HAUSDORFF DIMENSION AND APPROXIMATION
OF SMOOTH FUNCTIONS

Robert Kaufman

We prove two theorems about differentiable transformations of sets of a
specified Hausdorff dimension; the first theorem concerns the dimension of certain
intersections, and it complements a theorem of J. M. Marstrand [7, Theorem III, p.
275], while the second extends results of J.-P. Kahane and R. Salem (see [2, Chapter
15], [3, Chapter 8], and [9]) on the behavior at infinity of certain Fourier-Stieltjes
transforms. In both cases, we demonstrate the existence of an extremal set in a
specified class, by a combination of probability theory and quantitative approxima-
tion theory.

This paragraph contains the estimates necessary for approximation; the field is
largely the creation of A. N. Kolmogorov, and the material is found in [6, Chapter
10] under the name “entropy”. Let S be some collection of real-valued functions on
an interval [a, b] whose derivatives of order 0, 1, ***, k are uniformly bounded on
[a, b], for a positive integer k. For each € > 0, we choose a set S* C S so that for
each f in S there is an f* in S with |f(x) - f*(x)| <& throughout a < x <b. For
small € > 0, we can choose S* so that its size |S*| satisfies an inequality of the
form log |S*] <cC a‘l/k, where C depends on S but not on €. This estimate is
valid for fractional values of k, for which the analogue of CK is defined as follows.

k
We let k; = [k], and we admit classes S bounded above in C"![a, b], imposing a
Lipschitz condition with exponent @ =k - k; on the k;-st derivative:

Voo - 1™V <clx-y]® Ges a<xy<h).

Before turning to the theorems, we point out two technical details that should be
of interest to specialists. The first theorem involves not only probability and ap-
proximation, but also a function-space argument borrowed from Fourier analysis.
To prove the second theorem, we need a somewhat difficult estimate of exponential
integrals; but we use only elementary inequalities from probability, in contrast with
[2, Chapter 15].

1. To explain the significance of the first theorem, we denote by ¥ a closed
linear set, and by p a probability measure in F satisfying a Lipschitz condition
ula, a+h) <Cg hB for each interval (a, a +h) and each exponent 8 < @ < 1. Then
the planar set F X F carries the measure p X p, which fulfills a Lipschitz condition
for each exponent 28 < 2a. We can apply the method of Marstrand [7, Lemmas 10
to 19] to the set F X F (using p X p in place of A2%)to prove the following result:
There exists a line y = mx +b (m # 1) whose intersection with F has dimension at
least 2a - 1. This means that there is an affine map T # 1 of the line -- hence an
infinitely differentiable map with exactly one fixed point - such that T{F) N F has
dimension at least 2a - 1. In Theorem 1, we prove that the constant 2a - 1 is best
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possible, even if we admit a larger class of transformations T. The sets B and
E = f(B) occurring in Theorem 1' carry measures u described above; for further

details on the relation between dimension and measure, see [3, Chapters 1, 2, 3],
z[a,nd] for a view of the theory of Hausdorff measures and its subtleties, see [1], [8],
10/.

THEOREM 1. Let 1/2<a <1land r =2« - 1)"). Then there exists a com-
pact set E of Hausdovff dimension a such that for each function F of class
C*¥ (-0, ),

dimENFE\S) < 2x¢-1, where S=8S(F)={F(x) =x}.

To prove Theorem 1, we take some strictly increasing sequence of positive
integers n, such that

(a) nk_<_a‘1k+kl/2,

(b) ny,; > 1 +a-1Iny for each k in an infinite set T.

Then B is the set of all sums 2 skz_nk () =0, 1), and B has dimension
lim inf knlgl =a. Let W be the open subset of C1[0, 1] defined by the inequalities
1<£'<2 and -2 <f <2.

THEOREM 1'. For all functions f in W, excepting a set of the fivst category
(in the Cl-metric), £(B) fulfills the vequivements of Theorem 1.

The Banach space CT[-2, 2] can be expressed as an increasing union of bounded
subsets UJ-, for example, balls of radius j. Defining

S; = SJ-(F) = {x: |F(x) - x| Sj'l},

we construct a dense Gg-set Wj C W, effective for all the sets f(B) N F(f(B) \ S;)

determined by functions F in Uj. Then plainly ﬂ WJ- is'a dense Gg-set in W, and
it contains only functions of the type prescribed.

A. Corresponding to each integer k in the infinite set T, there is a covering of

B by intervals I (1<p<L Zk) of length 2 - ZnnkJrl and mutual distances at least

2-1 2~nk. For a fixed ¥ in Uj and a fixed f in W, we estimate the size of
f(B) N F(f(B)) by counting the integers p for which there is a q satisfying the con-

-n
dition (I,) N F(i(Iy)) # . Both sets in the relation have length 02 ™) ||F|, ana
because we are interested only in intervals I not contained entirely in Sj(F), we

can assume that p # q for large k. Let x, be some number in I, and choose F in

U; so that |F(x) - F(x)| < 2 "kl for all x in [-2, 2]. It is enough now to count

solutions of the inequality |f(xp) - f‘(f(xq))l <K; 9 kt1 , with some Kj depending on
Uj . We shall accomplish this enumeration for each F in a finite subset U;—k c Uj,
affording 2 "kt L_yniform approximation to every element of Uj . By the bound cited
in the introduction,

-1
1
[UF] < exprL;2" ™l = exp Li2 Pkl

for large k.
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To replace a preassigned f with a “good” function -- in a sense to be specified in
a moment -- we use an increment f4:

fo = I, (max|c,| <kl2 §
0o =cponly (max|cy| < .

Although le is defined only on U I,, it is the restriction of a function in clfo, 1] of
norm O(k™"), according to the relative position of the intervals I,. An acceptable
number of “hits” — counting the integers p, rather than the pairs p, q —is

Ny = kzz(za—l)nkH , because Nkz_cnk+1 — 0 for each ¢ > 2a - 1. In the remain-
ing calculations, f is fixed in W and F in U} .

The inequality |f(x,) +cp - F(f(Xq))l < K;27°ktl implies that

- =1
|#x,) - Fix)| < Kj2 a2 C=okT2 )

H

whence, for large k, at most one index p can be paired with each q; here we used
the inequality 1 < f' < 2. We shall choose the parameters Ch of f; as independent

-n
random variables X,, uniformly distributed on the interval ]X l <kl2 kK More-
over, we shall prove, in Part B, that the (Xp) yielding an acceptable function f + fj

have probability (product measure) at least 1 - exp 6k%- 2(2a—1)nk, for some &> 0.
There is an exceptional set for each f and ¥, but our estimate on |UJ* | shows that
most (Xp) are effective for this f and all of UJ?k . Thus, the asserted estimate of
probabilities assures the existence of a good function f +f; in Ccl, with

|| f, || = 0O(k-1), and therefore W; is a dense Gg-set in W, and Theorem 1' follows.

B. We write Y(p, q) for the event
“Dk+1
|£(x,) + X, - Fi(xg) +X)| < K;2 ;

we have seen that, among events actually possible, p is determined by q. These
events we now arrange into two chains, beginning with an arbitrary p;, and enumer-
ating all Y(p;, q,) (1 £ v<Q;). Next we enumerate Y(p;, qp) (Q; <v <Qy),
subject only to the rule that p,, shall not have occurred previously as first or
second coordinate. This process is extended as far as possible, and then applied
anew to the events Y(p, q) not selected in the first chain; plainly, each p, occurs
only once in the events Y{p, po), and hence the second application of our process
exhausts all possible events Y(p, q).

Let Y(p,,) = U Y(Pm, 9p) Qm-1 <V £ Q) in the first chain. The variable
X, occurs in none of the events Y(py) (1 < £ <m), so that the conditional probabil-
ity of Y(p,,), relative to the field generated by Y(pg) (1 < £ < m), does not exceed

Ton S (Qpy = Q1)K 2 "ktl.go"k | Thyg, if Z,, is the indicator of the event

Y(p,,) and Z = 2 Z., (summed on the first chain), the calculus of conditional
probabilities yields a bound for the expectation

E(ZZ) < II (1 +7Tm) < expznm < exp kKj.zk.znkz-nk+l )

m

Thus
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n -n
P{Z>%Nk} < expkK;-2¥-2 K3 k“exp(—%(log 2)'Nk) < exp (-6Ny),

2a -1
because Ny = k22( @-1)ngy while k +nyk - nk+1 < 2nk - nk+1 < (2a - 1)nk+] for k

in T. A similar estimate holds for the events in the second chain, and the bound
2 exp(-6Ny) is within the limits set for the construction of fy. This concludes the
proof of Theorem 1'. :

We used the inequality 1 < f' <2 only to obtain an inequality
|i(x) - £(y)] > c|x-y|

for points x and y in B; for a C!-function f, this means precisely that f is one-to-
one on B and f' # 0 on B. Because B is totally disconnected, the set {f: fe Cl,
f' # 0 on B} is open and dense in C![0, 1]; using the covering of B by intervals
I,, we can easily prove that the functions that are one-to-one on B form a dense
Gg-set in C1[0, 1]. Thus the inequalities 1 < f' <2 and (even more plainly)

-2 < £ <2 can be omitted (compare this with the argument in [5]).

2. A compact set E of Hausdorff dimension o <1 is a Salem set if E carries
a probability measure p whose Fourier-Stieltjes transform [ fulfills the condition

|6@)| = o(Ju|-©) for each ¢ < a/2.

The condition |fi(u)| = O(Ju| ) in any case implies that dim E > 2¢, so that Salem
sets are extremal ([2], [3], [9]).

THEOREM 2. For each « in (0, 1), there exist a set E of dimension o and a
probability measure X in E such that S et () (dx) = O(|u| =©) for every
E

c < a/2 and for every C*-function. ¢ with positive devivative. Consequently, each
transform ¢(E) is a Salem set.

No example is known of a Salem set lacking the stronger property claimed here,
and probabilistic techniques seem unsuited for constructing such a set. It is known
that even quadratic polynomials ¢ can change the behavior of Fourier transforms,
so that Theorem 2 could not be proved by studying only x.

A. In the following estimations, h is a function of class C°°(~00, ©), vanishing
outside of (-, ©), while S is a bounded subset of CX[0, 1] for some integer k > 1,
whose members satisfy an inequality f' > c > 0 on [0, 1]. It is convenient to write
e(t) = eit, for real numbers t.

1
LEMMA 1. The estimate S e(uf(rt)) h(t) dt = O((xru) ! -X) noids uniformiy for t

0
in S, 0<r <1, ~o<u<eo,

Proof. Let F be the function inverse to an assigned function f in S, so that ¥
is defined on [£(0), £(1)]. The derivatives of all functions F, up to the kth derivative,
are uniformly bounded by virtue of the hypotheses on S. The integral can be written
as

f(r)

S " e(ui(s)hr-!s)ds = r-1 (e ne Fo) P ay.
0 i(0)
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Now h(r-!F(y)) is of class CX and vanishes with its derivatives up to order k - 1

at the extremes y = £(0) and y = f(r). Its derivatives of these orders are O(r!-k),
uniformly for f in S, and the bound O(1) holds for the derivatives of F'. Integrating
by parts k - 1 times, and using the vanishing of the derivatives (and Leibniz’s rule),
we obtain a bound r-1(f(r) - £(0)) O((ru)!-¥) = O((ru)l-k).

From now on, write Ny = 2k! for k = 1, 2, 3, -+, and define ryi so that
rg(Nl "'Nk-l) =1 and r;= 1. The set E will be a vector sum S1 + e+ S+ - in
which Sy, has Ny elements and Sy C [0, ri]. Then

E C Sy+ - +8k+[0, 2ry4y],
and thus E has dimension at most @, since (2ryi;])*Nj--Nr < 2. To choose the
sets Sy, we take a double array (Yy, m) of independent random variables with den-
sity h(t)dt (1 <k <, 1 < m <Ny), choosing h so that h > 0 and S hdt = 1. Then
X m = 'k Yi ms A is the probability uniformly distributed over the Ny points
3 b4 [o%)

k
X1 m: and E is the closed support of the measure II Ay
1

LEMMA 2. Let 0<b<pB<a and p>2(8-b)", and let T be a bounded sub-
set of CP[0, 1]. Let k = k(u) be defined for large numbers u by the inequality
Nk > uP > Ny.1. Then it is almost certain that

Ije(uf(t))hk(dt) - Se(uf(rkt))h(t)dt’ < u-b/2

for all £ in T and all u > u, (a random number).
Proof. Corresponding to a specified u > 0, let T* be a finite subset of T large

enough to afford approximation, uniform within -;—u”lu"b/ 2. The size of T* is then

bounded by exp CuS, with s =p-! (1 + %b) . We shall obtain an inequality

lj - S' < %u‘blz valid for all f in T¥* and this will yield the weaker inequality
for all f in T.

Let I, be the real part of the integral ‘g e(uf)dry, and m; the real part of its

expectation, written above. Standard estimates from probability theory yield the in-
equality

E(y|m, -I;]) < 2 (exp -;—yZNl;l) (exp By3N1;2) ,

uniformly for real numbers y in [0, Nx]. Choosing y = él—u“b/sz, we obtain a

bound

P (lm1 -1, > %u'b/Z) < 2exp(-6uPNy),
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for some 6 near 1/8. Applying the same estimate to the imaginary parts, and ob-
serving that u'ka_>_ uP-b while s =p-! (1 +%b) < 2p-l < B - b, we obtain our

lemma for integers u, and indeed for the sequence u = n!/2. But it is now clear
that we can extend our inequality over the intervals [n!/2, (n +1)!/2], whose length
is less than n-1/2 because b < 1.

B. For the proof of Theorem 2, suppose that f is of class C” and £'> 0 on an
interval containing E. Let b <8 < &, and let Ny be chosen as in Lemma 2, while

iy is the cofactor of Ay in the product II Ak . Now

l Se(uf(t))h(dt)l < sup

S e(uf(t + s))x k(dt)l ,

where s belongs to the support of uj), hence to E. Applying Lemma 2 to the func-
tions t — f(t +s) (s € E, 0 <t < 1), we obtain an estimate

u'b/2 + sup

{ etuttect +s)n) dt' .

To complete the proof, we need only a suitable upper bound for the supremum on the
right; because f € C* and f' > 0, it is sufficient (by Lemma 1) to have
logu - log ri. > 6 log u for some 6 > 0.

In fact, log ry = o l(1+2+--+(k-1)1)log2, and (k - 1)!1log 2 < B log u.
Hence log ri > -a~1a(1+0(k 1)) log u, while 0 <8 < a.

C. The set E has the special property that there exists a sequence {R::} tend-

ing to 0 such that E is contained in O(Rl'{a) intervals of length R, . However, the

sequence {Rk} must be very sparse, while for the Salem sets constructed in [2,
Chapter 15], [3, Chapter 8], and [9] the condition holds uniformly for 0 <R < 1. A

final observation: in the formula r % = N, ---N, _,, the omission of the factor Ny

is decisive; in most constructions concerned with Hausdorff dimension, Ny is con-
stant, and this point can be ignored.
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