BOUNDARY-REDUCIBLE 3-MANIFOLDS
AND WALDHAUSEN’S THEOREM

T. W. Tucker

INTRODUCTION

Let M and N be compact, connected, irreducible, orientable and boundary-
irreducible 3-manifolds, and suppose that N is sufficiently large (see Section 1) and
7, (M) # 1. In [6], F. Waldhausen proved that every mapping f: (M, aM) — (N, oN)
that induces a monomorphism of fundamental groups is homotopic (boundary going to
boundary during the homotopy) to a covering or a map of M into 9N. In the latter
case, M is a product F X I, where F is a closed, orientable 2-manifold and I is the
unit interval [0, 1]. An immediate consequence of this result is that for such mani-
folds M and N, a homotopy equivalence of pairs (M, aM) and (N, oN) is induced by
a homeomorphism. In [3], W. Heil extended Waldhausen’s Theorem to nonorientable,
P%-irreducible manifolds; there is then the possibility that M is a nontrivial I-
bundle over an arbitrary closed surface with F(M) again contracting into oN. A
noncompact version of Heil’s Theorem was proved by E. M. Brown and this author
in [1].

If M is boundary-reducible, it is easy to construct a counterexample to the
theorem. Let D be the set of all complex numbers z with |z| < 1. Let
M =S! xD. Let f: (M, 9M) — (M, 8M) be defined by £(6, z) = (6, z2). Then f hasa
branch curve at S! X {0}, and there is no homotopy that takes boundary to boundary
and makes f a covering map (unbranched) or contracts (M) into 9M. We shall
show, however, that this is in effect the only counterexample. Theorem 1 gives the
boundary-reducible version of Waldhausen’s Theorem. In Section 2, we state the
nonorientable analogue and sketch a proof. In Section 3, we consider the problem of
respecting peripheral structure in boundary-reducible manifolds.

1. THE BOUNDARY-REDUCIBLE WALDHAUSEN THEOREM

We recall some terminology used in [6]. A 3-manifold is irveducible if every
embedded 2-sphere bounds a 3-cell. A surface F in a 3-manifold M is a 2-sided
2-manifold embedded so that F N oM = 0F or F C 0M. A surface F in M is in-
compressible in M if 7;(F) — 7(M) is monic and F is not a 2-sphere bounding a
3-cell (unlabeled mappings of fundamental groups are induced by inclusion). A com-
pact, irreducible 3-manifold is sufficiently lavge if it contains an incompressible
surface. We say M is boundavy-ivveducible if all boundary components of M are
incompressible in M. All manifolds will be triangulated, and whenever possible all
maps will be assumed to be piecewise linear.

We first state a glorified version of Lemma 1.4.3 of [6] (Nielsen’s Theorem).
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LEMMA 1. Let f: (M, aM) — (N, 9N) be a mapping of compact, connected 2-
manifolds, and suppose M is not a spheve ovr projective plane. Then either there is
a simple, orientable, closed curve representing a non-tvivial element of
ker (f : 7,(M) — 7 (N)), or f, is monic and theve exists a homotopy
fi: (M, aM) — (N, 9N) with £4 =1 such that one of the following thvee cases occurs:

(1) £ is a covering map;
(ii) M is an annulus, MObius stvip, ov disk, and f (M) C aN;

(iii) M and N ave disks, and f, | oM is a more-than-one-sheeled covering of
oN.

Proof. Simply mimic the proof of Waldhausen’s Theorem in one less dimension.
The details are cumbersome, but no problems arise.

Remark. We are interested in Lemma 1 mainly because it provides a simple
closed curve representing a nontrivial element of ker £, when f, is not monic. This
does not seem to be well-known. It is also interesting to compare the above state-
ment of Nielsen’s Theorem with our Theorem 1.

We shall need a slightly stronger product theorem than Waldhausen’s Lemma
5.1. The following is all that is necessary to weaken his assumptions of boundary-
irreducibility.

LEMMA 2. Let F be a component of oM. Suppose every loop in F has a
multiple that is freely homotopic to a loop in some other component G of oM. Then

F is incompressible.

Proof. Suppose F is compressible. By the Loop Theorem, there is a disk D
embedded in M with D N F =D N oM = 9D = «, where « is a loop noncontractible in
F. There are two cases.

(1) The loop a does not separate F. Let 8 be a loop intersecting @ once.
Some multiple of 8 is homotopic to a loop in G, and hence it has intersection number
0 with the disk D, a contradiction.

(2) The loop « separates F into components F; and F, . Let 8 be an orient-
able, simple loop intersecting o only at the points p and q, and such that 8 N F; is
nonseparating in F; (i =1, 2). A multiple of 8 is homotopic to a loop in G. By the
Generalized Loop Theorem [5], we may conclude that there exists an annulus A em-
bedded in M with A N 9M =8 U B', where 8' C G. Let p and q separate o« and S8
into components «;, «, and B;, B,, respectively. Then, by looking at the intersec-
tion of A and D, we see clearly that at least one of the four loops a; U B:

(i, j = 1, 2) bounds a disk in M. Since all of these loops are nonseparating (by the
choice of B), we are now back in case (1).

We are now ready to prove our main theorem.

THEOREM 1. Let M and N be compact, connected, ovientable, ivveducible 3-
manifolds, and suppose that N is sufficiently lavge and w{(M) # 1. Let
f: (M, 9M) — (N, oN) be a map such that . m,(M) — 7(N) is monic. Then there
exists a homotopy f.: (M, aM) — (N, aN) with £y =1 such that one of the following
three cases occurs:

(i) £, s a covering map;
(ii) M = F X I, where F is an ovientable 2-manifold, and f,(M) C 9N;

(iii) M and N are solid tovi, £, | oM is a covering map, and

ker (7,(dN) — 7 ,(N)) & im(f, | aM),.
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Proof. The proof proceeds in three steps from the “best” situation to the
“worst”.

Step I. Assume that (fl F), is monic for each component F of 9M, and either
f| F is homotopic to a homeomorphism or f(F) is incompressible in N.

By Lemma 1, f | F is homotopic to a covering map. Constructing such ho-
motopies in a regular neighborhood of oM, we may assume { | oM is a covering
map. If we now follow Waldhausen’s proof of his original theorem, we find the only
obstruction to homotoping f to a covering map is the existence of anarc y in M
that joins boundary components F and G (possibly F = G) and such that f(y) isa
contractible closed curve in N. Assume we encounter such an arc. If F = G, then
f l F is not a homeomorphism, since f takes the distinct endpoints of v to the same
point in f(F). Therefore, by our assumptions in Step I, f(F) is incompressible in N.
Because fl F is a finite-sheeted covering and f, is monic, F is also incompres-
sible. The rest of Waldhausen’s proof now applies, and we arrive at a contradiction
as he does. If F # G, then the existence of y, together with the fact that f l F and
f | G are finite-sheeted covering maps, implies every loop in F (or G) has a multi-
ple freely homotopic to a loop in G (or F). By Lemma 2, F and G are incompres-
sible, and hence f(F) and f(G) are also incompressible. Again the rest of Wald-
hausen’s proof applies, and we conclude that case (ii) must occur, where F isa
closed, orientable surface.

Step II. Assume (f| F)* is monic for each component ¥ of cM.

As in Step I, since (fl F), is monic, we may in fact assume f | oM is already a
covering map. Let p: N' — N be a covering of N such that p (7,(N")) = (7, (M)).
Then f lifts to a map f': (M, aM) — (N', aN'). We shall show that either case (ii)
occurs, or N' is compact and f' satisfies the hypothesis of Step I, or N' is compact
and case (iii) occurs.

Consider the commutative diagram

H3(M, 0M) —2> H,(oM)

lf; l(f' | am),

H4(N', aN') —2— H,(aN").

It is important that here all homology has coefficients in Z, the integers. Suppose

£,: H3(M, oM) — H3(N', ON') is trivial. Then (f'|oM), (Z) [F]) =0 in H,(3N"),
where [F] is the homology class of the component F of M, and the summation is
taken over all boundary components of M. Since f{' | oM is a covering map,

('] aM),([F)) # 0. Hence f' must map two distinct components F and G of aM to
the same component of N'. Let a be any arc joining a point p of ¥ to a point q of
G such that £'(p) = f'(q). Then f'(a) is a loop in N'. Since fi: 7 (M) — 7(N') is an
isomorphism, there exists a loop 8 in M such that f'(8) is homotopic to f'(a)-1.
Let y=p8-a. Then f'(y) is a contractible loop in N', and hence f(y) is a contractible
loop in N. As in Step I, the existence of y tells us every loop in F (or G) has a
multiple freely homotopic to a loop in G (or F). Hence Lemma 2 and Waldhausen’s

results may be applied, and we conclude as before that case (ii) must occur, where
F is a closed surface.

Thus we may assume that f}: H3(M, 9M) — H3(N', 9N') is nontrivial. In particu-
lar, f' must be onto, and N' must be compact. By the Sphere Theorem [4] and the
irreducibility of M and N, we see that 7;(M) = 7;(N) = 7;(N') = 0 for all i > 1.
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Therefore f' is a homotopy equivalence, and x(M) = x(N'), where x(M) is the Euler
characteristic of M. Poincaré duality in the doubles of M and N' implies that
x(6M) = x(dN'"). Since f' | oM is a covering map and f' is onto, f' | F must be a
homeomorphism for every component F of aM with x(F) < 0. (Since M is orient-
able and irreducible, all components of dM have negative Euler characteristic,
except the torus components.) If £'(F) is incompressible for each torus component
of 9N, then by Step I, case (i) of our theorem must occur. Thus f' and hence f is
homotopic to a covering map. If {'(F) is compressible, the irreducibility of M and
N forces M, N', and N to be solid tori. If ker(m(dN) — m;{(N)) C im(f| aM),, itisa
simple matter to cut N apart along a disk D, homotope f to be transverse to D and
f| £-1(D) to be a covering map, and to conclude that in fact case (i) of our theorem
holds. Otherwise, we have case (iii).

Step III. Suppose (f| F),,< is not monic for some component F of dM.

By Lemma 1, there exists an orientable, simple closed curve « in (ker f | F),
that is not contractible in F. Since f, is monic, o is contractible in M. By Dehn’s
Lemma [4], there exists a disk D embedded in M with D N dM = o. Because f(a)
is contractible in 9N and 7,(N) is trivial, f(D) contracts into aN. In fact, if R(D)
is a regular neighborhood of D that meets dM in a regular neighborhood of o, we
can homotope f to a map that takes R(D) into aN. Let M' be the closure of
M - R(D). Then (f|M')(aM') c 3N. Suppose (f| F), is now monic for every com-
ponent F of oM'. If M' is a 3-cell, then M is a handlebody, and thus it is homeo-
morphic to F X1 for some 2-manifold F. Since we can clearly homotope f| M' to
map M' into oN, we must be in case (ii) of the theorem. (Note that all homotopies
mentioned can even be chosen to remain fixed on 9M.) Assume then that M' is not
a 3-cell. We may apply Step II of our theorem to f| M'. If case (i) or (iii) occurs
for a component M} of M' (M'=M; U M, if D separates M and M' = M) other-
wise), then (f I M}), (m1(M})) has finite index in 7 ;(N). Since f, is monic, 7;(M})
has finite index in 7;(M). But 7;(M) is a free product of 7;(M}) with either (M)
or Z. In either case, 7;(M]) does not have finite index in 7;(M). If case (ii) occurs
for all components of M', then f is homotopic to a map f; such that f;(M) is con-
tained in a component G of dM. (The homotopy takes oM' into 9N and is fixed on
R(D).) But (f| F), is monic for every component F of dM', by assumption. Thus
(£, ] F) is homotopic to a covering map, and (f; [ F), (71(F)) has finite index in
m1(G). Considering f; as a map of M into G, we see that (f;), (7,(M])) also has
finite index in 7;(G). Because f, is monic, (f,), is monic, and therefore m;(M})
must have finite index in ﬂl(M). As above, this is a contradiction.

We conclude that either M' is a 3-cell, and we are in case (ii) with M a handle-
body, or (f I F), is not monic for some component F of aM'. If the latter happens,
we may repeat the procedure above. Since x(0M) is finite, the process must termi-
nate so that our last M' is a collection of 3-cells. Hence case (ii) must apply,
where F is a surface with boundary.

We obtain as a corollary the following result, which B. Evans established in [2]
using quite different methods.

COROLLARY 1. Let M and N be as in Theovem 1. If f: (M, oM) — (N, aN) is
a mapping such that £, is an isomovphism, then { is homotopic to a homeomorphism
(it may be that M is not taken into ON duving the homotopy).

Proof. If case (i) of Theorem 1 holds, there is nothing more to prove. If case
(iii) holds, it is easy to construct the desired homotopy. If case (ii) holds with F
closed, Waldhausen’s Lemma 5.1 of [6] implies that N is also a product. Then
Lemma 1 provides a homotopy of f | F that can be extended to the required homotopy
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of f. If case (ii) occurs with M a handlebody, then N must also be a handlebody,
and a theorem of Zieschang [7] tells us that f is homotopic to a homeomorphism.

2. THE NONORIENTABLE CASE

We state the nonorientable version of Theorem 1 and indicate the proof. Follow-
ing Heil, we say a 3-manifold is P2-irreducible if it is irreducible and contains no
two-sided projective planes.

THEOREM 2. If M and N are P2-irveducible, compact, sufficiently large 3-
manifolds and f: (M, aM) — (N, dN) is such that f, is monic, then theve exists a
homotopy fy: (M, 3M) — (N, oN) such that fo=1 cmd one of the three following cases
occurs:

(i) £, is a covering map;
(ii) M is an I-bundle over a 2-manifold F and (M) C oN;

(iii) M and N are disk-bundles over S1 (solid tori or Klein bottles), f, | oM is
a covering map, and ker (m(dN) — 7,(N)) & im (f;(3M),).

Pyroof. Since Lemma 2 has no restriction on orientability, Step I of the proof of
Theorem 1 presents no difficulty. We simply appeal to Heil’s nonorientable version
[3] of Waldhausen’s result. Assuming Step II can be carried out, we have no prob-
lems at Step III. Indeed, since Lemma 1 guarantees orientable simple closed curves
in ker (f | aM)*, the desired surgery can be applied. Of course, we may now obtain a
“twisted” handle body, that is, an I-bundle over F that is not a product. The only
trouble arises in Step II. We used coefficients in Z to show N' is compact, and the
argument as stated will not work with Z;-coefficients. Instead, we proceed as fol-
lows. Let f' and N' be as in Step II. Recall that fi: 7,(M) — 711(N) is an isomor-
phism. Let 0(M) be the subgroup of 7 I(M) whose elements have orientable loops as
representatives, Let P be the subgroup f (0(M)) N O(N'), which has index at most 4
in m{(N'). Let N be the covering of N' correspondmg to P, and M the covering of
M corresponding to (fy)-1(P). The mapping f': M — N'_lifts to a mapping f: M — N
that satisfies the same conditions as f'. Since M and N are orientable, we may use
the argument from Step II to show that f is onto or M = F X I, where F is closed.

In the first case, f' must also be onto. As before, we may then conclude that N' is
compact and that f' | oM is a homeomorphism except possibly on components of
Euler characteristic zero (Klein bottles are now a possibility). The rest of the proof
should be clear. In the second case when M = F X1 where F is closed, M is
boundary-irreducible. It follows that M is boundary-irreducible, and hence we may
use Heil’s proof.

3. THE PERIPHERAL STRUCTURE OF BOUNDARY-
REDUCIBLE MANIFOLDS

If we want to obtain information about the homeomorphism-type of a 3-manifold
M simply from algebraic information about WI(M), in a manner similar, say, to
Corollary 6.5 of [6], we need to know exactly how the peripheral groups 71(Fy) are
mapped into 7;(M), where Fy is a component of dM. In the boundary-irreducible
case, 7T1(Fk) can be considered in some sense to be a subgroup of 7;(M); but in gen-
eral, this is not possible. We must actually know what the map iy : 7, (Fy) — 7(M)
is, not simply what its image is. We therefore define a peripheral group system G
to be a collection of groups G and Gy, together with homomorphisms ix: Gy — G.
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The distinguished group G is called the main group, and {G,} is the set of periph-
eval groups. A wmorvphism ®: ¥ — A of two such systems consists of a main homo-
morphism ¢: G — H and homomorphisms ¢.: G — Hﬁ(k) (one for each k), where ,
H 0(k) is a peripheral group of »#’, and where the diagram '

bk
Gy —> Hyx)

) 4 l e

G —2 »u

conjugate-commutes—that is, there exists an inner automorphism Y of H such that
bix = Y g(k) Pk -

We obtain a peripheral group system for a manifold M by choosing base-points
p € M and px € Fx (one for each component F) of 9M), together with paths o
joining p to pi. Then G = 7;(M, p), Gy =7 (F, px), and iy is the inclusion-induced
mapping 7;(F, p;) — 7 (M, p;) followed by the base-point-changing automorphism of
71(M) induced by @y . A mapping f: (M, dM) — (N, oN) induces a morphism of
peripheral group systems of M and N. Between any two peripheral systems for M,
there is a morphism ¢ induced by the identity map of M such that ¢ and the ¢, are
all inner automorphisms.

LEMMA 3. Let % and ¢ be pevipheral group systems for connected, compact
3-manifolds M and N, respectively, with ﬂZ(N) = 0. Then each movphism &: § — A
is induced by a map f: (M, M) — (N, oN).

Proof. Choose base-point systems p, py, @i, and q, qg, Sy to obtain the group
systems of M and N, respectively. Let T, be a maximal tree in the 1-skeleton of

F,, for each k, and extend U Ty to a maximal tree T in the 1-skeleton of M. Let
T' be the collection of all edges in T having no vertices in M. For each k, let e
be the edge joining T' to Ty, and let g be any path in T from p to p; .. We con-
struct f as follows. Let {(T,) = g (k) and f(T') = q. Let &, be any loop in N that

represents ¢({a:! - e,]). Let v, be any loop in N based at g such that the inner
k k k

automorphism in the diagram (*) is conjugation by the class of v, . Let

f(ek) = Bﬂ(k) * ¥k * 0 - Now define f over the other edges in oM by using the periph-
eral maps ¢ . Define f over the other edges of M by using ¢. We can extend { to
the 2-skeleton of M, because ¢ and ¢, are homomorphisms. We can extend { to
all of M, because TTZ(N) = 0. We leave it to the reader to verify that f is the desired
map.

Using Lemma 3, we may summarize our results as follows.

THEOREM 3. Let M and N be compact, connecled, P2-irveducible, suffi-
ciently large 3-manifolds. Let ® be a movphism of group systems for M and N
such that the main map ¢ is a monomovphism, Then ® is induced by a mapping
f: (M, M) — (N, aN) of type (i), (ii), or (iii) as listed in Theovem 2. In particular,
if M is not an I-bundle over an annulus or closed 2-manifold, and if ¢y is also a
nionomovphism for each X, then ® is induced by a coveving map. Ov, if ¢r is
arvbitrary, but M and N ave orvientable and ¢ is an isomorvphism, then ¢ is induced
by a homeomorphism. (Note that in this case, & may not be induced by the homeo-
morphism when M is an I-bundle over a 2-manifold.)
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