TOPOLOGICAL PROPERTIES OF THE SPACE OF
HOMEOMORPHISMS OF n-DIMENSIONAL EUCLIDEAN SPACE

J. A. Childress and Stephen B. Seidman

INTRODUCTION

Let R™ denote n-dimensional euclidean space with the usual topology. A con-
tinuous function 6: R™ — (0, «) is called a majorant (on R™). Let H(R™) denote the
group of homeomorphisms of R"™. We define a topology for H(R"), called the
majovant topology, as follows: A basis consists of all sets of the form

Ns(f) = {g € H(Rn)l d(g(x), f(x)) < 6(x) for all x € R"},

where f € H(R™) and 6 is a majorant. H(R™) with the majorant topology is a topo-
logical group ([1], [2]). We denote by H.(R™) the subspace of H(R™) consisting of
all homeomorphisms of R™ that are the identity outside some compact set.

THEOREM 1. H.(R") is the (path-) component of the identity homeomorphism
in HR").

THEOREM 2. H_(R") is a nowhere dense, non-first-countable subspace of
H(R").

A topological space X is called a Fréchet space if, whenever x is a limit point
of a subset A of X, there exists a sequence in A converging to x. Clearly, all
first-countable spaces are Fréchet spaces.

THEOREM 3. H(R"™) is not a Fréchet space.

THEOREM 4. If n +# 4, then H(R") is separable.
COROLLARY 5. H(R™) is not metrizable.
COROLLARY 6. H(R"™) contains no connected open sets.

1. PROOF OF THEOREM 1

LEMMA 7. H.(RM) is path-connected.

Proof. It will suffice to join F € H.(R"™) to the identity mapping id. by a path
in H.(R"). Since F € H.(R"), the mapping F is the identity outside some compact
set, and therefore F is the identity outside a ball B of radius r, centered at the
origin. For 0 <t <1, we define

X if [|x| >r or t=0,
&(x, t) =
tF(x/t) if |x] <r and 0<t<1.
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The mapping &: R™ X I — R is continuous, and if &,(x) = &(x, t), then each &, be-
longs to H.(R™). Put &(t) = &;; then &: I - H.(R™) C H(R™. Let Hy(R") denote
the space of homeomorphisms of R™ with the compact-open topology, and let
H(R™, B) and Hi(R™, B) denote the space of homeomorphisms of R® that are the
identity outside B, with the majorant and compact-open topologies, respectively.
Then &: 1 — Hi(R", B) is continuous, and since id. : Hg(R™, B) — H(R™, B) is a
homeomorphism, it follows that & yields a path in H.(R®) from F to id.; this
proves the lemma.

It follows that H.(R™) is connected. Let & be a majorant, and define
Ws = {h € HRM| d(h(x), x) <M&(x) for some M >0 and all x} .

Clearly, W5 is open in H(R™); but Wy is also closed, for if k € H(R®) - W, then
for each i there exists a point x; € R® with d(k(x;), x;) > i 8(x;). But then, if
g € Ng/2(k), it follows that d(g(x;), k(x;)) < 6(x;)/2, so that

(i-3) e < alexd, x)

for each i. Thus N@/Z(k) C H(R") - W, and therefore W is closed.

Let Wq = n(, Wg. Let C be the component of id. in H(R"). Lemma 7 implies
that H.(R") € C. If C &€ Wy, then C contains a point in the complement of some
Ws5. Since W is open and closed, it must separate C. Thus we must have the in-
clusion C ¢ Wy, and Wq is closed.

LEMMA 8. W, = H_(R").

Proof. We need to show that Wy € H.(R"). Suppose h ¢ H.(R™). Then we can
find a sequence {x;} in R™, with " Xi" < ” xiﬂn and lim;_, " Xi" = o, such that
h(x;) # x;. Put 5; = min {2-1, d(h(x;), x;)}. Let 6 be a majorant on R™ with
o(x;) = n%. We claim that h ¢ W5. If h € Wg, then d(h(x), x) < M 6(x) for some
M and all x. But then

so that 1/7; <M for all i. Since 7; < 271 for each i, it follows that M > 2! for all
i, which is absurd. Hence h € Wy, so that clearly h § Wy ; this proves the lemma.

Since H.(R™) € C € W, Lemma 8 implies that the component of id. in H(R")
is H.(R™). Since H(R™) is a topological group, the components of H(R") are pre-
cisely the translates of H_(R"). It also follows that the path-components of H(R™)
are equal to the components. Finally, since H.(R®) = W, we see that H_.(R") is
closed in H(RM).

2. PROOF OF THEOREM 2

First we show that H.(R") is nowhere dense. Let 6: R" — (0, ») be a major-
ant. It suffices to show that Ng(id.) & Ho(R™). Put i; =1, and let r; be a real
number with 0 < r; < min {6(x)| x € Bi, }, where B, denotes the closed ball about

the origin of radius k. Inductively, find an integer i, and a real number r, such
that
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in > ip.1+rn.; and 0<r,< min{é(x)l X € Bin} .

Define the homeomorphism h by sending B-11 radially to BilJ,r 1 and sending

the annular region Bin - By ] radially to the annular region Bin+rn - Bin gy

It is evident that h € Ng(id.) and that h ¢ H.(RM).
To finish the proof of Theorem 2, we need the following result.

LEIMMA 9. The space H_ (R ™ is homeomorphic to a closed subspace of
+
H.(R™H).

Proof. Given h € H_(R"), define h' ¢ H (R™"!) by

(%, t) for |t| > 1,

h'(x, t) =
((1- |t|)h( X ),t)for It] < 1.
1- 1t

(We regard R®"! ag R"x R!; thatis, x € R®, t € R!.) We shall show that the
mapping &: H.(R") - H (Rn“) defined by &(h) = h' is an embedding onto a closed
subspace.

Clearly, & is one-to-one and &(Hc(R™)) C He(R™!). To show that & is con-
tinuous, let ¢ be an arbitrary majorant on R2t!  and define the majorant 6 on R™

by
lt] <1

We show that ®Ng(g) € Ng(®@(g)). Let h € Ng(g); then d(h(x), g(x)) < 6(g(x)) for all

x € R", so that (for |t| <1)
d(h'(x, t), g'(x, t)) = d([: (1 - |t|)h< ) :l [ |t|)g(1—_§—m>, t:‘)

e Itl)d(h(l —xltl>' g(l —Xltl)) = ltl)(s(l_%{rtl—)

< (1-|thox) < 8x) < elx, t).

6(x) = i

Thus @(h) € Ng(®(g)). Similarly, & is open onto its image. (It is easy to show that
Ny, (h') N ®(H(R™)) < &N4(h), where 7 (x, t) = 6(x).)
Let Z = ®H.(R"). We show that Z is closed in HC(Rn+1). Let h* be a limit

point of Z; clearly, h* [R": R® = R". Let h=h*|R" and &(h) =h'. We shall show
that h* = h' @ (H (R")).

Let ¢ be an arbitrary majorant on Rrotl , and let & be the majorant on R"
given by.

o) = Lint {a(z, 0] I < =, J¢| < 1}

Let 1 be the majorant on R™*! defined by n(x, t) = 6(x) for all (x, t) € R*t! | By
hypothesis, there is some g' € N, (h*) N Z. Note that this implies g' € Ng,,(h*).

Let g=®-1(g"); then g € N4(h), and this implies g'e€ Ng,,(h'). Thus
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g' e Ns/z(h*) N Ng /2(h'), which implies h' € Ns(h*). Since & is arbitrary, we
conclude that h* = h'.

Proof that Hc(R™) is not first-countable. We begin by showing that Hc.(R!) is
not first-countable; it suffices to show that Hc(R!) is not first-countable at id.
Suppose that {6;} is a sequence of majorants in R!. Choose r; (1/8 > r; > 0) so
that 6;(x) > 4r; if |x - i] < 4r;. Let & be a majorant for R!, with 6(i) = r; for
each i.

Define h; by

X if x<i-2r; or x>1i+3r;,
hy(x) = 2x - i+2r; if i - 2r; <x<1i,
—§+%+2ri ifi<x<Li+3r;.

Then h; € H.(R!) for each i. Since |h;(i) - i| = 2r; > 6(i), we conclude that
h; ¢ Ng(id.) for each i; but it is easy to see that h; € Ng (id.). Thus none of the
1

{N 5i(id.)} is contained in Ng(id.), so that {Np (id.)} is not a countable basis for
H.(R!) at id.; this proves the lemma.

Since H.(R™) can be embedded as a closed subset of Ho(R*'1), it follows by in-
duction that for each n the space H_.(R") is not first-countable.

3. PROOF OF THEOREM 3

LEMMA 10. If a sequence {h;} in H(R") converges to id., then theve exist a
compact subset K of R™ and an integer N such that h;(x) = x for each i > N and all
x ¢ K.

Proof. Suppose the lemma is false. Let K; be the closed unit ball in R™. Then
there exist an hil and a point x; ¢ K; with hil(xl) #X). Put ry = ]|x1” and

K, = B3, . Then we can find h;, and x; ¢ Kz with i) <ip and h;,(x2) # x». We
proceed inductively to get a subsequence {hij} (i; <ip < +++) and a sequence of
points {xj} with ||xj+1|| > 3||xj || and hij(xj) # X;. Put g = d(hij(xj), xj).

Let Ny denote the open ball about the origin in R™ of radius k; let
Uy =Np||x, |- For i2> 2 let U; =Ny | - Bl|x, |- The {U;} are open sets in

R™, and clearly x; € U;. Also, if i # j, then Xj ¢ U;. Each U; meets at most two
other sets Uj, so that {U;} is a locally finite open cover of R®. Let {7} be a

partition of unity subordinate to the {U;}, and let 6(x) = % 27; & m;(x). The function

6: R" — (0, =) is continuous, so that Ng(id.) is an open set containing id. But
d(x;, hij(xj)) =g > &/2 = 5(Xj), and therefore hij ¢ Ng(id.), for each j. This con-

tradiction proves the lemma.

COROLLARY 11 (Siebenmann [3]). If W: [0, 1] — H(R™) is a path in H(RD),
with W(t) = hy, then theve exists a compact subset K of R® such that hyx) = ho(x)
Sorall t € [0, 1] and x ¢ K.
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Proof that H(R™) is not a Fréchet space. Let X = H(R") - H.(R"). We shall
show that id. € cl X; but by Lemma 10, there is no sequence in X converging to the
id. In other words, given a majorant 6, we must produce h € X N Ng(id.).

Let B;(N;) denote the closed (open) ball about the origin (= 0) in R® of radius
i+1., Let ag =1 and

a; = —;—min {ai_l, min{ﬁ(x)| X € Bi}} for i=1, 2, 3, -

Then 0 <a; <aj_j, and a; < 2°1. Let hy be the radial homeomorphism taking By
onto Bal with hg(0) = 0. In general, let h; be the radial homeomorphism of the

annulus A; = B; - B;_; onto the annulus Bita.,; = Bita;-1- It is easy to verify that
if y € Aj, then d(hi(y), y) < o(y).

Now define the homeomorphism h of R™ by h(y) = hy(y) if y € A;. Clearly,
h € X (since the only fixed point of h is the origin), and h € Ng(id.) (since for each
y € R™, there is some i such that y € A;, and h(y) = hy(y) implies
d(h(y), y) < &(y)).

Before proving the separability of H(R"), we need to state a few preliminaries.
Let f: X — Y be a continuous function between metric spaces, and let £: Y — (0, «)
be continuous. The continuous function 6: X — (0, «) is called a continuous modulus
of continuity (CMC) for f and ¢ if d(f(x), f(y)) < e(f(x)) whenever x, y € X and
d(x, y) < 6(x).

THEOREM (see [2]). For each continuous function f: X — Y and each contin-
uous e: Y — (0, »), there exists a CMC &: X — (0, «).

Definition. If K is a simplicial complex and £ is a majorant on |K[, we say
that the mesh of K is less than ¢ if for each simplex ¢ € K, the diameter of o is
less than inf {e(x)| x € star o}.

4. PROOF OF THEOREM 4

Given f € H(R") and a majorant 6, we apply a theorem of [1, page 1] for n > 4
and [3, page 273] for n < 4 to obtain a PL (piecewise linear) homeomorphism g of
R™ such that d(f(x), g(x)) < 6(x) for all xe R™. Let e(x) = 6(g'1(x)). We may as-
sume that g is simplicial with respect to triangulations K and L, each of mesh less
than £/4 (and less than 1/2). Let €' be a CMC for g and £/4; we may assume
e'(x) < e(x) for all x € R™. By taking subdivisions if necessary, we may assume
that the mesh of K is less than £'/2, and that the mesh of L is less than /8. We
now define new triangulations K' and L' of R™ such that all coordinates of the
vertices of K' and L' are rational, and K' is obtained from K by “shifting” the
vertices a small amount (similarly, L is shifted to L'). That is, we move the ver-
tex v to a rational point v' in the star of v, with

d(v, v') < %min {e'(x)| x € star v},

and extend conewise on st(v, K) = v x Ik(v, K) = v' * Ik(v, K). This process works
easily for compact polyhedra, and we can apply it to R™ by using alternate annular
regions. On L, we shift points as in K, but replace €' (x) by min {e(x), 6(x)/4}.
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Now define the simplicial homeomorphism h of R™ (simplicial with respect to
K' and L') by the composition v' — v — g(v) — (g(v))' and linear extension. It will
suffice to show that d(h(x), g(x)) < 6(x) for all x € R™, since there are only countably
many such simplicial maps h between complexes with rational vertices. We do this
as follows: Given x € R™, pick a vertex v' e K' with x € st(v', K'); then

d(h(x), g(x)) < d(h(x), h(v")) + d(h(v"), g(v)) +d(g(v"), gx)) .

Since the mesh of L' is less than §/8 + 26/16, we have the inequality

d(h(x), h(v") < 8(x)/4. Since the mesh of K' is less than &' /2 + 2¢' /4, we also see
that d(g(v"), g(x)) < e(g(x))/4 = 6(x)/4. To show that d(h(v'), g(v")) < &(v')/2 for all
vertices v' € K', we observe that

d(h(v"), gv")) = d(gv), gv")) < d((gv)', g(v)) +d(g(v), g(v"))

< elev))  elelv)) _ elelv) _ 6(v)
4 4 2 2
The proof of Theorem 2 actually establishes the following result.

COROLLARY 12. The space of PL homeomorphisms of R™ (with the majovant
topology) is separvable.
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