AN INVARIANT-SUBSPACE THEOREM
Carl Pearcy and Norberto Salinas

1. INTRODUCTION

Throughout this paper, & will denote an infinite-dimensional, separable, com-
plex Hilbert space, and £(s#) will denote the algebra of all bounded linear opera-
tors on . Recall from [5] that an operator S in () is quasitviangular if
there exists an increasing sequence {Pn }::l of orthogonal projections of finite rank

on ¢, converging strongly to 1, such that
(1) |P,sP, -SP,|| — 0.

Such a sequence {P,} satisfying (1) will be said to implement the quasitriangular-
ity of S.

It is not known whether every quasitriangular operator has a nontrivial invariant
subspace. The problem is important, because all quasinilpotent operators and all
operators with compact imaginary part (acting on a separable space) are quasitri-
angular [4], [6]. Some invariant-subspace theorems concerning quasitriangular
operators have been proved [1], [2], [3]. Perhaps the most interesting of these
theorems is the result of W. B. Arveson and J. Feldman in [2], which asserts that if
S is a quasitriangular operator in £() and there exists a sequence of polynomials
pn(S) that converges in the norm topology to a nonzero compact operator, then S has
a nontrivial invariant subspace.

The principal purpose of this note is to prove a generalization of this funda-
mental theorem. In order to state our main result, we introduce the following termi-
nology and notation. If T € £(o# ), we denote by #(T) the subalgebra of £(¢) that
is the uniform closure of the set of all polynomials in T. Furthermore, we denote
by #(T) the subalgebra of #(o¢) that is the uniform closure of the set of all
rational functions of T (a rational function of T is an operator of the form
p(T)[q(T)]"!, where p and q are polynomials). It is well known that #(T) coin-
cides with the uniform closure of the algebra of all analytic functions of T. For this
reason, a subspace ./ of o is called an analytically invariant subspace for T
(see [6]) if it is invariant under every operator in #(T). In general, an invariant
subspace -4 of an operator T need not be an analytically invariant subspace for T.
In fact, it was shown in Lemma 2.2 of [6] that an invariant subspace .« of T is
analytically invariant for T if and only if the spectrum of T | ¢ is contained in the
spectrum of T.

Our principal result is the following theorem.

THEOREM 1.1. Let S be a quasitviangulay opevatov in (o), and suppose
that the algebra F(S) contains a nonzevo compact opevator. Then S has a nontvivial
analytically invariant subspace.
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The proof of this theorem requires some preliminary propositions, and thus we
do not give it until Section 3. We remark now that it is an easy consequence of the
maximum-modulus principle that if the spectrum of an operator T separates the
plane, then the algebra #(T) is strictly larger than the algebra £(T). Thus Theo-
rem 1.1 generalizes the fundamental theorem of Arveson and Feldman, because the
compact operator involved may belong to #(T) \ #(T). Of course, the second direc-
tion in which Theorem 1.1 improves the Arveson-Feldman theorem is that the in-
variant subspace produced by Theorem 1.1 is analytically invariant. In Section 4,
we give a specific example that illustrates these improvements.

Finally, we mention that this paper was written in the Spring of 1971 and was
presented at the Operator Theory Conference in Durham, New Hampshire, in June,
1971. Subsequently, the paper [7] of P. Meyer-Nieberg appeared, in which part of
Theorem 1.1 is proved. Because of the differences in the techniques employed in
our paper and in [7], we have chosen to publish the present paper in its original
form.

2. INVERTIBLE QUASITRIANGULAR OPERATORS

Our program to prove Theorem 1.1 begins with a discussion of a certain class
of invertible quasitriangular operators. An operator T in Z() is said to be

triangular (see [5]) if there exists an increasing sequence {P_}%_; of finite-rank
projections on <, converging strongly to 1, such that

(2) P,TP,=TP, (n=12, ).

Such a sequence {P,} will be said to implement the triangularity of T.
Our first lemma is elementary.

LEMMA 2.1. Let T be an invertible triangular opevator on o, and suppose
that {Pn} is a sequence of projections implementing the tviangularity of T. Then
T-1 s triangular, and {Pn} also implements the triangulavity of T-1. Further-
move, if we set A =P, H (1 <n <), then for each n, T | M, is invertible and
(T| ) t=1"1 .

The following theorem was discovered by P. R. Halmos in 1967, but it has thus
far remained unpublished. We are grateful to Halmos for allowing us to include it
here.

THEOREM 2.2. Let S be a quasitviangulay opevator on o, and let {Pn} be a
sequence of projections implementing the quasitviangularvity of S. Then for every
positive number €, theve exist a trviangular opevatov T, a compact opevator C, and
a subsequence {Pnk} of the sequence {P_} such that S=T +C, |[C| <&, and

{Pnk} implements the triangularvity of T. In pavticular, if S is invertible, then T
may be chosen to be invertible also.

Pyroof. Choose a subsequence {Pnk} of the sequence {P_} such that

o0

27 s Py, - Pn SP, || <e.
k=1
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For k=1, 2, -+, write Ci = (1 - Pnk)S(Pnk - Pn,

operator Pnk - Pnk L has finite rank, C, has finite rank. Furthermore, if x be-

), and set P, 0= 0. Since the

longs to the null space of Pnk L then

Cx = (1- P, )SP, x = (SP, - P, SP, )x,

and if x belongs to the range of P
ICll < 8Py, - Po 5P, |-

operator topology. If we write C = Ek Cy, then clearly ” C” < g, and since each
Cyx has finite rank, C is compaect. Furthermore, the operator T =S - C satisfies
the relation PnkTPnk = TPnk (k=1, 2, +--), and hence T is triangular. The as-

Ny _1° then Cpx = 0. It now follows easily that

Thus the series Ek Cy. converges in the uniform

sertion that T may be chosen to be invertible follows easily from the inequality
|8 - T|| <& and the fact that the invertible operators in #( ) form an open set in
the norm topology.

Before stating the next lemma, we introduce some notation that will be used
several times in the sequel. Throughout the remainder of the paper, we shall fre-
quently be concerned with a fixed increasing sequence {Pn}::  of finite-rank pro-
jections that converges strongly to 1. If S is an operator in () and such a se-
quence {Pn} is under consideration, we shall write S(n) for the operator
P,S | P, o (that is, S(n) is the compression of S to the subspace P, ). In par-
ticular, 1., is the identity operator on the space P, . It will also be convenient
to have a notation for the operator 1 I (1- Pn) o ; thus we shall write
1oy = 1] (1- Py o.

The following lemma is central to our purposes.

LEMMA 2.3. Let L be a compact operator on H such that A =1+ L is in-
vertible, and suppose that {Pn} iS an increasing sequence of finite-vank projections
that converges strongly to 1. Then, for n sufficiently large, A(y,) is invertible, and
| [A(n)]'1 - [A’l](n)” — 0. Furthermove, if {B,} is any sequence of invertible
opevators such that B, € 2(P, #) (1 <n <) and |B, - Ayl — 0, then also
[(B)! - [Am)] ] —o.

Proof. 1t is well known (see [3, Prop. 6.3]) that the sequence {1+ P, LP,}
converges to A in the uniform topology on Z( <#), and it follows that for n suffi-
ciently large, 1 + P, L P, is invertible. Since 1+ P,LP, =A(,) @ lin) , we con-
clude that for n sufficiently large, A(,) is invertible. We have seen that
I [A ()@ 1(,)] - Al = 0; thus, by continuity of the inverse mapping,

(3) A @1,)]-27" - 0.

Since A-! obviously has the form Al=1+ M, where M is compact, a repetition of
the first part of the argument above shows that

(4) " [[A—l:l(n) @ 1;n)] = A_IH — 0.
It follows immediately from (3) and (4) that

” [A(n)]_l - [A—l](n)” — 0.
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To prove the last assertion of the lemma, observe that

B, @1y - [Am) @1l — 0,

and thus, by continuity of the inverse mapping,

1B @1y - [Am] @ 1)l — 0,

from which it follows immediately that ||(B,)~! - [A ]! | —o.

The following theorem might well be regarded as the fundamental observation
upon which the proof of Theorem 1.1 depends.

THEOREM 2.4. Let S be an invertible quasitrviangulay operatov on o, and let
{Pn} be a sequence of projections implementing the quasitviangularity of S. Then

s-! is quasitriangular, and there exists a subsequence {Pnk} of the sequence
{P_} with the properties
. ey . -1
(a) {Pnk} implements the quasitriangularity of S,
(b) for 1 <k < oo, S(nk) is invertible, and
. ~1 -1
c) lim S - 18 — 0.
(c) Jim I (nk)] [ ](nk)”

Proof. Let € > 0 be chosen so small that every R satisfying the condition
”R - S| < ¢ is invertible. By Theorem 2.2, there exist a subsequence {Pnk} of

{P_} and a triangular operator T such that {Pnk} implements the triangularity of

T and such that C =S - T is compact and satisfies the condition |[C| <e&. Since T
is invertible, we may write S = T(1+T-1C) and also S-1=(1+T-1Cc)-1T-!. By
Lemma 2.1, T-! is triangular and {Pnk} implements its triangularity. Since

(1+T-1c)! is of the form 1+ M, where M is compact, we have the relation
Sl=1+MT1=T-14+MT-!. Thus, since MT"! is compact, and since every
increasing sequence of finite-rank projections tending to 1 implements the quasitri-
angularity of a compact operator, S-! is clearly quasitriangular with implementing
sequence {Pnk} . Using the fact that T is triangular relative to the sequence

{Pnk}, we deduce that

- -1 — -1
Sing = [A+CT )Ty = AHCT I ) Ty -

It now follows from Lemmas 2.3 and 2.1 that for sufficiently large k, (1 +C T“l)(nk)
and T(nk) are invertible. Thus S(nk) is invertible for sufficiently large k; by
discarding the first few terms of the sequence {Pnk} and changing the notation ac-
cordingly, we complete the proof of (b).

To establish (c), we first show that
-1 -1
(5) Il [T ()] Ciny) - [T C](nk)“ — 0.

To accomplish this, it suffices to note that [T(nk)]‘l = [T 1 by Lemma 2.1,

and to show that

(nk)
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(6) IankT‘ankCPnk - PnkT'ICPnkll — 0.

But the validity of (6) is an immediate consequence of the fact that

I==t |2, CcP, -CP, |~ 0.

Thus (5) is established. Observe now that

[S"l](nk) = [(1 +T‘lC)'lT"l](nk) = [(1+T'1C)'1](nk) [T'l](nk)

=[(1+1! C)_l](nk)[T(nk)]_l ’

and that
Sl ™ = AT L F [Tl ™ Cingg? ™ = Mgy + [T )] a1 T iy -
It follows that
I [S"l](nk) - [S(nk)]'ln < It e +T'IC)'1](nk) Ayt [T(nk)]_l C(nk)]'lll .
Thus, to complete the proof of the theorem, it suffices to show that

1@ +T ) iy - [y +[T(nk)]'lc(nk)]‘1n -0,
or, equivalently, by Lemma 2.3, that
(7) {2y + [T Cliny )] 7! = [Lng) + [Pl Canpg] ™ — 0
But we know from (5) that

I [1(ny) +[T-1C](nk)] - [1(nk) +[T(nk)]‘1C(nk)]|| — 0.

Therefore, employing Lemma 2.3 again, we conclude that (7) is valid, and thus the
proof of the theorem is complete.

The following lemma has been known for some time.

LEMMA 2.5. Let {P,} be any sequence of projections in 2( ), and let
QU{P,}) denote the set of all operators S on # such that |(1 - P,)SP,|| — 0.
Then Q({P,}) is a uniformly closed algebra of operators.

Proof., The only thing that is not obvious is that the product of two operators in
Q({P,}) is again in Q({P,}). To establish this, let S1, Sz € Q({P,}), and observe
that

|s,P,8;P,-8,8,P,| - 0 and |P,S,P,8;P, -P.S,5 P — 0.

Since S, € Q({P,1}), it follows easily that [|[(P,S, P, - S P,)S; P,|| — 0, and hence
that |P_ S,S,P, - S,8; P, || — 0, as desired.

The following theorem plays a central role in the proof of Theorem 1.1.
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THEOREM 2.6. Let S be a quasitriangular operator in 2( ), and let {2;}52,

be a fixed sequence of scalars in the resolvent set of S. Then every opevator in
R(S) is quasitriangular, and there exists an increasing sequence {P,} of finite-
rank projections on < tending stvongly to 1, with the propevties

(a) {pP ot implements simultaneously the quasitriangularity of every operator

in Q?(S)
(b) (S - hj)(n) is invertible for n=1,2, - and j=1, 2, **, and
(c) lim " [(s - hj)(n)]-l - [(s - Kj)'l](n)” =0 (1<j <),
n—oo

Proof. Let D be a countable dense subset of the resolvent set of S containing
the sequence {X;}, and let {uy}k=) be an enumeration of the elements of D. Since
S is quasitriangular, there exists an increasing sequence {Q,}%.; of finite-rank
projections tending strongly to 1 that implements the quasitriangularity of S. For
convenience, we write Q,= Qko,n (1 <n < ). Since {Qko n};c’:l also implements
the quasitriangularity of S - u;, it follows from Theorem 2.,4 that there exists a
subsequence {le n}fﬂ of {Qko n} possessing the properties

(a;) {le n} implements the quasitriangularity of (S - ,u,l)‘l ,

(by) (8 - ul)(k _) is invertible for n = 1, 2,
-1 -1 _
(Cl) lim ” [(s - Hl)(kl )] - [(s - .Ul) ](kl n)" = 0.
n—o ’
Since {le n} also implements the quasitriangularity of S - ., another applica-

tion of Theorem 2.4 yields the existence of a subsequence {ka n} of {le n}

possessing properties (a), (b), and (c) of Theorem 2.4 for the operator S - p,. Con-
tinuing in this manner, we obtain for each positive integer j a sequence {Qk }

that is a subsequence of {Qk In } and that satisfies the conditions
-

(aj) {Qy, } implements the quasitriangularity of (S - ,uj)'l ,
),
(bj) (S - “')(k- D is invertible for n=1, 2, :--,
(c) Lim [[[S - pda, )17 - 168 - 1) ol = 0.
n — 0 !
Letting {Pn} be the diagonal sequence defined by P, = an o We see that condi-

tions (b) and (c) in the statement of the theorem are satisfied. Also, using Lemma
2.5 and the elementary fact that #(S) is the smallest uniformly closed algebra con-
taining the operators 1, S, and (S - )1 (k=1, 2, +--), we conclude that (a) is
valid. This completes the proof of the theorem.

3. ANALYTICALLY INVARIANT SUBSPACES
There is a technique that is now standard for constructing two invariant sub-

spaces for an arbitrary operator on s#. This technique originated with N. Aronszajn
and K. T. Smith [1], and it has been refined several times--most recently in [3]. The
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following lemma, is the cornerstone of this technique. We omit the proof of the
lemma, since the arguments involved are similar to those in the proof of [3, Theo-
rem 1].

LEMMA 3.1. Let R € Z(<#), and let {Q,} be a sequence of projections on
o converging weakly to an operator Q such that {Q,RQy, - RQ,} tends weakly to
zevo. Then the subspaces {x: Qx = x} and [range Q] are invariant subspaces
Jor R.

The difficulty connected with using the preceding lemma to produce invariant
subspaces for an arbitrary operator R on <¢ is that, in general, the subspaces in-
volved may be simply {0} and o#. Thus, to force one of these subspaces to be
nontrivial, we must make restricting assumptions on the operator R. Henceforth, in
this section, S will be a fixed quasitviangulayr operator on ', and {Pn} will be an
incrveasing sequence of finite-vank projections converging stvongly to 1 that simul-
taneously implements the quasitviangularity of every operator in R(S). Further-
move, we suppose (Theovem 2.6) that {Ai}?zl is a dense subset of the resolvent
set of S with the property that

lim [[[(S - 2) )™ - (8- 2) iyl = 0 (1 <i<),

The above-mentioned standard technique for producing invariant subspaces now
proceeds as follows. Let u and v be orthogonal unit vectors in the range of P,
(which may be assumed to be at least two-dimensional, without loss of generality),
and let p be the normal state on Z( o) defined by the equation

p(A) = %(Au, u)+%(Av, V).

An easy calculation shows that p(1) = 1 and that p(E) < 1/2 for every projection E
of rank one in (o). It is now easy to show that for each positive integer n there
exists a subprojection Q, of P, satisfying the conditions 1/4 < p(Q,) < 3/4 and

(8) Q(P,SP,)Q, = (P,SP,)Q,.

Furthermore, by dropping down to corresponding subsequences of the sequences
{P,} and {Q,} and changing the notation, we may assume without loss of gener-
ality that the sequence {Qn} converges weakly to a positive operator Q. The weak
continuity of p implies that 1/4 < p(Q) < 3/4, and thus that Q is neither 0 nor 1.

The following elementary lemma now becomes pertinent.

LEMMA 3.2. If Q is an opevatoy on o such that 0 + Q # 1, and if theve
exists some opevator K # 0 in L(H') such that QKQ = KQ, then one of the sub-
spaces {x: Qx =x} and [range Q)™ must be different from both {0} and #.

Proof. Since 0 # Q # 1, we see that [range Q]” # {0} and {x: Qx=x} # #.
Thus, if the range of Q is not dense in ¢, then [range Q]  has the desired prop-
erty. On the other hand, if the range of Q is dense in <, then the equation
Q(KQx) = KQx, valid for every vector x in &, yields the fact that
{x: Qx =x} # {0}. Thus the lemma is proved.

Our program to prove Theorem 1.1 should now be fairly transparent. We shall
show that with the sequences {P,} and {Qu} and the operator Q associated with
S fixed as above, we can apply Lemma 3.1 to every operator R in #(S). Then we
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shall show that QK Q = KQ, where K is the compact operator given in the statement
of Theorem 1.1. This clearly will complete the proof of Theorem 1.1, via Lemmas

3.1 and 3.2. The somewhat stronger result that allows this program to be carried
out is the following.

THEOREM 3.3. For every opevator R in #(S), lim |QaRQ, - RQyu| = 0.
n

Proof. We know by Lemma 2.5 that the set of operators R satisfying the con-
dition ” Q,RQ, - RQ, | — 0 is a uniformly closed algebra. Thus, to prove the
present theorem it suffices to show first that

(9) “QnSQn_SQn” - 0;

and second, that for each A; in the countable dense subset {)\i};o: 1 of the resolvent
set of S,

(10) lQus - 2)71Qu - (s-2)7' Q] — 0.
To establish (9), we observe that Q.S Qn = PnSQn, by (8), and also that
|PnSQn - 8Qu| < [PuSPa- 8P| |Qa] — 0.

This proves (9). To establish (10), let X; be a fixed scalar in the given countable
dense subset {Ai }io: ; of the resolvent set of S, and note that since the sequence
{Pn} implements the quasitriangularity of (S - xj) '1, we have the relation

-1 -1 -1 -1 '
” Pn(s N )Li) Qn - (S - hi) Qn” _<_ ” Pn(S - >ti) Pn - (S - )\i) Pn” "Qn“ - 0;
thus, to establish (10) it suffices to show that
- -1
(11) ” Qn(s - hi) lQn - Pn(S - >‘i) Qn” — 0.
To see that (11) is valid, recall that we chose the sequence {P,} so that

tim (S - 2] -6 -2 Tyl =0 (A<i<=),

and then observe that
1@, - Q)6 - 1) Qu] = (P - Q) Pu(S - 1) P, Q.
= (P - QWIS - 1) () Qul
< NS = 20 gy = 16 = 2 )] T+ 1Py - QU IS - M) oy) T Qull-
Now [|[(S - 2:) My - [(8 - 2)m)] ' || = 0, as we noted above. Moreover,
Qul(S = 29 ()] ' Qn = Pl - 2 m)] ' Qn

since the inverse of an operator on a finite-dimensional space is a polynomial in the
operator and Q, is an invariant projection for P,S P, . Thus (11) is established,
and the proof is complete. :
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The proof of Theorem 1.1 is now within our grasp. We postpone it briefly to
make the observation that the technique for producing invariant subspaces discussed
in the present paragraph actually produces analytically invariant subspaces for
quasitriangular operators.

THEOREM 3.4. Let S be a quasitviangulay opevator, and let {Pn}, {Qn}, and
Q be as in the discussion preceding Lemma 3.2. Then {x: Qx =x} and [range Q]
are (pevhaps trivial) analytically invariant subspaces of S.

This is an immediate consequence of Theorem 3.3 and Lemma 3.1.

Pyoof of Theovem 1.1. Let S be the prescribed quasitriangular operator, and
let {P,}, {Q,}, and Q be as described in the discussion preceding Lemma 3.2.
Also, let K be a nonzero compact operator in 92(S). By virtue of Theorem 3.4, we
need only show that one of the subspaces {x: Qx = x} and [range Q]  is a proper
subspace. From Theorem 3.3 we know that " Q. KQy, - KQnH — 0. Since the se-
quence {KQ,} converges weakly to K@, and since the sequence {Q,KQ,} con-
verges weakly to QK Q (see [3, Corollary 2.2]), we have the equation QKQ = KQ.
Thus the proof is completed via Lemma 3.2.

It is worth remarking that our proof uses the compactness of K only in estab-
lishing the weak convergence of the sequence {Q.KQ,} to QKQ.

Just as [3, Theorem 2] is slightly stronger than the fundamental theorem of
Arveson and Feldman, the following result is slightly stronger than Theorem 1.1.

THEOREM 1.1'. Let S be a quasitriangulay opevatov on K, and suppose that
theve exist sequences {Rp} and {Kn} in L(H) such that

(a) each R, belongs to #(S) and ” R, - Kn” — 0, and

(b) each K, is compact and the sequence {K,} converges weakly to a nonzero
operator.

Then S has a nontrivial analylically invaviant subspace.

We can easily obtain the proof of this theorem by blending the proof of Theorem
1.1 and the proof of [3, Theorem 2]; we leave the details to the interested reader.

4. SOME EXAMPLES

In this section, we make some remarks and give some examples pertinent to
Theorem 1.1. The spectrum of an operator T will be denoted by A(T).

We note first that if T is an operator such that A(T) is not connected, then T
obviously has nontrivial hyperinvariant subspaces. On the other hand, it is an im-
mediate consequence of Runge’s theorem that if A(T) is connected, then A(T) does
not separate the plane if and only if #(T) = #(T). Thus, in order that #(T) \ £(T)
be nontrivial, it is necessary that A(T) separate the plane. Moreover, if A(T) is
connected and #(T) contains a nonzero compact operator K, then K is necessarily
quasinilpotent. (Otherwise, A(K) would be disconnected, and it would follow from [8,
Theorem 3] that A(r(T)) is disconnected for some rational function r(T) of T suffi-
ciently close to K; via the spectral mapping theorem, this would contradict the con-
nectedness of A(T).)

Our remarks show that it is worthwhile to exhibit a quasitriangular operator S
whose spectrum is connected (and necessarily separates the plane) with the property
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that #(S) contains no nonzero compact operator but #(S) does contain a nonzero
compact operator.

Example 4.1. Let M be a nonzero compact operator on & such that M2 =0
and let N be any normal operator on & such that A(N) = {x € C: 1< |>\| <2%.
Then define S € Z(o () o) to be the operator S = (1 + M) @ N. Since S is the
sum of a normal operator (1 (@ N) and a compact operator (M@ 0), it follows (see
[5]) that S is quasitriangular. Furthermore, it is easily seen that A(S) = A(N) and
that S-1=(1- M) @ N-!. Thus, for every positive integer n, S™=(1 - nM) D N2,
It follows immediately that

>

lim |s™/(-n) - M®O0)| = 0,

and hence that the nonzero compact operator M (P 0 belongs to #(S). On the other
hand, if K is a compact operator in £(S), then K must be of the form K=K ;@ K>,
where K; and K, are compact operators on & and K; is normal. Moreover, if
K, were different from 0, then the spectrum of K, would be disconnected, which
would contradict an earlier remark (since K; € #(N) and A(N) is connected). Thus
K2 = 0. Now let {p,(A\)} be any sequence of polynomials such that |p,(S) - K| — 0,
and observe that ||pp(N) - K;|| = || po(N)|| — 0. It follows from the spectral- mapping
theorem and the maximum-modulus principle that the sequence {p,(A)} converges
uniformly to zero on the disc {A: Ih] < 2}. Furthermore, elementary complex
analysis shows that in this situation the sequence { pil(h)} converges to zero uni-
formly on every disc {r: |»| <2 - €} (£>0). In particular, the sequence {p,(1)}
tends to zero. This is pertinent, because an easy calculation shows that for every
positive integer n, py(S) = (pu(1) + py(1) M) P p,(N), and hence that Il pn(S)” — 0.
Thus K = 0, and we have shown that the operator S has all the properties attributed
to it above.

It is not completely obvious that an operator T with the property that #(T) con-
tains a nonzero compact operator can fail to be quasitriangular. However, this turns
out to be the case, as the next example shows. In other words, in Theorem 1.1 we
can not light-heartedly discard the hypothesis of quasitriangularity.

Example 4.2. Let U € 2(o#) be the unilateral shift of multiplicity 1, and let M
be as in Example 4.1. Then T =(1+ M) @ U is not quasitriangular, since it is a
Fredholm operator of negative index [4, Theorem 1]. However, it is easy to see that
| (T%/n) - (M@ 0)|| — 0, and hence the nonzero compact operator M@ 0 belongs to
2(T).

It is not difficult to see that if <« is a nonseparable complex Hilbert space, then
each T in 2(2¢ ) has a nontrivial analytically invariant subspace. One needs only
observe that each cyclic subspace generated by the algebra #(T) is a separable sub-
space of &, since #(T) is itself a separable Banach space.

REFERENCES
1. N. Aronszajn and K. T. Smith, Imvariant subspaces of completely continuous
opevators. Ann, of Math. (2) 60 (1954), 345-350.

2. W. B. Arveson and J. Feldman, A note on invariant subspaces. Michigan Math.
J. 15 (1968), 61-64.



AN INVARIANT-SUBSPACE THEOREM 31

3. D. Deckard, R. G. Douglas, and C. Pearcy, On invarviant subspaces of quasitvi-
angular operators. Amer. J. Math. 91 (1969), 637-647.

4. R. G. Douglas and C. Pearcy, A note on quasitviangulay opevators. Duke Math.
J. 37 (1970), 177-188.

5. P. R. Halmos, Quasitriangular opevators. Acta Sci. Math. (Szeged) 29 (1968),
283-293.

6. D. Herrero and N. Salinas, Analytically invaviant and bi-invariant subspaces
(to appear).

7. P. Meyer-Nieberg, Quasitviangulierbare Opevatoven und invaviante Untevvekior-
raume stetiger lineavev Opevatorven. Arch. Math. (Basel) 22 (1971), 186-199.

8. N. Salinas, Operators with essentially disconnected spectrum (to appear).

The University of Michigan
Ann Arbor, Michigan 48104






