THE HARDY CLASS OF A SPIRAL-LIKE FUNCTION
Lowell J. Hansen

1. INTRODUCTION

A univalent function f analytic on the open unit disk A is said to be spival-like
of order ¢ (|o| < w/2) if it is normalized (f(0) =0 and f'(0) = 1), and if in addition
it satisfies the condition

n[el9z£(z)/f(z)] > 0 (z € A).

(Spiral-like functions were considered by L. Spalek [5].) For each spival-like func-
tion f, we shall determine, by studying the vegion 1(4), the Hardy classes Hy, ‘o
which £ belongs. This is the object of Theorem 1, which is stated in Section 2 and
proved in Section 3. The proof will use the notion of the Hardy number of a region,
which was defined and studied in [1]. Theorem 1 enables us to draw some conclu-
sions concerning the growth of the maximum modulus and the Taylor coefficients of
spiral-like functions (Section 4).

2. PRELIMINARIES

Let © be a region (that is, a connected nonempty open set in the finite complex
plane) that contains the point z = 0. We shall say that Q is spival-like of order
o (Jo| <u/2) if, whenever zy € €, the spiral {zgexp(te ¥):t <0} is also con-
tained in . We note that if o = 0, then  is starlike with respect to the point z = 0.

The relationship between spiral-like functions and spiral-like regions is indi-
cated by the following lemma.

LEMMA 1. Let f be a normalized univalent function analytic on the unit disk A.
Then f is spival-like of ovdev O if and only if £(A) is spival-like of ovder ©.

A proof of the special case 0 =0 is given by W. Hayman in [3, pp. 14-15]. The
proof of the general case is similar.

Let £ be a region, and let I denote the identity map on ©2. We recall from [1]
that the Hardy number of Q is defined by the condition
(1) h(®) = sup {p > 0: |Ig|p possesses a harmonic majorant } .

The most significant property of h(f2) is that if f is analytic on A, f(A) C £, and
h(Q) > 0, then f belongs to each Hardy class H, (0 <p <h(R)). We shall also use
the facts that

(l) if Ql Cc Qz s then h(Qz) S h(Ql) s
(i) if €, = {az +b:z € Q;} (a #0), then h(Q,) = h(Q,).
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Let © be a region, and let t be a positive real number. We define apft) to be
the angular Lebesgue measure of the largest arc contained in £ N {|z| =t}. ¥ Q
is spiral-like, then the function t — ag(t) is nonincreasing and nonnegative, and
therefore lim;_, o 2(t) exists.

THEOREM 1. Let f be spival-like of order ¢ on the unit disk A. Let Q = 1(4)
and A =limt—w aq(t). Then h() =7/A cos2o. Consequently f € Hy,
(0 <p<7/Acos20). For p=mu/A cos?0, the latter conclusion does not hold if
A>0.

Theorem 1 is already known in the case ¢ = 0 (Theorem 4.1 of [1]).

3. PROOF OF THEOREM 1

Since f € H,, when f is bounded, we consider only the unbounded case.

It follows from Corollary 3.2 of [1] that if ag(t) — 0, then h(2) = ©. Therefore
the theorem holds in the special case where A = 0.

Suppose that 0 < A < 27. Then, as in the case where Q is starlike (Theorem
4.1 of [1]), we can find two spirals

{exp[i(6 - A/2) +te 10): -0 <t <+w} and {exp[i(6 +A/2) +te 0] -w0 <t < +eo}

such that the region S between them with angular opening A is contained in ©. The
region S is the image under the exponential map of the infinite strip

{x+iy: |y - (6 - xtan 0)| < A/2} .

Therefore the function

(2) F(z) = elf expl:'-A—c—::s-ie""fI Log(i j—z) :I

maps A univalently onto S, where Log(w) denotes the principal logarithm of w.
Since F is univalent, we see that

h(S) = sup {p: F ¢ Hp} )

Since

|F(z)|p = exp{'pﬁ—;%ll:(cos c)loglifﬁl + (sin o)Arg(ifz):l},

Z

we have the inequalities

pAcosZO'/Tr pAcos0 /7

1+2z
1-2

14z
1-2z

H

< |F@)|P < k|

|

where K = exp[(pA cos Io] sin Io I)/2]. We conclude that F € Hp precisely when

0 <p < m/Acos20, since (1+12z)/(1 - z) € Hg for 0 <q < 1. That is,
h(S) = /A cos20. Since S C @, we have the inequality

(3) h(€2) < h(S) = 7/A cos? o .
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To obtain the reverse inequality, we construct a sequence {Qn} of regions
containing @ such that h(2,) — 7/A cos? 0. For this construction we need the fol-
lowing lemma.

LEMMA 2. Let G be an open set in the intevval [a, b] = {x: a <x<b} and
suppose that each component of G has length at most m. Then G is contained in an
open subset of [a, b] whose components ave finite in number and have length a}‘
most m.

For the proof, arrange the components of G into a sequence {S,}, and cover
S| with a maximal open interval (call it T;) of length at most m and with endpoints
in [a, b] \G. Then cover the first component of G\ T; with a similar interval T,
disjoint from T, and so forth. Clearly, the process terminates after finitely many
steps.

We apply the lemma to get a finite union %, of open arcs in {|z| =n} with the
properties that

i) @ N {|z| =n} c #,, and

(ii) each arc in %, has angular measure no greater than aﬂ(n).
We then let '

= {]z] <n} U ( U SGZ),

zé@l

where Sy , = {z exp(te '): t > 0}. The region Q, is spiral-like of order ¢ and
contains 2. For each n large enough so that @, is not the entire complex plane, we
fix a boundary point z, of £, and let @, = {z - z: z € Q,}. Then h(Qp) = h(Qy),
and thus h() > h(;). We conclude by Theorem 5.2 of [1] that

h(2,) >3 ( y (1 +tan?0) = 7/[agn)cos?c].

(The theorem to which we refer states that h(Qy) > (1 + Az)/B where, in the pres-
ent case, A = Itan c ] and 8 = ag(n).) Since h() > h(Qn) = h(ﬂn) we get the in-
equality

h®) > n/[eg) cos?o].
Letting n — «, we obtain the inequality h(2) > n/A cos?0o. This, together with in-
equality (3), implies that h(Q) = 7 /A cos?0.

We now show that if A > 0, then f ¢ Hy (p = 7/A cos 20). For suppose that F
is analytic on A, with F(A) C f(A) If f € Hy, then |f |q has a harmonic majorant u.
Consequently,

|F(z)| 9 = |£[t (F@)]]? < ult™H(F@2)],
and thus F € Hq. In particular, if ¥ is the function defined in equation (2), then
F(A) C£(A) and F ¢ Hy, (p = /A cos?0). Therefore f ¢ Hp (p = 7/A cos?0).
4. SOME APPLICATIONS

Let f be spiral-like of order ¢ on A. Then, since f € H (0 < p < 7/A cos?c),
we obtain the following results from known theorems about H

THEOREM 2. If M(r, ) = max|,|_, |£(z)|, then
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lim [(1 - r)l/pM(r, f)ll=0 (0<p<u/A cos? o) .
r— 1
(See Hardy and Littlewood [2].)

Thus if either ¢ #0 or A < 27, then M(r, f) = o[(1 - r)"%]. If 0 =0 and
A = 27, then (z) = z(1 - zeif)-2 and thus M(r, f) = O[(1 - r)-2]. We suspect that if
A#0, then

M(r, f) = Of(1 - r)'l/p] (p = 7/A cos’ o).

THEOREM 3. Let f(z) =z + 2., a_z" (z € 4).

(i) If m/A cos® 0 > 1, then a,— 0.

(ii) If n/A cos? 0 <1, then |a,| = om!/P-1) (0 <p < /A cos® o).
(See Privalov [4, pp. 110-114].)

From statement (ii) of Theorem 3 we see that if either o # 0 or A < 27, then
Ianl /n — 0. Therefore, the only spiral-like functions whose Taylor coefflc1ents do
not satisfy the cond1t10n Ia , /n — 0 are the Koebe functions z(1 - zel ) 2, and

Ian] =n in this case. Again we suspect that if 7/A cos? 0. < 1, then

Ian|.= o[n!/P-1]  (p = n/A cos? o).
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