LIMITS OF NILPOTENT AND QUASINILPOTENT OPERATORS
James H. Hedlund

The structure of the set of nilpotent operators on an infinite-dimensional Hilbert
space is still incompletely described. Many natural questions, suggested by finite-
dimensional results, remain to be answered. One such question, raised by P. R.
Halmos [2, Question 7], asks for a description of the closure of the nilpotent opera-
tors in the uniform operator topology. In this paper, we show that most self-adjoint
operators are not limits of nilpotent or quasinilpotent operators, but that many inter-
esting (and not quasinilpotent) weighted shifts are. The results suggest that a simple
characterization of the closure of the nilpotent operators may be difficult to dis-
cover.

Throughout this paper, H will be a separable complex Hilbert space, usually in-
finite-dimensional, and an operator will be a bounded linear transformation on H.
We shall denote by .# the set of nilpotent operators on H (all operators S with
Sk = 0 for some k), by 2 the set of quasinilpotent operators (all S with
r(S) = lim ||sk[|1/k =0), and by «#~ and 2~ the respective closures in the uniform
operator topology. If H is finite-dimensional, then A4~ = " = 2 = 27 in general,
J is properly contained in 2. It is still unknown whether 2 C 4 ~. We follow the
notation of [1, p. 37] for the various parts of the spectrum of an operator: A will
denote the spectrum, Iy the point spectrum, II the approximate point spectrum, and
I" the compression spectrum.

1. SPECTRAL PROPERTIES OF 4/~ AND 2~

Since the quasinilpotent operators are precisely those whose spectrum is the
single point {0}, the problem of characterizing 2~ is that of describing which
operators can be approximated by operators with spectrum {0} . Clearly, the spec-
tral radius is discontinuous near such operators. It is thus natural to expect that
spectral properties will give partial and incomplete information about 2~ . Note that
it suffices to investigate operators of norm 1, since 4/ and 2 are closed under
multiplication by scalars.

PROPOSITION 1. If T is bounded below by ¢, then
AT, 2) = inf{||T-8|:5¢ 2} >¢.

Proof. If S is quasinilpotent, then 0 € II(S). Thus there exists a sequence of
vectors {x,} with ||x,[| =1 and ||Sx,|]| = 0. Hence

€ - Sl > 1T - [I5%al > € - 8l = ¢,

so that | T - 8| > .

COROLLARY 1. If T is invertible, then T ¢ @ . Equivalently,if T € 2~
then 0 € A(T).
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COROLLARY 2. If T is an isometry, then d(T, 2) = 1.
PROPOSITION 2. If T € 27, then A(T) = I(T).

Proof. If 0 # » € A(T) \ II(T), then, by the semicontinuity of A(T) \ II(T) [3,
Theorem 3], A € A(S) \ II(S) for all S sufficiently near T. Thus S camnot be quasi-
nilpotent, and T ¢ 2. Since II(T) is closed and II(T) D bdy A(T), the same con-
clusion holds for A = 0.

The best-known operators that satisfy the conditions of Propositions 1 and 2 are
the noninvertible normal operators. It is clear that there are no nontrivial quasi-
nilpotent normal operators, and the results of the remainder of this section suggest
that there may be no normal operators in 2~ either.

PROPOSITION 3. If 0 # P is a projection, then d(P, 2) > 1/4.

Proof. If P =1, then Corollary 2 applies. Otherwise let K be the range of P,
and let T be any operator with |P - T| =& < 1/4. We shall show that T ¢ 2, by
finding a lower bound on | T"x|| for x € K. Write H=K@®K™", and write

I O A C
b - ()
0 O B D
relative to this decomposition. Thus ||I- A|| <& and B, C, and D each have norm
at most €. Let P+ =1- P.

Let x € H with ” Px” > || PLx". We begin by proving that
x| >2712(1 - 2¢)| x|

and that | PTx| > || P* Tx|. Indeed, the inequalities

laPx]| > [|1px| - [|(1- A)Px| > (1 - e)| Px|
imply that
|Pr2|| = [|APx+CP x| > |APx] - [cP x| > (1 - &)|Px| - €| P" x|
> (1 - 28)|| Px]| .

since |x|? = ||Px|? + |P*x|? and |Px||> ||P'x]|, it follows that
| Px|| >2-1/2 | x|. Consequently, |PTx| >2-1/2(1 - 2¢)| x|, and the first obser-
vation is proved. For the second,

| P+ Tx| = | BPx+DP* x| < |BPx| + [DP* x| <& Px| +&| Pt x|| < 2¢] Px] .

Since £ < 1/4, || P Tx| < 2¢|Px|| < (1 - 28)| Px|| < | PTx|.

Now let x € K with ||x| = 1. By the last paragraph, || Tx| >271/2(1 - 2¢) and
| PTx| > | Pt Tx|. It follows by induction that ||T®x|| > (271/2(1 - 2¢))*, so that
| T 1/m >2-1/2(1 - 2¢) > 0. Thus T ¢ 2.

Let & denote the set of all projections with the exception of the operator 0.
Proposition 3 then asserts that d(#, 2) > 1/4. The determination of the precise
value of d(#, 2) seems difficult, even if H is finite-dimensional. The case of
dimension 2 is tractable, though.
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PROPOSITION 4. If T2 =0 and if 0 #+ P is a projection, then
|p- 7| 22712,

Proof. If T =0, then |lP - TH = 1. Generally let K=ker T and sup/pose that
|P-T| <2-1/2. If xe K and y € K*, then |Px|| = | (P - T)x|| <2712 x| and
Ieyll = |P*yl = (@ - T)*y|| <2-'/2]|ly|. Let z € H with ||z]| =1 and Pz = z.
Write z = x+y, where x € K and y € K*. Since [x]]> + |y[|* =1, it follows that
=l + Iyl <2'/2. Now

1= Pz = | Px+ Py| < | Px| + Byl <272 ()= + v <1,

which is a contradiction. Thus [P - T| > 2-1/2.

COROLLARY 1. If dim H = 2, then d(P, 2) = 2

Proof. A quasinilpotent operator on a space of dimension 2 is nilpotent of index
2; thus Proposition 4 applies. The opposite inequality follows from the example

1 0 1 -1
0 0 1 -1

where T =0 and |P - T| = 9-1/2
COROLLARY 2. If H is a Hilbert space, then 1/4 < (&P, 2) <2-1/2,

Since the estimates used in Proposition 3 are rather crude, it seems likely that
the upper bound obtained for d(#, 2) is more accurate than the lower bound.

PROPOSITION 5. If 0 # P is a projection and ||S|| < 1, then P@S ¢ 2.
Proof. Since [|S| < 1, there exists an integer m such that [s™|| < 1/4. Then

@)™ - @) = [P@s™-P@0| = |57 < 1/4,

and PO is a projection. Thus (P (@ S)™ ¢ 27, by Proposition 3. If P@S e 27,
then there exist quasinilpotent operators T, with T, — P @S. But T} is also
quasinilpotent and TI* — (P (®S)™, a contradiction.

THEOREM 1. If S is self-adjoint with ||S| =1, and if 1 is an isolated point of
A(S%) (= A(S)?), then S ¢ 2.
Proof. By the Spectral Theorem, §2 = S; P S, , where each S; is self-adjoint,

A(S7) = {1}, and ||S; | < 1. Proposition 5 now implies that S%2 ¢ 2~. As in the
proof of Proposition 5, it follows that S ¢ 2.

-1/2

DN =

Note that an improvement in the estimates of Proposition 3 would yield an im-
provement in Theorem 1: every positive self-adjoint operator is within 1/2 of a
projection.

2. WEIGHTED SHIFTS

S. Kakutani used a weighted shift to give the basic example of an operator in
'~ that is not quasinilpotent. We exploit the relatively transparent structure of
weighted shifts to construct a large class of operators in A4~ \ 2.
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If {e,}o is an orthonormal basis for H and if {w,}% is a bounded sequence
of complex numbers, then the equations

We, = wpe,; (n=0,1,2 )

define a (unilateral) weighted shift W. We observe the usual convention that

0 < wp <1 for all n (since any weighted shift of norm at most 1 is unitarily equi-
valent to a weighted shift satisfying these conditions [1, Problem 75]). We will al-
low some weights to equal 0. Proposition 6 summarizes some well-known informa-
tion.

PROPOSITION 6. Let W be a weighted shift with weights {w,}o .

i) W is nilpotent if and only if blocks of consecutive nonzevo weights are
bounded in length: there exists a positive integer k such that each set of indices

{n,n+1, - n+k-1} (n=0, 1,2, ) contains an index j for which w; = 0.
ii) W is quasinilpotent if and only if
k-1 1/n
r(W) = lim sup(H wn+j) = 0.
k n Vj=0

For a proof, see [1, Problem 77].

COROLLARY. If a weighted shift W is quasinilpotent, then blocks of consecu-
tive lavge weights are bounded in length:

Jor every € > 0 theve exists a positive integer kK such that each set of indices
(*)

{n,n+1, -, n+k-1} (n=0,1,2, ) contains an index j for which w;<E.

PROPOSITION 7. If a weighted shift W satisfies (*), then W is the limit of a
sequence of nilpotent weighted shifts. In particular, if W € 2,then W € N ~.

Proof. Given € >0 and W satisfying (¥), let X be the shift with weights {x,}
defined by x,=w, if w, >¢ and x,=0 if w, <e. Then HW - XH < g, and Prop-
osition 6 and its corollary show that X is nilpotent.

Kakutani’s example [1, Problem 87], [4, p. 282] is the shift whose weights are
defined as follows: ‘every second w, is equal to 1, every second of the remaining
w, is equal to 1/2, every second of the remaining w, is equal to 1/4, and so forth.
Thus the shift satisfies (*) and belongs to .#; a calculation shows that its spectral
radius is 1. It is perhaps tempting to hope that the weighted shifts in .#~ are pre-
cisely those satisfying (*). Theorem 2 shows that this is decidedly false.

THEOREM 2. Let V be a weighted shift with weights {v,}o , where v, =0
ov 1 for all n. Define a block of V of length m o be a set of m consecutive in-
dices {n+1,n+2, -, n+m} such that

Vntl = °° = Vntm-1 =1 and vy = vy = 0.

If there exist integers m; such that m; — « and such that for each i the shift V
has an infinite number of blocks of length m;, then V € A4~

Proof. Note that the hypotheses on V assure that || V|| =1 and r(V) = 1; thus V
is not quasinilpotent.
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Let 0 <& <1 be given. Choose an integer k large enough so that (1 - e)k < g2
and so that the shift V has an infinite number of blocks of length k. We shall con-
struct an operator T that is nilpotent of index 2k and satisfies the condition

lv -t =2v2.

Since each v, is either 0 or 1, the index set of the nonnegative integers is
partitioned uniquely into a set of blocks of varying lengths (where a block corre-
sponds to an unbroken sequence of weights of 1 with initial and terminal weights of
0; the terminal index is considered to belong to the block, but the initial index is not)
together with, perhaps, some remaining indices corresponding to weights of 0.
(These .occur whenever there exist two or more consecutive weights of 0.) Let R
be the set of these remaining indices, define Te, = Ve, = 0 if n € R, and define
Te, = Ve, if n belongs to a block of length less than k. The indices where T is
still undefined all belong to blocks of length at least k. Arrange these blocks into
two sequences: let {B; 7 be an enumeration of all blocks of length k, and let
{C;}7 be an enumeration of all blocks of length greater than k. The hypotheses
and the choice of k ensure that both collections are infinite.

Let p(j) be the length of the block Cj and let [ - ] denote the greatest-integer
function. Associate with C; the first [(p(1) - 1)/k] of the blocks Bj;, then associate
with C, the next [(p(2) - 1)/k] of the blocks B;, and so forth. Thus each C; is as-
sociated with [(p(j) - 1)/k] of the blocks B;, and each B; is associated with one
block Cj.

Let C be an arbitrary block Cj, p its length, m = [(p -1)/k], and
{B;, ", By} the blocks B; associated with C. Let {g;, -+, gp} be the basis
vectors to which the indices in C correspond (if C consists of the indices
n+1, - n+p, then write g5 = epts), and for 1 <i < m, let {f}, -« , L} be the
basis vectors to which B; corresponds. Let 6= (1 - s)k/s, and note that 6 <e¢.
For 0 <r <m - 1 define

r+1l
Tgry+1 = (1- S)grk+2 +tefy
Tgrk+n =(1- 8)grk+n+1 if 2 __<_n§_k,
Tift = T - if1<n<k-1,
+1 _
Tf, = = “0g(r 1)kt -

Finally, define Tg, = Vg, = gn+1 if mk+1 <n<p and Tgp = Vgp = 0. The opera-
tor T is now defined on each basis vector of H, and by linearity T is defined on all
of H. It remains to verify that T2k =0 and that |V - T| =¢ V2.

Nilpotency: Clearly, if n belongs to a block of length less than k or if n € R,
then Tken = 0. On a typical set of blocks C and B;,

TRg, = TE-}((1 - g)g, +e£3) = (1 - e)¥gy,; +eTiE = (1 - £)¥gy,; - £6gyy; = 0.

Similarly, T®g,;4; =0 for 0 <r <m - 1. If n> (m - 1)k, then T%Kg_ = 0, since
T =V on all these g, and since the block C has fewer than 2k remaining terms. If
n <(m - 1)k, then n=rk+s for 1 <s <k. Hence

Tktl-sg = (1- E)kJrl'sg(r+1)k+1 ’
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so that T2ktl-sg =0, Finally, Tk*1-sfi = -§g; |, so that T2k*1-sfl = 0. Hence
T2k = 0 for all basis vectors e,, and T is nilpotent.

Norm: Observe that the subspace corresponding to the block C and associated
blocks {B], -, By} is reducing for both V and T, two subspaces corresponding
to different blocks C are orthogonal, and T =V on the orthogonal complement of
the span of all such subspaces. Thus it suffices to consider V - T on a single such
subspace. Now

€8n11 - sfg+l mn=rk+1, r <m),

(V-T)g, = {€8nh41 (n # 1 (mod m), n < mk + 1),
0 (n>mk+1);
. 0 (n # k),
(V-T) =
0841 (0 =k).

Since the images of these basis vectors are mutually orthogonal, the normof V- T
is given by

1V = T] = e gnes - £55°1 =2 V3.

The proof is complete.

Note that the approximating nilpotent operators T are not weighted shifts rela-
tive to the basis {e,} but are essentially weighted shifts of multiplicity 2. Let C
and {B; , B} be a typical set of associated blocks, and suppose that the length
p of C is exactly mk + 1. Suppose also that B,, is followed by an additional weight
of 0, and let f +1 be the basis vector correspondmg to the final 0. For 1 <j<p,
let H; be the 2 dimensional subspace w1th basis {h1 hz} defined by hl =gj,
h%=1fitl, where j = ik +n, n <k, and h =17 . Let S be the finite shift of multi-
p11c1ty 2 deflned by Sh = h1+1 for j <p and Sh1 = 0. Thus S(H;) = Hjy1 for j <p
and S(H,)) = 0. We may then write V = SY and T SX, where X and Y are 2-
dimensional “diagonal” operators (each Hj reduces both X and Y) whose action is
described by the matrices of X;=X | H; and Y; =Y | H;: :

1-¢ 0 1 0
Xj:'( y =
£ 1 0 1
(1-8 O) (1
X.: =
J
o 1/’ 0
(1—& —6) (1
Y.
o o/ 7’

X,=0, Y, =0.

1 (mod k),

fj#0or 1 (modk),

= o
v

0 (mod k), j # p,

23
]

] ()
\-/
[N
bty
—i
n

0
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The verification that T2X = 0 and that |v-T| =ev2 is now immediate. In gen-
eral (if p # 1 (mod k)), we can achieve this representation of the approximating
operators T only if the blocks {Bi} can be extended by adding p - mk basis vec-
tors from the remainder set R (which may not be large enough). Also note that the
particular representation of V depends strongly on k, and thus on e.

The technique of the proof of Theorem 1 applies to a weighted shift with blocks
of infinite length, that is, to an operator of the form V ()X, where X is the direct
sum of a number of copies of the usual (unweighted) shift and where V is defined in
Theorem 2. Indeed, with obvious modifications, the proof also applies to the more
general situation of Theorem 3.

THEOREM 3. Let X be a weighted shift, ov a divect sum of at most countably
many weighted shifts, with ||X|| < 1, and let V salisfy the hypotheses of Theovem 2.
Then V@ X e N

Note that the operators V of Theorem 2 are all partial isometries (and so are
V™ for n =2, 3, -*-). Thus there are numerous partial isometries in .#~, in con-
trast to the absence of isometries (Corollary 2 to Proposition 1).

Note also that if in Theorem 3 we set X = U (the unweighted shift), then it fol-
lows that V@ U € 4~ while U ¢ 2~. Thus neither #~ nor 2~ is preserved by
restriction to a reducing subspace.

Finally, note that the operators V of Theorem 2 have spectral parts
A(WV) =1(V) = {|x| < 1} and IIo(V) = T(V) = {0} [5]. The same is true of any
weighted shift with weights 0 and 1 only, which is neither nilpotent nor equal to U.
It seems unlikely that all such weighted shifts are in " ; in fact, we conjecture that
the conditions of Theorem 1 are necessary as well as sufficient. Thus the partially
isometric weighted shifts are likely candidates for a class of operators of which all
have identical spectral parts, some belong to .# ~, and some do not.
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