 4-70 computer. How-
ever, it ought to be possible to give an affirmative answer to our first problem
without a detailed knowledge of the good primes.

1.03 PROBLEM. Let f(p) denote the lavgest integer such that A, has spread
f(p), for primes p. Does f(p) tend to infinity with p?

In section 4, we prove that if g = 1 mod 4, q > 9, the spread of PSL(2, q) is
q-1. If q=3 mod4, q > 17, the spread is q - 4; if q is even, the spread is q - 2.
The methods are closely related to those used on . Thus there are simple
groups, as well as solvable groups (see section 2) with arbitrarily large spread.

In section 6, we return to the groups PSL(2, q). Let I‘(lk) stand for the collec-

tion of all finite nonabelian groups with the property that every nontrivial element
is in a two-element basis in which one of the two generators has order k. We have

here the extra information that the group PSL(2, q) lies in I‘gz) except when
q=2,3,09.

Also in section 6, we show that the groups PSL(n, q) with q odd and n > 2, or
with g arbitrary and n > 3, are outside 1"(2). When n = 3, the group PSL(3, 2) is
in 1"(2) for s > 2, the group PSL(3, 25) is not in I‘(Z) We also show that
PSL(n, q) is not in I‘(k) if n is large, n > N(k). These curious results arise from

the geometry of the groups in question.

Finally, we pose some problems concerning spread.

1.04 PROBLEM. What groups lie in T'; \ T'2? In particular, is this set per-
haps finite?

As we said earlier, all groups in T'; \ T', are unsolvable.

1.05 PROBLEM. Ave almost all finite simple groups in I‘( ) projective special
linear groups?

We are grateful to L. Carlitz for providing the results in section 7, on which the
calculations in section 6 rest. We also thank the referee, Dr. P. M. Neumann, for
pointing out a large mistake in an earlier version of the paper, for adding certain
information concerning PSL(2, q) in section 4, for remedying our initial ignorance
concerning PSL(3, 2M) in section 6, and for many useful suggestions.
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2. I'y-GROUPS WITH ABELIAN MONOLITHS

We can sum up the main result of this section as follows:

2.01 THEOREM. (i) Every group G in I'} and having abelian monolith is just-
metabelian (that is, G is solvable, non-nilpotent, and every prvoper homomorphic
image is abelian).

(ii) Conversely, let G be a finite just-metabelian group and set |G'| =r,
|G/G'| =k. Then G isin I',_| \ T, if k is not prime, and G isin T \ T, if k
is prime.

Pyroof. Part (i) follows immediately from lemma 1.02, since the Frattini sub-
group of every group in I'j is trivial, and such groups are not nilpotent.

For part (ii), let G be just-metabelian. Then by [11], G is monolithic; the
monolith is G'; it is abelian and complemented in G; the complements are maximal,
cyclic, pairwise disjoint, and conjugate, and they are centralizers of the elements
outside G'; moreover, there are precisely r such complements. Let x;, -, Xg,
Y1, ***» Y4 be any nontrivial elements of G, where the x; are in G' and the ¥j out-
side G'. If s +t < r, then there must exist a complement <a> of G' such that
<a> # C(yj) for j=1, .-+, t. The properties just mentioned now imply that
G = (a, xi> = (a, ¥j > for each i, j. This shows that G is in I'._; in all cases.

Suppose now that k is not prime, let p be a prime divisor of k, and let a be a
generator of an arbitrary complement of G'. The conjugates of a are precisely the
elements x-! ax, where x ranges over G', and by what was said above, every ele-
ment outside G' centralizes one of these elements. To show that G is not in I'y,
consider the r-element set X = {x-! apxl x € G'}. Firstly, (aP, x> # G for
every x in G', since of course a is not in { aP, x>. Thus no element of G' can
be a “supplementary generator” for every element in X. But because every ele-

ment outside G' centralizes one of the elements of X, no element outside G' works
either.

On the other hand, suppose that k is prime. To prove that G is in I'., ob-
serve that the argument two paragraphs back works with s +t =r unless s =0 and
Vi, ***, ¥y lie in r different centralizers of elements outside G . In the case where
k is prime, y,;, -+, y, must actually generate these centralizers in any troublesome

situation; therefore, if x is a nontrivial element of G', then G = <y-1 s x> for each
i. Thus G e I'.. But G ¢ I'.1+;, since no element of G works with each element of

{g, y1, ***» yr }, where now g is a nontrivial element of G' and y,, :--, y,. generate
the r centralizers of elements outside G'.

2.02 COROLLARY. If G is any solvable gvoup in T';, then G isin I'3.

Proof. This is because G is just-metabelian and part (ii) works. G is in I'3
unless IG" < 3;but |G'| <3 only if G is the symmetric group on three letters,
and in this case, |G/G'| is prime.
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3. ALTERNATING GROUPS OF EVEN DEGREE

The negative result here is relatively easy:
3.01 LEMMA. Fov n> 2, &3, isoulside I's.

Proof. For n = 2, it is easy to verify that there is no common “mate” in 4
for the five elements

(123), (124), (134), (234), (12)(34).
Now suppose that n > 2 and consider the five elements x;:

(23)(45), (14)(35), (15)(24), (13)(25), (12)(34).

We shall show that there is no common mate y in «£;, for each of these five ele-
ments. Firstly, y would have to move all the permuted symbols 1, 2, ---, 2n. Thus,
since the canonical decomposition of every element of 2, has an even number of
cycles, it follows by transitivity that y is a product of exactly two cycles. It is a
routine task, which we leave to the reader, to verify that every two-cycle element y
must generate an intransitive subgroup with at least one of the five elements x; .

As so often happens, ¢ requires special arguments. It has been known for
some time [9] that /¢ cannot be generated by an element of order 2 and one of
order 3; thus any element of ¢ which is a common mate for each of the three
elements

(13)(24), (15)(26), (36)(45)

must be a product of a 4-cycle and a transposition. A tedious verification shows that
every such element generates either an intransitive subgroup, or else a transitive
but imprimitive subgroup of ¢, with at least one of the displayed permutations.
Thus «¢ ¢ T'3. An equally tedious verification shows that every pair of nontrivial
elements in /¢ can be simultaneously mated by an element of order 4. The case
of 74 is trivial, and we may make the following assertion.

3.02 PROPOSITION. The rvelations 4 € Ty\ T's, oy € T', \ '3 hold.

In the remainder of this section, n > 4. The basis of the argument is the follow-
ing elegant theorem of Williamson [14].

3.03 THEOREM. Le!t G be a primitive permulalion grvoup of degrvee m con-
taining a nontrivial cyclic permulation of degvee t. If G is neither alternaling noyv
symmetric, then t > (m - t)!.

3.04 COROLLARY. Let n be an integer gveatev than 3 and lelt x denole
the element (1,2, ---, n+1){n+2, .., 2n) of A, if n is even, and
(1,2, -, n+2)n+3, ---, 2n) if n is odd. Then the only lransilive subgvoup of
o, containing X is o,y ilself.

Proof. First consider the case of even n. Here n+1 and n - 1 are relatively
prime, so that any transitive subgroup H of .« , containing x contains an (n + 1)-
cycle and an (n - 1)-cycle. But on the one hand, n + 1 is prime to 2n, since n is
even. On the other hand, n + 1 is more than half of 2n, so that H is in fact primi-
tive. Williamson’s theorem 3.03 now applies, with m = 2n and t =n + 1. It shows
that H is «,,. The case of odd n is similar.

As an aside, we observe that corollary 3.04 is true for n = 2 as well, but not
for n = 3: this because &5 has a primitive representation of degree 6.
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We call an element of &, having the same shape as those figuring in corol-
lary 3.04 a standavd element. Thus a standard element is a product of an (n + 1)-
cycle and an (n - 1)-cycle if n is even, and is the product of an (n + 2)-cycle and an
(n - 2)-cycle if n is odd. The standard elements have the virtue that they are ex-
tremely numerous, and they have a strong tendency to belong to two-element bases
for «Z,,. Given a standard element x, all one has to do is find an element y such

that {x, y ) is transitive.

3.05 THEOREM. For any four nontvivial elements xi, X5, X3, X4 0f A5,
n > 4, theve exists a standavd element y such that <xi, y) = Ay, for each i.

To substantiate 3.05, we restate the problem in a combinatorial way as follows.
We are working inside 2,, and we assume that the set of permuted symbols is
Q=1{1, 2, ---, 2n}; the data consist of four elements X], X2, X3, X4 of 4p,.

We call two elements o, 8 (@ # B) of Q x;-pariners if ax;’ =B for some v.
If we can complete the following construction, theorem 3.05 will be established.

3.06 Comnstruction. Given x,, X2, X3, X4, we must partition £ into the union of
two disjoint subsets T}, T, in such a way that

() |Ty| =n-11if n iseven, and |T|| =n - 2 if n is odd, so that
(]T1], |T2]) is the type of a standard element;

(ii) for each i =1, 2, 3, 4, there exist two x;-partners «;, ; such that
a; € Ty, B € To.

Once this is done, set y = uv, where u is a cycle on the elements of T, in any
order; and v is a cycle on the element of T,. Then <xi, y> is transitive for each
i, and so is the whole of &, by corollary 3.04.

The construction proceeds in several steps. We shall build up T,;, T,, piece-
by-piece until we are satisfied that the construction has gone far enough.

We begin by choosing, in the canonical decomposition of each x;, a cycle x{ of
more than two letters if such a cycle exists. If x; contains no such cycle, we
choose for xi' the product of a pair of transpositions in x;. It is not required that
xl' even lie in «,. We note that if «;, 8; are xi'—partners, they certainly are x;-
partners. Thus construction 3.06 will be completed if from now on, we simply re-

place each x; by the piece x;. There are three cases: (3.07), (3.08), (3.09). Sup-
pose first that the relation

(3.07) Supp (x;) N Supp (fo) =@ for i# j

holds. This case is straightforward. Clearly 2n > 12, so that n > 6.

If a; is some element of Supp(x;) (i=1, 2, 3, 4), we include a,, ---, @y in T,
(this is allowable, because |T; | > n-2>4) and we include Q) Xy, ©+, QgXy in
T, ; then we fill up T;, T, in any arbitrary way.

We may now assume, without loss of generality, that Supp(x;) N Supp(x}) is not

empty; let 1 denote a symbol in this intersection, renaming symbols if necessary.
It may be that the condition

(3.08) The symbol 1 has an x| -pavtnev that is also an X, - parviney
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holds. Let 2 be such a common partner. We put 1 in T; and 2 in T,; this al-

ready accommodates x'1 and x'2 . There are two possibilities under (3.08). The
first is:

(3.081) Thevre exisl xg—parmeafs a, B, bolh diffeven! from 1, 2. Here we have
some freedom of choice: we can take either

(3.0811) T; = {1, @, ---,}, T, =1{28, -},

or

It

(3-0812) Tl {17 B) '”} ’ TZ = {2) «a, “'} ’

and we have accommodated x], x5, x3. If x4 is a 3-cycle, or if x4 = (12)(ap), or
if x4 = (18)(2a), then (3.0811) is an allowable partitioning; if x4 = (1a)(28), we can
use (3.0812). This finishes case (3.081).

If (3.08) holds but (3.081) does not, then it must be true that:
(3.082) Every pair of x3-pariners conlains 1 or 2.

Thus, x3 is of the form (1 2a)t! or (1a)(2p); and clearly we may assume that
the same is true of le else the problem is reducible to (3.081). Since 1 is in T,
and 2 is in T,, we have already accommodated elements like (1 2a)t!; thus we
have only to think about the case where x; and x, are both of the general form
(1a)(2p8). But this case is trivial.

If neither (3.07) nor (3.08) holds, the following is clearly valid.

(3.09) There is no element v of Q@ wilth an xi'-[)mflnefr thal is also an xj—/)arl—
ner for i # j.

Let 1, 2 be x'l—partners and let 1, 3 be xé-partners. We begin by including 1
in T| and 2, 3 in T,. There are two subcases.

(3.091) x'3 has a paiv of pariners «o, 3 bolh diffevent from 1, 2, 3.
This subcase proceeds just as case (3.081). The final possibility is
(3.092) Lwvery puiv of x'g—[)afrlne'rs includes al least one of 1, 2, 3.

And, of course, the same is true of x:;. We tentatively put 1 in T and 2, 3 in
T,. This accommodates all possibilities for xf5 except those in which x'3 is one of

@23a)t!,  (1ae)@23), Qa)28), Qa)3p), Ca)3p),

where now «, 3 are different from 1, 2, 3. The reader will have no difficulty in
compleling the construction in these cases; we observe that the contingency

x"5 =(23a)ll x;t = (1a)(23) is excluded, since 2 has 3 as an x;—partner and also
as an x 4-pariner.

We sum up our findings.

3.10 THEOREM. for n=2o0r n>4, o, isin Ty \ Ts; ¢ isin T\ I's.
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4. THE GROUPS «, AND PSL(2, q)

As we mentioned in the introduction, certain primes p are good in the sense
that the only unsolvable transitive groups of degree p are , and &p. To avoid
certain complications and to illusfrate the possibilities, let us consider the case of
19 in detail, 19 being a good prime.

Let the 19 symbols now be 0, 1, ---, 18, i.e., the residue classes modulo 19.

Let y be any cyclic permutation of order 19, and let x be any other element of
Z19. Then { X, y> = «f19 whenever <x, y> is unsolvable, since | X, y> is cer-
tainly transitive. But <x, y> is solvable only in the very rare circumstance that x

lies in the normalizer M of <y> It is easy to see that M is of order 9 - 19;
moreover, if y =(0, 1, ---, 18), then a Sylow 3-subgroup of M is generated by the
element (1, 4, 42, +--)(2, 2 - 4, 2 - 42, ...), which transforms y to y% (everything
here is taken mod 19). The crucial feature of the elements of M outside the 19-
subgroup is that they all move precisely 18 symbols.

In estimating the spread of )9, we are going to use a 19-cycle as supplemen-
tary generator. Then the only troublesome cases are when the original elements lie
in 19-normalizers: because if x does not lie in a 19-normalizer and y is a 19-
cycle (and x, y are quite arbitrary otherwise), then <x, y> = 19 for the reasons
given above. In a given 19-normalizer, the nontrivial elements that fix the symbol 0
are eight in number: six of type 921, and two of type 361. First we discover how
these elements are distributed among the 19-normalizers.

In 9, there are 191/3%6! elements of type 3°1; 2 - 171/3%6! of these fix
the symbol 0. Every 19-normalizer contains precisely two of the latter, each being
the square of the other. Therefore we can choose t = 17!/346! elements Zy, vy Zg
of type 36 1, that all fix 0, such that every 19-normalizer will contain precisely one
of these t elements (so that each z; lies in 346! different 19-normalizers). Every
element of type 921 lies in precisely fifty-four 19-normalizers.

We can now prove:

4.01 THEOREM. Lett stand for the integev 171/3%61. Then «,q has spread -
t - 1, but does not have spread t + 3.

Proof. Let xj, .-+, Xt_1 be any nontrivial elements of #}9. By what was said
above, we may assume that each x; has one of the three types 19-cycle, 921, 361,
Each of these lies in at most 346! 19-normalizers—indeed in exactly this number
for the type 36 1, in fifty-four for the type 921, and one for a 19-cycle. But since
(t-1)3%6! < 171, the x; must all lie outside the normalizer of at least one cyclic

subgroup <y> of order 19. Since each <xi, y> is thus unsolvable, it is the whole
of A 19-

On the other hand, let

zeep = (12)(34), 2z, = (14)(23), 2,5 = (13)(24).
If {y, 245 = 19 for i =1, 2, 3, then y must be a 19-cycle. Thus the t + 3 ele-
ments z; do not have a common mate y.
There probably do exist t elements of .«;9 not possessing a common mate.

We repeat that g liesin I',, but not in I'3.
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We turn, now, to the group PSL(2, q).

We say that G has exact spread t if G has spread t but not t + 1.

4.02 THEOREM. If q is a prime-power and is lavge enough, then PSL(2, q)
has exact spread

q-1 ifq=1 (mod4),

n

q-4 ifq=3 (mod4),

q-2 ifq isapowerof 2.

The argument below works for q > 11 if q is odd, and for q > 4 if q is a
power of 2. The group PSL(2, 9) is isomorphic to the alternating group . Also,
PSL(2, 5) ~ PSL(2, 4) ~ 5. This leaves the exact spread of PSL(2, 7) ~ PSL(3, 2)
undecided; it is at least 3.

Proof. Here are details of the case q = 1 (mod 4).

The group PSL(2, q) contains 3q{q - 1) cyclic subgroups of order 3(q + 1). If
q > 11 then there is one and only one maximal proper subgroup containing such a
cyclic group, namely its normalizer, a dihedral group of order q + 1. (See [7, Chap-
ter 12], [8, page 213].)

Let x be a nontrivial element of PSL(2, q). If the order le of x divides
1q(q - 1), but is not 2, then x does not lie in any of the dihedral subgroups of order
q+1; if |x| divides 1(q + 1), but is not 2 (automatic in this case, where
g = 1 (mod 4)), then x lies in exactly one dihedral group of order q + 1; and if
|x| = 2 then there are precisely 3(q - 1) dihedral groups of order q + 1 which con-
tain x. Consequently, if x;, ---, Xx; are nontrivial elements of PSL(2, q), and if
t < q, then there is a cyclic subgroup <y> of order %(q + 1) which is not normal-
ized by any of these elements. Then <xi, y> = PSL(2, q) for all i. Thus PSL(2, q)
has spread q - 1.

When q = 3 (mod 4) the calculation is similar, but one finds that each element
of order 2 lies in i(q + 3) dihedral subgroups of order q + 1; while if q is even,
that is, if q is a power of 2, then the relevant dihedral groups have order 2(q + 1)
and each element of order 2 lies in ;q of them.

To see that the spread of PSL(2, 7) (of order 168) is 3, we represent it as a
permutation group of degree 8, and examine the Sylow subgroups and the transitive
subgroups. Details are omitted.

5. THE GROUPS PSL(2, q) (CONTINUED)

In this section it turns out to be more advantageous to use the matrix definition
of SL{2, q), rather than the permutational representation of PSL(2, q).

We begin with two simple lemmas. In what follows, the matrix ( 2 2 ) will be

written in the compact form (a, b; c, d).

5.01 LEMMA. Let q be a prime power grealer than 2. Then the q - 1 ma-
trices (1, 0; t, 1), (1, t; 0, 1), with t running over the set of all nonzevo squaves (0v
of nonsquares) in GF(q), generate SL(2, q).
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Proof. Firstly, the set of matrices (1, 0; t, 1), (1, t; 0, 1), without restriction
on t, forms a generating set. Thus, since every square is a sum of nonsquares, and
every nonsquare is a sum of squares, the result follows from the simple equation

(1, 0; s, 1)1, 0; t, 1) = (1, 0; s +t, 1).

5.02 LEMMA. Let a be any nonzevo element of GF(q) such that a # a1, and
for each positive integer u let f(u) = (¢% - a-W/(a - a-1). Set

A=(a,alt;0,al) aud B=(a, 0 at al).
Then
AY = (@, a 1tf(u); 0, ™ and BY = (aY, 0; atf(u), ™).

The proof is routine, and we omit it. Most of the groups PSL(2, q) are dealt
with by the following theorem.

5.03 THEOREM. Let q be a prime power greatev than 23, and M any noncen-
tral matvix in SL(2, q). Then theve is a matvix N such that <M, N> = SL(2, q) and
one of M, N has ovder 4. Consequently, PSL(2, q) is in 1"(12) Jor q > 23.

Proof. Obviously, M has a conjugate M; of the form (0, 1; -1, t). We may as-
sume that t # 0, the case t = 0 being clear. Suppose that « is a generator for
GF(q), and write Nj = (0, -a~!; @, 0); it will be enough to show that
(Ml , N1> = SL{(2, q), since N, is clearly of order 4. Straightforward calculation

shows that M7!Nj! = A, M| N, =B, where A, B are the matrices appearing in
Lemma 5.2. For any integers s, u we can generate the matrix

ASBUN, = (@ ™Utf(s), -a®*0"1 - a7l 2 1(s) f(u); @ 5L @S tE());

denote it by C. Lemma 7.4 is needed at this point: it promises that, for q > 23, we
can find integers s, u so that the (1, 2)-element of C is zero, while C is not a
power of B. With these values of s, u, it is easy to see that the commutator
F=CBC-1B-! hasthe form (1, 0; r, 1) with r # 0. The transforms of F and of
N; FN by powers of B fill out one of the generating sets of Lemma 5.1, and the
theorem is thereby established.

What of PSL(2, q) with q < 23? If q is prime, the case is an easy one:
5.04 THEOREM (See Sunday [14]) Let p be an odd prime, and let X be a non-

centval element of SL(2, p). Then theve is an element Y such that
<X, Y) = SL(2, p) and one of X, Y has ovder 4, Consequently PSL(2, p) is in
ri).

Proof. As in the preceding theorem, there is no loss in generality if we set
X=(0,1;-1,t). ¥ t+ 0, put Y =(0, 1; -1, 0), so that XY = (-1, 0; -t, -1) and
X-ly=(1,t0,1). If t=0 take Y =(0, 1; -1, 1); in both cases, Lemma 5.01 ap-
plies.

There remain the cases q =4, 8, 9, 16. In fact, PSL(2, 9) is isomorphic with
¢ and thus fails to be in I'(2); there is no mate of order 2 for the permutation

(123). Ad hoc arguments show that the groups PSL(2, q) are in 1"(12) when
q =4, 8, or 16; we do not go into details here.
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6. GENERATING SETS IN PSL(n, q), n> 2

Let ¥ E be projective (n - 1)-space over the Galois field ¥ q of q elements.
We recall that a subspace of 9’3 has codimension d if its dimensionis n- 1 - d.
We use the natural action of PSL(n, q) on # §.

6.01 LEMMA. Left M be an element of PSL(n, q) that fixes pointwise a sub-
space of gg that has codimension d. Let N be an element of PSL(n, q) such that
Nk =1, If kd <n, then <M, N> is a proper subgroup of PSL(n, q).

Before proceeding to the proof, we point out that the hypothesis on M means, in

matrix terms, that M is similar to a matrix that has at least n - d Jordan boxes,
all of which have the same proper value.

k .
Proof. Let W = ﬂi:l SN*. Then certainly W is N-invariant and, as it is a
subspace of S, it is also M-invariant. Furthermore,

k-1

codim (W) < 27 codim (SN') = kd < n,
i=0

so that W is nonempty. Either W = g or W # #g. If (first) W = # g, then M = 1;
and as n > 1, the lemma is true. If W # 9’3 , W is a nonempty proper subspace and
W is <M, N)—invariant; thus (M, N> is a proper subgroup of PSL(n, q), as the
lemma claims. ”

6.02 COROLLARY. If n is large enough, then PSL(n, q) ¢ T'{k).

Proof. Choose a natural number d (depending on k but not on ¢) so that
SL(d, q) contains a matrix K whose order does not divide k. If M is represented
by the matrix K@ I, _q4, and if n > kd, lemma 6.01 shows that no element N of

order k can be found such that PSL{n, q) = (M, N) .

6.03 Remark. The bound n > kd is independent of q; but for certain values of
g—including those coprime with k —it can be improved to n > k.

6.04 THEOREM. If q is a prime power, if n is a natuval number, and if n > 3,
then PSL(n, q) ¢ 1“(12) unless n is 3 and q is 2 or 4.

6.05 Remark. The group PSL(3, 2) does lie in I‘(lz); we have not been able to
decide whether PSL(3, 4) lies in T'{?).

Proof of 6.04. If n > 4 then, whatever q may be, we take M to be represented
by (0, 1; -1, -1) @I, _,. This is an element in PSL(n, q) whose order exceeds 2
and, since there are n - 2 Jordan boxes corresponding to the proper value 1, lemma

6.01 shows that if N has order 2, then { M, N ) # PSL(n, q).

If q isoddand n> 2 we take M to be (1, 1; 0, 1) (—BIn_z and apply the lemma
in the same way.

If q - 1 does not divide n (q - 1 1 n) we take M to be represented by the ma-

trix diag[6!'-™, 6, 6, ---, 6], where 6 is a primitive element of #4. Since
6l-n £ g, this is a nontrivial element of PSL(n, ) and the lemma applies with
a =1,

The only possibilities not covered by these three examples are those in which n
is 3 or 4, q is even (hence a power of 2), and q - 1 divides n. That is, the only



TWO-GENERATOR GROUPS, I 63

groups not covered are PSL(4, 2), PSL(3, 2), and PSL(3, 4). Now PSL(4, 2) is iso-
morphic to £ g and is not in I‘(lz), since the 3-cycle M = (123) has no involutary
mate N such that (M, N) = «fg. An easy calculation shows that PSL(3, 2) does
not lie in I'{?).

Finally, we feel sure that there is an analogue to Theorems 5.03 and 5.04. Let
us state this as a problem:

6.06 PROBLEM. Is it tvue that for every nontrivial element a of PSL(3, q)

theve is an element b such that < a, b> = PSL(3, q) and the ovder of at least one of
a, b divides 67

7. THE LEMMA FROM NUMBER THEORY

The main argument of this section has been kindly communicated to us by L.
Carlitz. Throughout, it is assumed that q is a prime-power greater than 23. Thus,
¢(q - 1) > 4; there are at least five primitive elements in GF(q).

Refer to Theorem 5.03. Write x =a %, y=a-5, v=1+t-2(a - @-1)2. The
condition that the (1, 2)-element of C be zero is
(7-1) y—z +X"2 - 1 - VX-Zy"Z;
the condition that C not be a power of B is

(7.2) X2+y2#1+v.

If ¢ = 3 (mod 4), there is no danger that v be zero. But if q = 1 (mod 4) or if
q = 2%, v could well be zero, and (7.1), (7.2) would then be incompatible. For fixed
t, this can be avoided by not permitting the primitive element o to assume any one
of four forbidden values if q = 1 (mod 4), or either of two forbidden values if q = 22,

Next, consider the pair (7.1) together with
(7.3) x2+y2=1+v

as a simultaneous set. If v # 0, then (7.3) is certainly not tantamount to (7.1), but
(7.3) may be compatible with (7.1). But if (7.3), (7.1) are compatible, and if v # 0,
xy # 0, then x2 = y-2, so that there are no more than 4 simultaneous solutions
(u, s) for each fixed t, «.

7.4 LEMMA. For fixed t, and for q > 23, a can be chosen so that v # 0, 1.
For this value of a, (1.1) and (7.2) have a simultaneous solution with xy + 0.

Proof. The condition v # 1 is always met. It is a question of showing that (7.1)
has at least five solutions with x, y # 0 for every value of v # 0, 1. Now (7.1) may
be written

(7.5) y2 = (u-x%/(1-x%.
Let x(c) denote the quadratic character of ¢ in GF(q), that is,

x(e) =1 if ¢ is a square, ¢ # 0,
x(e) = -1 if ¢ is a nonsquare,
x(0) = 0.
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The number of solutions of y2 = ¢ is always 1+ x(c¢). Thus, the number of solutions
of (7.5), or of (7.1) with x, y # 0, is

)2 {1+x(‘1"xi)}=q-z+ 27 x(w - x3)( - x?)

x2#1 - x2#1

8
I

('7.6)

Il

q-2+2 x(u-x23(1 - x2).

X

By a result of Weil, the sum is known to have absolute value less that 3q! /2,
This means that

(7.7) m - q+2| < 3q!/2,
so that m > 8 if q > 23. But there are at most four solutions with xy = 0. The
assertion is established.
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