CAPACITY AND MEASURE

Jussi Viisila

1. Introduction. A condenser in the euclidean space R” is a pair E = (A, C),
where .\ is open in R™ and C is compact in A. For p > 1, we define the p-capa-
city of £ as

cap, E = infS |Vu|P dm,
u

where the infimum is taken over all functions u in CZ’(A) such that u(x) =1 for all
x € C. It is well known that if cap, (Ag, C) =0 for some bounded Ag, then

capy, (A, C) = 0 for all open sets A containing C. In this case, we write capp C =0,
and otherwise cap,C > 0. The case p =n is particularly important in the theory of

quasiregular maps, and here we write cap = cap,. If p > n, then cap, C =0 only in
the case C = @.

The capacity of a condenser can also be defined with the aid of moduli of path
families. Given a bounded condenser E = (A, C), we let I'r be the family of all
paths a:[a, b) — A such that a(a) € C and a(t) — 9A as t — b. Then

cap, E = MP(TE) )

by W. P. Ziemer [10]. Here M denotes the p-modulus. Instead of I'g, we may
take the family of all paths joining C and 2A in A\ C.

In this note we shall give a new proof for the following result: If a compact set
C C R™ has a finite h-measure for h(r) = (log(l/r))l"n, then cap C = 0. The corre-
sponding result holds for the p-capacity with h(r) = r2-P,

The earliest result of this type is due to J. W. Lindeberg [4]. He showed that
for n=p =2, cap C =0 for every compact set C of h-measure zero,
h(r) = (log(1/r))-!. This result was extended for sets of finite h-measure by
P. ErdSs and J. Gillis [2]. A simple proof of their result was given by L. Carleson
[1]. His proof is also applicable in higher dimensions. These authors used a poten-
tial-theoretic definition for capacity. For p = 2, this is equivalent to our definition.
For p # 2, this is no longer true, although there are close connections (see [8, p.
332]). Our results are contained in papers of N. Meyers [6, Theorem 21] and, V. G.
Mazja and V. P. Havin [5, Section 7], who formulated them in a very general frame-
work. The present formulation is from H. Wallin [9, Theorem 4.3]. For related re-
sults, see [8, Remark on p. 335] and [7, Theorem 4.2].

2. Notation. If C C R™ and r > 0, we let B(C, r) be the set of all x in R"
such that dist(x, C) <r. In particular, B(x, r) is the open ball with center at x and
radius r. If C is compact, E(C, r) will denote the condenser (B(C, r), C).

3. LEMMA. If p> 1 and C is a compact set in R™ with cap, C > 0, then
lim,. _, g cap, E(C, r) = «.
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Proof., Assume cap, C > 0. Since cap, E(C, r) is decreasing in r, it con-
verges to a limit a (0 <a < «) as r — 0. Suppose that a <, Set I‘(r) = TE(C,r) -
For 0 <s <r, welet I'(s, r) be the family of all paths joining 9B(C, s) and
9B(C, r) in B(C, r) \ B(C, s). Then

._4

1

=
M(T(x)1P > M,(T(s))! P + M(T(s, )} P

(see [3, Theorem 1 (d), p. 178], for example). As s — 0, Mp(I(s)) —a and
Mp(I(s, 1)) = capp(B(C, 1), B(C, s)) — capp E(C, r) = Mp(T(r)).
Hence we obtain the inequality a < 0, a contradiction.

4. Notation. For any function h: (0, 1) — (0, =), we let A} denote the corre-
sponding Hausdorff measure.

5. THEOREM. Let h(r) = (log(1/r))! ™, and let C be a compact set in R™
such that Ap(C) < . Then cap C = 0.

Proof., By Lemma 3, it suffices to show that cap E(C, r) = M(I'(r)) is bounded
for small r. Let 0 <r <1, set a = A,(C), and choose a countable covering of C
with balls B; = B(x;, r;) with x; € C and r; < r? such that

l1-n
20 (log i) <a+1l.
. r -
1
Let I'; be the family of all paths joining the boundary components of the annulus

B(x;, r) \ B;. Then I(r) is minorized by U {r;] i € N}. By [3, Theorem 1], this
implies

l1-n
M(I'(r)) < ZM(I’{L) = "’Z} (log%)

where w isthe (n - 1)-area of the unit sphere. Here r/r; > ri'l /2, whence

M(I'(r)) < on-1, 25 (log%)l_n < on-l (a +1).

6. The case 1 < p <n. Using the same method, we can show that if 1 <p <n
and Ay(C) < « with h(r) = r®-P, then capp C = 0. The proof makes use of the
formula

M0 = o —2)" (o =228)

for the family I' of paths joining the boundary components of the spherical annulus
B(b) \ B(a).
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