SENSE-PRESERVING PL INVOLUTIONS OF SOME LENS SPACES

K. W. Kwun

1. INTRODUCTION

Let L = L(p, q) be a 3-dimensional lens space. We say that L is symmetric if $q^2 \equiv \pm 1 \pmod{p}$. Recall that L(p, q) and L(p, q') are homeomorphic [3], [4] if and only if $q' \equiv \pm q$ or $qq' \equiv \pm 1 \pmod{p}$. Hence, symmetry of L is a topological property. A map $f: L \to L$ is called sense-preserving if f induces the identity of $H_1(L)$. For odd indices f (f indices f indi

THEOREM. Let L = L(p, q) (p odd, $p \ge 3$). Let h be a PL involution of L with a nonempty fixed-point set. The Z_2 -action generated by h can be extended to an effective S^1 -action if and only if h is sense-perserving. Up to PL equivalences, there is exactly one such sense-preserving involution h if L is symmetric, and there are exactly two if L is not symmetric.

Henceforth, we assume that L = L(p, q) (p odd, $p \ge 3$) and that h is a sense-preserving PL involution of L with nonempty fixed-point set F. We shall simply call the orbit space of the Z_2 -action generated by h the *orbit space* of h.

Remark. We can easily describe the orbit space of h as follows. If $q^2 \equiv \pm 1 \pmod{p}$, the orbit space is L(p, q'), where q' is any integer such that $2q' \equiv q \pmod{p}$. If $q^2 \not\equiv \pm 1$, we have two nonhomeomorphic orbit spaces L(p, q') and L(p, q''), where q' and q'' are any integers such that $2q' \equiv q$ and $2qq'' \equiv 1 \pmod{p}$.

2. THE FIXED-POINT SET F OF h

PROPOSITION 2.1. F is a simple closed curve.

Proof. Since L is a \mathbb{Z}_2 -homology sphere, F must be a sphere. Since $\mathbb{F} \neq \emptyset$ and h preserves orientation, F is a simple closed curve, by the parity theorem.

PROPOSITION 2.2. Let i: $F \subset L$. Then

$$i_{\#}: \pi_1(F) \rightarrow \pi_1(L)$$

is an epimorphism.

Received January 3, 1972.

This research was supported in part by National Science Foundation Grants GP 29515X and 30808.

Michigan Math. J. 20 (1973).

Proof. Let $f: S^3 \to L$ be the universal covering. Choose $x_0 \in F$ and $y_0 \in f^{-1}(x_0)$. By the lifting theorem and the unique-lifting theorem, there exists a PL involution h' of (S^3, y_0) such that fh' = hf and the component F' of $f^{-1}(F)$ containing y_0 is pointwise fixed.

Let $i_\#\pi_1(F)$ be a subgroup of $\pi_1(L)$ of index k $(1 \le k \le p)$. Then $f^{-1}(F)$ is the union of k disjoint simple closed curves. Hence F' is the fixed-point set of h'. Let α be a path from y_0 to any $y_1 \in f^{-1}(x_0)$. Then $f\alpha$ represents an element u of $\pi_1(L)$, and $fh'\alpha = hf\alpha$ represents $h_\#(u) = u$. Hence $h'\alpha$, which starts at y_0 , must end at y_1 , or $h'(y_1) = y_1$. Hence $f^{-1}(x_0) \subseteq F'$, and therefore $F' = f^{-1}(F)$ and k = 1.

PROPOSITION 2.3. Let N be a regular neighborhood of F. Then $N' = \overline{L - N}$ is a solid torus.

Proof. Again, let $f: S^3 \to L$ be the universal covering. As in the proof of Proposition 2.2, there exists a PL involution h' of S^3 such that $F' = f^{-1}(F)$ is the fixed-point set. By a theorem of F. Waldhausen [5], F' is unknotted. The set $T = f^{-1}(N)$ is a regular neighborhood of F', and $T' = \overline{S^3} - \overline{T}$ is a solid torus. Also, $T' = f^{-1}(N')$, and $f \mid T': T' \to N'$ is a regular covering with the group of covering transformations isomorphic to Z_p . Hence, there exists an exact sequence

$$0 \,\rightarrow\, Z \,\rightarrow\, \pi_1(N') \,\rightarrow\, Z_p \,\rightarrow\, 0 \,.$$

Let t generate Z, and let $\beta \in \pi_1(N')$ be a pullback of the generator of Z_p . Then t and β generate $\pi_1(N')$. Since Z is normal in $\pi_1(N')$, $\beta^{-1}t\beta = t$ or t^{-1} . However, it is easy to see that if $\beta^{-1}t\beta = t^{-1}$, then the abelianization $H_1(N')$ of $\pi_1(N')$ is finite. This is impossible, because N' is a rational homology circle, by Alexander duality. Hence $\beta^{-1}t\beta = t$, and $\pi_1(N')$ is an abelian group of rank 1. However, the universal covering space of N' (therefore, of T') is contractible, and $\pi_1(N')$ acts freely on it. Hence $\pi_1(N')$ cannot contain a nontrivial element of a finite order. Hence $\pi_1(N') \simeq Z$. On the other hand, N' is clearly irreducible, since it is covered by T'. Hence, by a theorem of J. Stallings [4], N' is fibered over S^1 with 1-connected fiber. Since N' is compact and orientable, N' is a solid torus.

3. PROOF OF THE THEOREM

Let D^2 and S^1 denote the unit disk and its boundary in the complex plane. Then $D^2 \times S^1$ is a solid torus whose points we shall denote by $(\rho z_1, z_2)$ $(z_1, z_2 \in S^1, 0 \le \rho \le 1)$. A similar statement applies to $S^1 \times D^2$.

Consider $X = D^2 \times S^1 \cup_g S^1 \times D^2$, where $g: S^1 \times S^1 \to S^1 \times S^1$ is an attaching homeomorphism. Groups involved are abelian. We shall ignore base points. Let α be the element of $\pi_1(S^1 \times S^1)$ represented by the path $(e^{2\pi i t}, 1)$ $(0 \le t \le 1)$. Let β be represented by $(1, e^{2\pi i t})$. Suppose

$$g_{\#}(\alpha) = \alpha^a \beta^c$$
 and $g_{\#}(\beta) = \alpha^b \beta^d$.

By suitable choice of orientations, we may assume that $\begin{vmatrix} a & c \\ b & d \end{vmatrix} = 1$ and $a \ge 0$. The integers a, b, c, d completely determine the isotopy class of g, and therefore the homeomorphism type of X. If a = 0, then X is homeomorphic to $S^1 \times S^2$. If a = 1, then $X \approx S^3$. If a > 1, X is homeomorphic to the lens space L(a, b).

Suppose h_0 is a PL involution of $D^2 \times S^1$ given by the rule

$$h_0(\rho z_1, z_2) = (-\rho z_1, z_2).$$

It can be shown that if a PL involution h of a solid torus T fixes pointwise a set $F \subset T$ such that $(T, F) \approx (D^2 \times S^1, 0 \times S^1)$, then h is PL equivalent to h_0 . That is, there exists a PL homeomorphism $t: T \to D^2 \times S^1$ such that $h = t^{-1} h_0 t$. An explicit proof of this is given in a yet unpublished paper of P. Kim. Also it is easy to see that each free PL involution of a solid torus is PL equivalent to the involution h_1 of $S^1 \times D^2$ with $h_1(z_1, \rho z_2) = (-z_1, \rho z_2)$.

Hence we may assume that

$$\mathbf{L} = \mathbf{D}^2 \times \mathbf{S}^1 \cup_{\mathbf{g}} \mathbf{S}^1 \times \mathbf{D}^2$$

and that h is given by the formula

$$h(\rho z_1, z_2) = (-\rho z_1, z_2)$$
 for $(\rho z_1, z_2) \in D^2 \times S^1$,

$$h(z_1, \rho z_2) = (-z_1, \rho z_2)$$
 for $(z_1, \rho z_2) \in S^1 \times D^2$,

where g: $S^1 \times S^1 \to S^1 \times S^1$ is an appropriate equivariant attaching map. The isotopy class of g is determined by integers p, b, c, d.

PROPOSITION 3.1. The integer b is even.

Proof. The orbit space L' of h can be given as L' = $D^2 \times S^1 \cup_{g'} S^1 \times D^2$. A simple computation shows that the isotopy class of g' is determined by the integers p, b/2, 2c, d.

PROPOSITION 3.2. Let $L_i = D^2 \times S^1 \cup_{g_i} S^1 \times D^2$ (i = 1, 2), where the g_i are isotopic. Let a PL involution h_i of L_i be given by the formulas

$$h_i(\rho z_1, z_2) = (-\rho z_1, z_2)$$
 and $h_i(z_1, \rho z_2) = (-z_1, \rho z_2)$.

Then there exists an equivariant homeomorphism $t: L_1 \to L_2$ such that $t(D^2 \times S^1) = D^2 \times S^1$.

Proof. Let the orbit space L_i' be given by

$$L_i' = D^2 \times S^1 \cup_{g_i'} S^1 \times D^2$$
.

Then, by the proof of Proposition 3.1, g_1' and g_2' are isotopic. Hence there exists a PL homeomorphism $t' \colon L_1' \to L_2'$ such that $t'(D^2 \times S^1) = D^2 \times S^1$. We obtain t by lifting t'. (This can be done, though the orbit map is not a covering projection.)

Now we are in position to assume that

$$L = D^2 \times S^1 \cup_g S^1 \times D^2$$

and h is given as before but g is actually given by $g(z_1, z_2) = (z_1^p z_2^c, z_1^b z_2^d)$. This g is equivariant, because by Proposition 3.1 b is even.

4. THE CONCLUSION OF THE PROOF OF THE THEOREM

We assume that the situation is as at the end of Section 3, and that g is determined by p, b, c, d. The only information we have is that b = $\pm q$ or bq = ± 1 (mod p) and that b is even. We shall compare various cases arising from different b, c, d. Recall that a set of integers b, c, d with b even such that pd - bc = 1 determines an equivalence class of PL involutions. We can describe the representative element h = h(b, c, d) by regarding L as $D^2 \times S^1 \cup_g S^1 \times D^2$, where $g(z_1, z_2) = (z_1^p z_2^c, z_1^b z_2^d)$, and by setting

$$\begin{aligned} h(\rho z_1, z_2) &= (-\rho z_1, z_2) & \text{for } (\rho z_1, z_2) \in D^2 \times S^1, \\ h(z_1, \rho z_2) &= (-z_1, \rho z_2) & \text{for } (z_1, \rho z_2) \in S^1 \times D^2. \end{aligned}$$

Case 1: b is fixed.

Let c' and d' be integers such that pd' - bc' = 1 = pd - bc. Then there exists an integer m such that c' = c + mp and d' = d + mb. Let g': $S^1 \times S^1 \to S^1 \times S^1$ be given by the formula $g'(z_1, z_2) = (z_1^p z_2^{c'}, z_1^b z_2^{d'})$. Then an equivariant homeomorphism

t:
$$D^2 \times S^1 \cup_g S^1 \times D^2 \rightarrow D^2 \times S^1 \cup_{g'} S^1 \times D^2$$

is given by the formulas $t(\rho z_1, z_2) = (\rho z_1 z_2^{-m}, z_2)$ and $t(z_1, \rho z_2) = (z_1, \rho z_2)$. Hence the equivalence class of h depends only on b.

Case 2: b is replaced by b + mp.

Here the resulting attaching map g' is determined by integers p, b+mp, c, and d+mc. (By Case 1, the values of c and d are irrelevant.) Assume that $g'(z_1, z_2) = (z_1^p z_2^c, z_1^{b+mp} z_2^{d+mc})$. An equivariant homeomorphism

t:
$$D^2 \times S^1 \cup_g S^1 \times D^2 \rightarrow D^2 \times S^1 \cup_{g'} S^1 \times D^2$$

is given by $t(\rho z_1, z_2) = (\rho z_1, z_2)$ and $t(z_1, \rho z_2) = (z_1, \rho z_2 z_1^m)$. This t is actually equivariant, because m is required to be even if b + mp is even.

Case 3: b is replaced by -b.

Let g' be determined by p, -b, -c, and d.

An equivariant homeomorphism t is given by the equations

$$t(\rho z_1, z_2) = (\rho z_1, \bar{z}_2)$$
 and $t(z_1, \rho z_2) = (z_1, \rho \bar{z}_2)$.

Before we deal with the last case, observe that when g is determined by b, the orbit space of h is L(p, b/2), by the proof of Proposition 3.1.

Case 4: b is replaced by r, where $br \equiv 1 \pmod{p}$ and r is even.

Cases 1, 2, 3, and 4 and their combinations cover all possibilities. If $q^2 \equiv \pm 1$, then $b^2 \equiv \pm 1$ and $b \equiv \pm r$. Hence, Case 4 has already been covered. Therefore, the proof of the theorem will be complete when we have shown that (1) if $b^2 \not\equiv \pm 1$ and $br \equiv 1$, then L(p, b/2) and L(r/2) are not homeomorphic and (2) the Z_2 -action of h can be extended to a circle action.

For (1), suppose L(p, b/2) and L(p, r/2) are homeomorphic. If b/2 = $\pm r/2$, then b = $\pm r$, and hence b² = $\pm br$ = ± 1 . If (b/2)(r/2) = ± 1 , then 1 = br = ± 4 and p = 3 or 5. If p = 3 or 5, then for any x $\neq 0$, $x^2 = \pm 1$. In particular, $b^2 = \pm 1$.

For (2), suppose that $g(z_1, z_2) = (z_1^p z_2^c, z_1^b z_2^d)$. For each $z \in S^1$, define the S^1 -action by the equations

$$z \cdot (\rho z_1, z_2) = (\rho z_1 z, z_2)$$
 and $z \cdot (z_1, \rho z_2) = (z_1 z^p, \rho z_2 z^b)$.

Before closing, we remark that every L(p, q) $(p \ge 3)$ admits a PL involution, with nonempty fixed-point set, that is not sense-preserving.

REFERENCES

- 1. K. W. Kwun, Nonexistence of orientation reversing involutions on some manifolds. Proc. Amer. Math. Soc. 23 (1969), 725-726.
- 2. E. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56 (1952), 96-114.
- 3. K. Reidemeister, *Homotopieringe und Linsenräume*. Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
- 4. J. R. Stallings, *On fibering certain 3-manifolds*. Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), pp. 95-100. Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 5. F. Waldhausen, Über Involutionen der 3-Sphäre. Topology 8 (1969), 81-91.

Michigan State University
East Lansing, Michigan 48823
and
Cambridge University
Cambridge, England