TOPOLOGICAL PROPERTIES OF THE SPACE OF HOMEOMORPHISMS OF n-DIMENSIONAL EUCLIDEAN SPACE

J. A. Childress and Stephen B. Seidman

INTRODUCTION

Let R^n denote n-dimensional euclidean space with the usual topology. A continuous function δ : $R^n \to (0, \infty)$ is called a *majorant* (on R^n). Let $H(R^n)$ denote the group of homeomorphisms of R^n . We define a topology for $H(R^n)$, called the *majorant topology*, as follows: A basis consists of all sets of the form

$$N_{\delta}(f) = \{g \in H(\mathbb{R}^n) | d(g(x), f(x)) < \delta(x) \text{ for all } x \in \mathbb{R}^n \},$$

where $f \in H(R^n)$ and δ is a majorant. $H(R^n)$ with the majorant topology is a topological group ([1], [2]). We denote by $H_c(R^n)$ the subspace of $H(R^n)$ consisting of all homeomorphisms of R^n that are the identity outside some compact set.

THEOREM 1. $H_c(\mathbb{R}^n)$ is the (path-) component of the identity homeomorphism in $H(\mathbb{R}^n)$.

THEOREM 2. $H_c(\mathbb{R}^n)$ is a nowhere dense, non-first-countable subspace of $H(\mathbb{R}^n)$.

A topological space X is called a *Fréchet space* if, whenever x is a limit point of a subset A of X, there exists a sequence in A converging to x. Clearly, all first-countable spaces are Fréchet spaces.

THEOREM 3. H(Rn) is not a Fréchet space.

THEOREM 4. If $n \neq 4$, then $H(R^n)$ is separable.

COROLLARY 5. H(Rⁿ) is not metrizable.

COROLLARY 6. H(Rⁿ) contains no connected open sets.

1. PROOF OF THEOREM 1

LEMMA 7. $H_c(\mathbb{R}^n)$ is path-connected.

Proof. It will suffice to join $F \in H_c(\mathbb{R}^n)$ to the identity mapping id. by a path in $H_c(\mathbb{R}^n)$. Since $F \in H_c(\mathbb{R}^n)$, the mapping F is the identity outside some compact set, and therefore F is the identity outside a ball B of radius r, centered at the origin. For $0 \le t \le 1$, we define

$$\Phi(x, t) = \begin{cases} x & \text{if } ||x|| \ge r \text{ or } t = 0, \\ tF(x/t) & \text{if } ||x|| < r \text{ and } 0 < t \le 1. \end{cases}$$

Received June 13, 1973.

Michigan Math. J. 20 (1973).

The mapping $\Phi \colon R^n \times I \to R^n$ is continuous, and if $\Phi_t(x) = \Phi(x, t)$, then each Φ_t belongs to $H_c(R^n)$. Put $\hat{\Phi}(t) = \Phi_t$; then $\hat{\Phi} \colon I \to H_c(R^n) \subseteq H(R^n)$. Let $H_K(R^n)$ denote the space of homeomorphisms of R^n with the compact-open topology, and let $H(R^n, B)$ and $H_K(R^n, B)$ denote the space of homeomorphisms of R^n that are the identity outside B, with the majorant and compact-open topologies, respectively. Then $\hat{\Phi} \colon I \to H_K(R^n, B)$ is continuous, and since id. $\colon H_K(R^n, B) \to H(R^n, B)$ is a homeomorphism, it follows that $\hat{\Phi}$ yields a path in $H_c(R^n)$ from F to id.; this proves the lemma.

It follows that $H_c(\mathbb{R}^n)$ is connected. Let δ be a majorant, and define

$$W_{\delta} = \{ h \in H(R^n) | d(h(x), x) < M \delta(x) \text{ for some } M > 0 \text{ and all } x \}.$$

Clearly, W_{δ} is open in $H(R^n)$; but W_{δ} is also closed, for if $k \in H(R^n)$ - W_{δ} , then for each i there exists a point $x_i \in R^n$ with $d(k(x_i), x_i) \geq i \, \delta(x_i)$. But then, if $g \in N_{\delta/2}(k)$, it follows that $d(g(x_i), k(x_i)) < \delta(x_i)/2$, so that

$$\left(i - \frac{1}{2}\right)\delta(x_i) \leq d(g(x_i), x_i)$$

for each i. Thus $N_{\delta/2}(k) \subseteq H(\mathbb{R}^n)$ - W_{δ} , and therefore W_{δ} is closed.

Let $W_0 = \bigcap_{\delta} W_{\delta}$. Let C be the component of id. in $H(R^n)$. Lemma 7 implies that $H_c(R^n) \subseteq C$. If $C \not\subseteq W_0$, then C contains a point in the complement of some W_{δ} . Since W_{δ} is open and closed, it must separate C. Thus we must have the inclusion $C \subseteq W_0$, and W_0 is closed.

LEMMA 8. $W_0 = H_c(R^n)$.

Proof. We need to show that $W_0 \subseteq H_c(R^n)$. Suppose $h \not\in H_c(R^n)$. Then we can find a sequence $\{x_i\}$ in R^n , with $\|x_i\| < \|x_{i+1}\|$ and $\lim_{i \to \infty} \|x_i\| = \infty$, such that $h(x_i) \neq x_i$. Put $\eta_i = \min \{2^{-i}, d(h(x_i), x_i)\}$. Let δ be a majorant on R^n with $\delta(x_i) = \eta_i^2$. We claim that $h \notin W_\delta$. If $h \in W_\delta$, then $d(h(x), x) < M \delta(x)$ for some M and all x. But then

$$\eta_{i} \leq d(h(x_{i}), x_{i}) < M \delta(x_{i}) = M \eta_{i}^{2}$$
,

so that $1/\eta_i < M$ for all i. Since $\eta_i \leq 2^{-i}$ for each i, it follows that $M > 2^i$ for all i, which is absurd. Hence $h \in W_{\delta}$, so that clearly $h \notin W_0$; this proves the lemma.

Since $H_c(R^n) \subseteq C \subseteq W_0$, Lemma 8 implies that the component of id. in $H(R^n)$ is $H_c(R^n)$. Since $H(R^n)$ is a topological group, the components of $H(R^n)$ are precisely the translates of $H_c(R^n)$. It also follows that the path-components of $H(R^n)$ are equal to the components. Finally, since $H_c(R^n) = W_0$, we see that $H_c(R^n)$ is closed in $H(R^n)$.

2. PROOF OF THEOREM 2

First we show that $H_c(R^n)$ is nowhere dense. Let $\delta\colon R^n\to (0,\,\infty)$ be a majorant. It suffices to show that $N_\delta(\mathrm{id.})\not\subseteq H_c(R^n)$. Put $i_1=1$, and let r_1 be a real number with $0< r_1<\min\big\{\delta(x)\big|\ x\in B_{i_1}\big\}$, where B_k denotes the closed ball about the origin of radius k. Inductively, find an integer i_n and a real number r_n such that

$$i_n > i_{n-1} + r_{n-1} \quad \text{ and } \quad 0 < r_n < \min \left\{ \delta(x) \middle| \ x \in B_{i_n} \right\}.$$

Define the homeomorphism h by sending B_{i_1} radially to $B_{i_1+r_1}$ and sending the annular region B_{i_n} - $B_{i_{n-1}}$ radially to the annular region $B_{i_n+r_n}$ - $B_{i_{n-1}+r_{n-1}}$. It is evident that $h \in N_{\delta}(id.)$ and that $h \notin H_{\epsilon}(\mathbb{R}^n)$.

To finish the proof of Theorem 2, we need the following result.

LEMMA 9. The space $H_c(R^n)$ is homeomorphic to a closed subspace of $H_c(R^{n+1})$.

Proof. Given $h \in H_c(\mathbb{R}^n)$, define $h' \in H_c(\mathbb{R}^{n+1})$ by

$$h'(x, t) = \begin{cases} (x, t) & \text{for } |t| \geq 1, \\ \left((1 - |t|) h\left(\frac{x}{1 - |t|}\right), t \right) \text{for } |t| < 1. \end{cases}$$

(We regard R^{n+1} as $R^n \times R^1$; that is, $x \in R^n$, $t \in R^1$.) We shall show that the mapping $\Phi \colon H_c(R^n) \to H_c(R^{n+1})$ defined by $\Phi(h) = h'$ is an embedding onto a closed subspace.

Clearly, Φ is one-to-one and $\Phi(H_c(R^n)) \subseteq H_c(R^{n+1})$. To show that Φ is continuous, let ϵ be an arbitrary majorant on R^{n+1} , and define the majorant δ on R^n by

$$\delta(x) = \inf \{ \epsilon(z, t) | \|z\| < \|x\|, |t| < 1 \}.$$

We show that $\Phi N_{\delta}(g) \subseteq N_{\epsilon}(\Phi(g))$. Let $h \in N_{\delta}(g)$; then $d(h(x), g(x)) < \delta(g(x))$ for all $x \in R^n$, so that (for |t| < 1)

$$\begin{split} d(h'(x, t), \ g'(x, t)) &= d\Bigg(\bigg[\ (1 - |t|) \, h\bigg(\frac{x}{1 - |t|}\bigg), \ t \ \bigg], \bigg[\ (1 - |t|) \, g\bigg(\frac{x}{1 - |t|}\bigg), \ t \ \bigg] \Bigg) \\ &= (1 - |t|) \, d\bigg(\, h\bigg(\frac{x}{1 - |t|}\bigg), \ g\bigg(\frac{x}{1 - |t|}\bigg) \bigg) \leq (1 - |t|) \, \delta\bigg(\frac{x}{1 - |t|}\bigg) \\ &\leq (1 - |t|) \, \delta(x) \leq \delta(x) \leq \epsilon(x, t) \, . \end{split}$$

Thus $\Phi(h) \in N_{\mathcal{E}}(\Phi(g))$. Similarly, Φ is open onto its image. (It is easy to show that $N_{\eta}(h') \cap \Phi(H(\mathbb{R}^n)) \subset \Phi N_{\delta}(h)$, where $\eta(x, t) = \delta(x)$.)

Let $Z = \Phi H_c(R^n)$. We show that Z is closed in $H_c(R^{n+1})$. Let h^* be a limit point of Z; clearly, $h^* \mid R^n \colon R^n \to R^n$. Let $h = h^* \mid R^n$ and $\Phi(h) = h'$. We shall show that $h^* = h' \in \Phi(H_c(R^n))$.

Let ϵ be an arbitrary majorant on R^{n+1} , and let δ be the majorant on R^n given by

$$\delta(x) \, = \, \frac{1}{2} \, \inf \, \big\{ \, \epsilon(z, \, t) \, \big| \, \, \big\| \, z \, \big\| \, \leq \, \big\| \, x \, \big\|, \ \, \big| \, t \, \big| \, \, \leq \, \, 1 \, \big\} \, \, .$$

Let η be the majorant on R^{n+1} defined by $\eta(x,t)=\delta(x)$ for all $(x,t)\in R^{n+1}$. By hypothesis, there is some $g'\in N_\eta(h^*)\cap Z$. Note that this implies $g'\in N_{\epsilon/2}(h^*)$. Let $g=\Phi^{-1}(g')$; then $g\in N_\delta(h)$, and this implies $g'\in N_{\epsilon/2}(h')$. Thus

g' ϵ $N_{\epsilon/2}(h^*) \cap N_{\epsilon/2}(h')$, which implies $h' \epsilon N_{\epsilon}(h^*)$. Since ϵ is arbitrary, we conclude that $h^* = h'$.

Proof that $H_c(R^n)$ is not first-countable. We begin by showing that $H_c(R^1)$ is not first-countable; it suffices to show that $H_c(R^1)$ is not first-countable at id. Suppose that $\left\{\delta_i\right\}$ is a sequence of majorants in R^1 . Choose r_i (1/8 > r_i > 0) so that $\delta_i(x) > 4r_i$ if $\left|x-i\right| < 4r_i$. Let δ be a majorant for R^1 , with $\delta(i) = r_i$ for each i.

Define h; by

$$h_{i}(x) = \begin{cases} x & \text{if } x \leq i - 2r_{i} \text{ or } x \geq i + 3r_{i}, \\ \\ 2x - i + 2r_{i} \text{ if } i - 2r_{i} \leq x \leq i, \\ \\ \frac{x}{3} + \frac{2i}{3} + 2r_{i} \text{ if } i \leq x \leq i + 3r_{i}. \end{cases}$$

Then $h_i \in H_c(R^1)$ for each i. Since $\left|h_i(i) - i\right| = 2r_i > \delta(i)$, we conclude that $h_i \notin N_{\delta}(id.)$ for each i; but it is easy to see that $h_i \in N_{\delta_i}(id.)$. Thus none of the $\left\{N_{\delta_i}(id.)\right\}$ is contained in $N_{\delta}(id.)$, so that $\left\{N_{\delta_i}(id.)\right\}$ is not a countable basis for $H_c(R^1)$ at id.; this proves the lemma.

Since $H_c(R^n)$ can be embedded as a closed subset of $H_c(R^{n+1})$, it follows by induction that for each n the space $H_c(R^n)$ is not first-countable.

3. PROOF OF THEOREM 3

LEMMA 10. If a sequence $\{h_i\}$ in $H(R^n)$ converges to id., then there exist a compact subset K of R^n and an integer N such that $h_i(x) = x$ for each i > N and all $x \notin K$.

Proof. Suppose the lemma is false. Let K_1 be the closed unit ball in R^n . Then there exist an h_{i_1} and a point $x_1 \notin K_1$ with $h_{i_1}(x_1) \neq x_1$. Put $r_1 = \|x_1\|$ and $K_2 = B_{3r_1}$. Then we can find h_{i_2} and $x_2 \notin K_2$ with $i_1 < i_2$ and $h_{i_2}(x_2) \neq x_2$. We proceed inductively to get a subsequence $\left\{h_{i_j}\right\}$ ($i_1 < i_2 < \cdots$) and a sequence of points $\left\{x_j\right\}$ with $\left\|x_{j+1}\right\| > 3\left\|x_j\right\|$ and $h_{i_1}(x_j) \neq x_j$. Put $\epsilon_j = d(h_{i_j}(x_j), x_j)$.

Let N_k denote the open ball about the origin in R^n of radius k; let $U_1 = N_2 \|_{x_1} \|$. For $i \geq 2$, let $U_i = N_2 \|_{x_i} \|$ - $B \|_{x_{i-1}} \|$. The $\{U_i\}$ are open sets in R^n , and clearly $x_i \in U_i$. Also, if $i \neq j$, then $x_j \notin U_i$. Each U_i meets at most two other sets U_j , so that $\{U_i\}$ is a locally finite open cover of R^n . Let $\{\pi_i\}$ be a partition of unity subordinate to the $\{U_i\}$, and let $\delta(x) = \frac{1}{2} \sum_i \epsilon_i \pi_i(x)$. The function $\delta \colon R^n \to (0, \infty)$ is continuous, so that $N_{\delta}(id.)$ is an open set containing id. But $d(x_j, h_{i_j}(x_j)) = \epsilon_j > \epsilon_j/2 = \delta(x_j)$, and therefore $h_{i_j} \notin N_{\delta}(id.)$, for each j. This contradiction proves the lemma.

COROLLARY 11 (Siebenmann [3]). If W: $[0, 1] \rightarrow H(R^n)$ is a path in $H(R^n)$, with W(t) = h_t , then there exists a compact subset K of R^n such that $h_t(x) = h_0(x)$ for all $t \in [0, 1]$ and $x \notin K$.

Proof that $H(R^n)$ is not a Fréchet space. Let $X = H(R^n) - H_c(R^n)$. We shall show that id. ϵ cl X; but by Lemma 10, there is no sequence in X converging to the id. In other words, given a majorant δ , we must produce $h \in X \cap N_{\delta}(id.)$.

Let $B_i(N_i)$ denote the closed (open) ball about the origin (= 0) in ${\bf R}^n$ of radius i + 1. Let a_0 = 1 and

$$a_i = \frac{1}{2} \min \{a_{i-1}, \min \{\delta(x) | x \in B_i\}\}$$
 for $i = 1, 2, 3, \dots$

Then $0 < a_i < a_{i-1}$, and $a_i < 2^{-i}$. Let h_0 be the radial homeomorphism taking B_0 onto B_{a_1} with $h_0(0) = 0$. In general, let h_i be the radial homeomorphism of the annulus $A_i = B_i - B_{i-1}$ onto the annulus $B_{i+a_{i+1}} - B_{i+a_{i}-1}$. It is easy to verify that if $y \in A_i$, then $d(h_i(y), y) < \delta(y)$.

Now define the homeomorphism h of R^n by $h(y)=h_i(y)$ if $y\in A_i$. Clearly, h ϵ X (since the only fixed point of h is the origin), and h ϵ N_{\delta}(id.) (since for each y \epsilon R^n, there is some i such that y \epsilon A_i, and h(y) = h_i(y) implies d(h(y), y) < \delta(y)).

Before proving the separability of $H(R^n)$, we need to state a few preliminaries. Let $f: X \to Y$ be a continuous function between metric spaces, and let $\epsilon: Y \to (0, \infty)$ be continuous. The continuous function $\delta: X \to (0, \infty)$ is called a *continuous modulus of continuity* (CMC) for f and ϵ if $d(f(x), f(y)) < \epsilon(f(x))$ whenever $x, y \in X$ and $d(x, y) < \delta(x)$.

THEOREM (see [2]). For each continuous function $f: X \to Y$ and each continuous $\epsilon: Y \to (0, \infty)$, there exists a CMC $\delta: X \to (0, \infty)$.

Definition. If K is a simplicial complex and ε is a majorant on |K|, we say that the *mesh of* K *is less than* ε if for each simplex $\sigma \in K$, the diameter of σ is less than inf $\{\varepsilon(x) \mid x \in \operatorname{star} \sigma\}$.

4. PROOF OF THEOREM 4

Given $f \in H(R^n)$ and a majorant δ , we apply a theorem of [1, page 1] for n>4 and [3, page 273] for n<4 to obtain a PL (piecewise linear) homeomorphism g of R^n such that $d(f(x), g(x)) < \delta(x)$ for all $x \in R^n$. Let $\varepsilon(x) = \delta(g^{-1}(x))$. We may assume that g is simplicial with respect to triangulations K and L, each of mesh less than $\varepsilon/4$ (and less than 1/2). Let ε' be a CMC for g and $\varepsilon/4$; we may assume $\varepsilon'(x) \leq \varepsilon(x)$ for all $x \in R^n$. By taking subdivisions if necessary, we may assume that the mesh of K is less than $\varepsilon'/2$, and that the mesh of K is less than $\delta/8$. We now define new triangulations K' and K' of K' such that all coordinates of the vertices of K' and K' are rational, and K' is obtained from K by "shifting" the vertices a small amount (similarly, K' is shifted to K'). That is, we move the vertex K'0 a rational point K'1 in the star of K'2, with

$$d(v,\,v^{\,\prime})\,<\frac{1}{4}\min\big\{\epsilon^{\prime}(x)\big|\,\,x\,\in\,\,star\,\,v\big\}\,,$$

and extend conewise on $st(v, K) = v * lk(v, K) \approx v' * lk(v, K)$. This process works easily for compact polyhedra, and we can apply it to R^n by using alternate annular regions. On L, we shift points as in K, but replace $\epsilon'(x)$ by min $\{\epsilon(x), \delta(x)/4\}$.

Now define the simplicial homeomorphism h of R^n (simplicial with respect to K' and L') by the composition $v' \to v \to g(v) \to (g(v))'$ and linear extension. It will suffice to show that $d(h(x), g(x)) < \delta(x)$ for all $x \in R^n$, since there are only countably many such simplicial maps h between complexes with rational vertices. We do this as follows: Given $x \in R^n$, pick a vertex $v' \in K'$ with $x \in st(v', K')$; then

$$d(h(x), g(x)) \le d(h(x), h(v')) + d(h(v'), g(v')) + d(g(v'), g(x))$$
.

Since the mesh of L' is less than $\delta/8 + 2\delta/16$, we have the inequality $d(h(x), h(v')) \le \delta(x)/4$. Since the mesh of K' is less than $\epsilon'/2 + 2\epsilon'/4$, we also see that $d(g(v'), g(x)) < \epsilon(g(x))/4 = \delta(x)/4$. To show that $d(h(v'), g(v')) < \delta(v')/2$ for all vertices $v' \in K'$, we observe that

$$\begin{split} d(h(v^{\,\prime}),\;g(v^{\,\prime}))\;&=\;d((gv)^{\,\prime},\;g(v^{\,\prime}))\;\leq\;d((gv)^{\,\prime},\;g(v))\;+d(g(v),\;g(v^{\,\prime}))\\ &<\frac{\epsilon(g(v^{\,\prime}))}{4}+\frac{\epsilon(g(v^{\,\prime}))}{4}\;=\;\frac{\epsilon(g(v^{\,\prime}))}{2}\;=\;\frac{\delta(v^{\,\prime})}{2}\;. \end{split}$$

The proof of Theorem 2 actually establishes the following result.

COROLLARY 12. The space of PL homeomorphisms of Rⁿ (with the majorant topology) is separable.

REFERENCES

- 1. R. C. Kirby, Lectures on triangulations of manifolds. Mimeographed notes, UCLA, 1969.
- 2. S. B. Seidman and J. A. Childress, Close homeomorphisms of metric spaces (to appear).
- 3. L. C. Siebenmann, Approximating cellular maps by homeomorphisms. Topology 11 (1972), 271-294.

George Mason University Fairfax, Virginia 22030