THE HARDY CLASS OF A SPIRAL-LIKE FUNCTION

Lowell J. Hansen

1. INTRODUCTION

A univalent function f analytic on the open unit disk Δ is said to be *spiral-like* of order σ ($|\sigma| < \pi/2$) if it is normalized (f(0) = 0 and f'(0) = 1), and if in addition it satisfies the condition

$$\Re \left[e^{i\,\sigma}\,z\,f'(z)/f(z) \right] > 0 \qquad (z\,\,\epsilon\,\,\Delta)\,.$$

(Spiral-like functions were considered by L. Špaček [5].) For each spiral-like function f, we shall determine, by studying the region $f(\Delta)$, the Hardy classes H_p to which f belongs. This is the object of Theorem 1, which is stated in Section 2 and proved in Section 3. The proof will use the notion of the Hardy number of a region, which was defined and studied in [1]. Theorem 1 enables us to draw some conclusions concerning the growth of the maximum modulus and the Taylor coefficients of spiral-like functions (Section 4).

2. PRELIMINARIES

Let Ω be a region (that is, a connected nonempty open set in the finite complex plane) that contains the point z=0. We shall say that Ω is *spiral-like* of order σ ($|\sigma| < \pi/2$) if, whenever $z_0 \in \Omega$, the spiral $\{z_0 \exp(te^{-i\sigma}): t \leq 0\}$ is also contained in Ω . We note that if $\sigma=0$, then Ω is starlike with respect to the point z=0.

The relationship between spiral-like functions and spiral-like regions is indicated by the following lemma.

LEMMA 1. Let f be a normalized univalent function analytic on the unit disk Δ . Then f is spiral-like of order σ if and only if $f(\Delta)$ is spiral-like of order σ .

A proof of the special case $\sigma = 0$ is given by W. Hayman in [3, pp. 14-15]. The proof of the general case is similar.

Let Ω be a region, and let I_{Ω} denote the identity map on Ω . We recall from [1] that the *Hardy number* of Ω is defined by the condition

(1)
$$h(\Omega) = \sup \{p \ge 0: |I_{\Omega}|^p \text{ possesses a harmonic majorant} \}$$
.

The most significant property of $h(\Omega)$ is that if f is analytic on Δ , $f(\Delta) \subseteq \Omega$, and $h(\Omega) > 0$, then f belongs to each Hardy class H_p (0 h(\Omega)). We shall also use the facts that

- (i) if $\Omega_1 \subseteq \Omega_2$, then $h(\Omega_2) < h(\Omega_1)$,
- (ii) if $\Omega_2 = \{az + b: z \in \Omega_1\}$ ($a \neq 0$), then $h(\Omega_2) = h(\Omega_1)$.

Received May 1, 1970.

Michigan Math. J. 18 (1971).

Let Ω be a region, and let t be a positive real number. We define $\alpha_{\Omega}(t)$ to be the angular Lebesgue measure of the largest arc contained in $\Omega \cap \{|z| = t\}$. If Ω is spiral-like, then the function $t \to \alpha_{\Omega}(t)$ is nonincreasing and nonnegative, and therefore $\lim_{t \to \infty} \alpha_{\Omega}(t)$ exists.

THEOREM 1. Let f be spiral-like of order σ on the unit disk Δ . Let $\Omega = f(\Delta)$ and $A = \lim_{t \to \infty} \alpha_{\Omega}(t)$. Then $h(\Omega) = \pi/A \cos^2 \sigma$. Consequently $f \in H_p$ $(0 . For <math>p = \pi/A \cos^2 \sigma$, the latter conclusion does not hold if A > 0.

Theorem 1 is already known in the case $\sigma = 0$ (Theorem 4.1 of [1]).

3. PROOF OF THEOREM 1

Since $f \in H_{\infty}$ when f is bounded, we consider only the unbounded case.

It follows from Corollary 3.2 of [1] that if $\alpha_{\Omega}(t) \to 0$, then $h(\Omega) = \infty$. Therefore the theorem holds in the special case where A = 0.

Suppose that $0 < A \le 2\pi$. Then, as in the case where Ω is starlike (Theorem 4.1 of [1]), we can find two spirals

$$\left\{\exp\left[i(\theta-A/2)+te^{-i\sigma}\right]: -\infty < t < +\infty\right\} \ \ \text{and} \ \left\{\exp\left[i(\theta+A/2)+te^{-i\sigma}\right]: -\infty < t < +\infty\right\}$$

such that the region S between them with angular opening A is contained in Ω . The region S is the image under the exponential map of the infinite strip

$$\{x + iy: |y - (\theta - x \tan \sigma)| < A/2\}$$
.

Therefore the function

(2)
$$\mathbf{F}(\mathbf{z}) = e^{i\theta} \exp \left[\frac{\mathbf{A} \cos \sigma}{\pi} e^{-i\sigma} \operatorname{Log} \left(\frac{1+\mathbf{z}}{1-\mathbf{z}} \right) \right]$$

maps Δ univalently onto S, where Log(w) denotes the principal logarithm of w. Since F is univalent, we see that

$$h(S) = \sup \{p: F \in H_p\}.$$

Since

$$\left| \mathbf{F}(\mathbf{z}) \right|^{p} = \exp \left\{ \frac{pA \cos \sigma}{\pi} \left[(\cos \sigma) \log \left| \frac{1+\mathbf{z}}{1-\mathbf{z}} \right| + (\sin \sigma) \operatorname{Arg} \left(\frac{1+\mathbf{z}}{1-\mathbf{z}} \right) \right] \right\},\,$$

we have the inequalities

$$K^{-1} \left| \frac{1+z}{1-z} \right|^{pA\cos^2 \sigma / \pi} \leq |F(z)|^p \leq K \left| \frac{1+z}{1-z} \right|^{pA\cos^2 \sigma / \pi},$$

where K = exp[(pA cos $|\sigma|$ sin $|\sigma|$)/2]. We conclude that F ϵ H_p precisely when $0 , since <math>(1+z)/(1-z) \epsilon$ H_q for 0 < q < 1. That is, h(S) = $\pi/A \cos^2 \sigma$. Since S $\subseteq \Omega$, we have the inequality

(3)
$$h(\Omega) \le h(S) = \pi/A \cos^2 \sigma.$$

To obtain the reverse inequality, we construct a sequence $\{\Omega_n\}$ of regions containing Ω such that $h(\Omega_n) \to \pi/A \cos^2 \sigma$. For this construction we need the following lemma.

LEMMA 2. Let G be an open set in the interval $[a, b] = \{x: a \le x \le b\}$ and suppose that each component of G has length at most m. Then G is contained in an open subset of [a, b] whose components are finite in number and have length at most m.

For the proof, arrange the components of G into a sequence $\{S_n\}$, and cover S_1 with a maximal open interval (call it T_1) of length at most m and with endpoints in $[a,b]\setminus G$. Then cover the first component of $G\setminus T_1$ with a similar interval T_2 disjoint from T_1 , and so forth. Clearly, the process terminates after finitely many steps.

We apply the lemma to get a finite union \mathcal{U}_n of open arcs in $\{|z| = n\}$ with the properties that

- (i) $\Omega \cap \{|z| = n\} \subseteq \mathcal{U}_n$, and
- (ii) each arc in \mathscr{U}_n has angular measure no greater than $\alpha_{\Omega}(n)$.

We then let

$$\Omega_n = \{ |z| < n \} \cup \left(\bigcup_{z \in \mathcal{U}_n} S_{\sigma,z} \right),$$

where $S_{\sigma,z}=\left\{z\exp\left(te^{-i\sigma}\right):t\geq0\right\}$. The region Ω_n is spiral-like of order σ and contains Ω . For each n large enough so that Ω_n is not the entire complex plane, we fix a boundary point z_n of Ω_n and let $\Omega_n'=\left\{z-z_n:z\in\Omega_n\right\}$. Then $h(\Omega_n')=h(\Omega_n)$, and thus $h(\Omega)\geq h(\Omega_n')$. We conclude by Theorem 5.2 of [1] that

$$h(\Omega_n') \geq \frac{\pi}{\alpha_\Omega(n)} (1 + \tan^2 \sigma) = \pi/[\alpha_\Omega(n) \cos^2 \sigma].$$

(The theorem to which we refer states that $h(\Omega_n') \geq \pi(1 + \lambda^2)/\beta$, where, in the present case, $\lambda = |\tan \sigma|$ and $\beta = \alpha_{\Omega}(n)$.) Since $h(\Omega) \geq h(\Omega_n) = h(\Omega_n')$, we get the inequality

$$h(\Omega) \geq \pi/[\alpha_{\Omega}(n) \cos^2 \sigma].$$

Letting $n \to \infty$, we obtain the inequality $h(\Omega) \ge \pi/A \cos^2 \sigma$. This, together with inequality (3), implies that $h(\Omega) = \pi/A \cos^2 \sigma$.

We now show that if A>0, then $f\not\in H_p$ $(p=\pi/A\cos^2\sigma)$. For suppose that F is analytic on Δ , with $F(\Delta)\subseteq f(\Delta)$. If $f\in H_q$, then $|f|^q$ has a harmonic majorant u. Consequently,

$$|F(z)|^{q} = |f[f^{-1}(F(z))]|^{q} < u[f^{-1}(F(z))],$$

and thus $F \in H_q$. In particular, if F is the function defined in equation (2), then $F(\Delta) \subseteq f(\Delta)$ and $F \notin H_p$ ($p = \pi/A \cos^2 \sigma$). Therefore $f \notin H_p$ ($p = \pi/A \cos^2 \sigma$).

4. SOME APPLICATIONS

Let f be spiral-like of order σ on Δ . Then, since f \in H_p (0 < p < π/A cos² σ), we obtain the following results from known theorems about H_p.

THEOREM 2. If
$$M(r, f) = \max_{|z|=r} |f(z)|$$
, then

$$\lim_{r \to 1} [(1 - r)^{1/p} M(r, f)] = 0 \qquad (0$$

(See Hardy and Littlewood [2].)

Thus if either $\sigma \neq 0$ or $A < 2\pi$, then $M(\mathbf{r}, f) = o[(1 - \mathbf{r})^{-2}]$. If $\sigma = 0$ and $A = 2\pi$, then $f(z) = z(1 - z e^{i\theta})^{-2}$ and thus $M(\mathbf{r}, f) = O[(1 - \mathbf{r})^{-2}]$. We suspect that if $A \neq 0$, then

$$M(r, f) = O[(1 - r)^{-1/p}]$$
 $(p = \pi/A cos^2 \sigma)$.

THEOREM 3. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ ($z \in \Delta$).

- (i) If $\pi/A \cos^2 \sigma > 1$, then $a_n \to 0$.
- (ii) If $\pi/A \cos^2 \sigma \le 1$, then $|a_n| = o(n^{1/p-1})$ (0 .

(See Privalov [4, pp. 110-114].)

From statement (ii) of Theorem 3 we see that if either $\sigma \neq 0$ or $A < 2\pi$, then $|a_n|/n \to 0$. Therefore, the only spiral-like functions whose Taylor coefficients do not satisfy the condition $|a_n|/n \to 0$ are the Koebe functions $z(1 - ze^{i\theta})^{-2}$, and $|a_n| = n$ in this case. Again we suspect that if $\pi/A \cos^2 \sigma \le 1$, then

$$|a_n| = O[n^{1/p-1}]$$
 $(p = \pi/A \cos^2 \sigma)$.

REFERENCES

- 1. L. J. Hansen, Hardy classes and ranges of functions. Michigan Math. J. 17 (1970), 235-248.
- 2. G. H. Hardy and J. E. Littlewood, A convergence criterion for Fourier series. Math. Z. 28 (1928), 612-634.
- 3. W. K. Hayman, *Multivalent functions*. Cambridge Tracts in Math. and Math. Phys. No. 48. Cambridge Univ. Press, Cambridge, 1958.
- 4. I. I. Priwalow, Randeigenschaften analytischer Funktionen. VEB Deutscher Verl. Wissensch., Berlin, 1956.
- 5. L. Špaček, Contribution à la théorie des fonctions univalentes (in Czech). Časopis Pěst. Mat. 62 (1932), 12-19.

Wayne State University Detroit, Michigan 48202