RIESZ POTENTIALS, k, p-CAPACITY, AND p-MODULES
Hans Wallin

1. INTRODUCTION

Let R™ denote m-dimensional Euclidean space with points x = (xy, X, -+, X))
and Euclidean norm lxl . For p > 1, we denote by ”f"p the LP-norm of f taken
over the whole space R™. Let s =(s;, s,, ***, S,,) be a multi-index with length

Isl = 27 s;, and let D°f be the corresponding derivative of f of order |s|. As
usual, C'6° is the class of all infinitely differentiable functions with compact support.
Finally, k is a positive integer, and F is a compact subset of R™.

A measure of the size of a set F is given by the k, p-capacity of F, which we
define as follows.

Definition 1. The Kk, p-capacity of F is

Ty, oF) = inf 2 [pei] ],
s P £ |s|gk

where the infimum is taken over all f € CBO with £>1 on F.

We get the same class of null-sets if in the definition we require all the func-
tions f to have support in some fixed neighbourhood O of ¥. In fact, if ¢ € CBo has
support in O and ¢ =1 on F, then f¢ has supportin O, f{¢ > 1 on F, and

2 ”Ds(qu)”p < const. 24 |]Dsf"p ,
|s] <k Is] <k

where the constant does not depend on f{.

We also get the same class of null-sets if in the sum in the definition we take
lsl =k instead of |s| <k (if kp > m, we must then assume that the support of f is
a subset of a fixed sphere). This may be proved by means of inequalities of Sobolev
type.

For k = 1, the notion of k, p-capacity was used by Serrin [4] in the investigation

of removable singularities of partial differential equations. It has also been used in
the theory of quasiconformal mappings in R™ (Gehring [3]).

By the Riesz potential of ovder a (0 < a <m) of the function f (or the a-
potential of f) we shall mean the function ng defined by

Ua(®) = S |x f_(t,)lg-a‘ :

The purpose of this paper is to prove the following theorem.
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THEOREM 1. Suppose that F is a compact subset of R™, p > 1, and
1 <k <m. A unecessary condition that

Ty o(F) = 0

is that theve exists a nonnegative function f € LP(R™) with compact suppovt such
that

f
Ulf((x) = ‘S‘lx——(%)z—](%‘i =  forevery x € F.

For p > 1, the condition is also sufficient; for p = 1, it is sufficient undev the addi-
tional assumption that f logt £ € LI(R™).

The condition f logt f € LI(R™) for p =1 may not be omitted. We prove this in
Section 4, where we also comment on the cases kp > m and k = m.

Before proceeding to the proof of Theorem 1, we shall give an account of the
connection between this theorem and earlier results. For this purpose, we introduce
the p-module of certain systems of k-dimensional Lipschitz surfaces in R™. A k-
dimensional Lipschitz suvface S in R™ is a nonempty Borel subset of R™ that is
locally the image of some open subset of RK, under a one-to-one transformation
having the Lipschitz property in both directions. Let do denote the surface measure
of S] (which can be defined for a k-dimensional Lipschitz surface; see Fuglede [2, p.
184]).

Definition 2 (Fuglede [2, p. 187]). Let E be a nonempty subset of R™ , and let
k be an integer (1 <k < m). Let SX(E) be the system of all k-dimensional
Lipschitz surfaces that intersect E. The p-module of GX(E) is

M (s™(E)) = i?f I£ll%,

where the infimum is taken over all Lebesgue-measurable, nonnegative functions £
such that

S fdo > 1 for every S ¢ cX(E)
S

(do denotes surface measure).
Fuglede has proved the following theorem (stated for kp < m).

THEOREM 2 (Fuglede [2, p. 191]). Theovem 1 vemains valid if T, p(F) is re-
placed by Mp( SK(F)) (even if ¥ is an arbitvary sed).

Remark. Theorem 2 remains true even if only very regular surfaces are con-
sidered, instead of Lipschitz surfaces.

Fuglede [2, p. 199] and I [6] have given connections between the condition that a
certain potential-theoretic a-capacity of F equals zero and the conditions
Mp(Gk(F)) =0 and Ty, p(F) = 0, respectively. However, because of an g-gap, these
results do not reveal the exact connection between the conditions Mp( cX(F)) =0 and
I'y, o(F) = 0. Recently, Ziemer proved a theorem (stated for p < m) that implies the
following result.

THEOREM 3 (Ziemer [7, p. 50]). Suppose F is a compact subset of R™,
p>1l,and k=1<m. Then
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= k =
(1) Ty, o(F) = 0 <> M(&X(F) =0

It is not obvious that Ziemer’s proof can be generalized to the case k > 1. For
k =1, Theorem 1 is a consequence of Theorems 2 and 3. On the other hand, for
p > 1, Theorem 1 together with Theorem 2 yields a new proof of Theorem 3 and
generalizes it to the case k > 1. Theorems 1 and 2 imply that (1) kolds if F is com-
pact, p>1, and 1 <k <m. The method by which we shall prove Theorem 1 shows
clearly the connection between a-potentials and the condition T’y p(F) =0

2. PROOF OF THE NECESSITY IN THEOREM 1

Suppose F is a compact set, p> 1, and 1 <k <m. Suppose that Ty (F) =
By the definition of Ty, p(F) there ex1st functions g, € CO (g,=>1 on F5 such that

(2) 2 ||Dsgn|ip <2™ (n=1,2, ).

|s|=k

We may also assume that the support of g is a subset of a fixed bounded set (see
the remarks after Definition 1).

We shall use the following representation formulas (see Wallin [5, p. 71]), where
the ag are constants and the sums extend over a number of multiindices s with
length |s| =k: If either m - 2k > 0 or else m is odd and m - 2k < 0, then

(3) gax) = Za, (D(|x - y|Z™)Dog (y)ay ;

if m - 2k < 0 and m is even, then
(4) gn(x) = EaSSDS(Ix - y|?*™1og |x - y|) D3g (y)dy .

Observe that the equations (3) and (4) hold for all x, since both members are con-
tinuous functions. Now, for |s| =k,

s _ | 2k-my const. .
(IX l )_._ Ix_y|m—k

Furthermore, for m - 2k < 0 (m even) and m - k > 0, it is easy to see that

const.

2k~
D3(|x - y| m10g|x-Y|)S—IX—-—yIE-_—k.

If we put

£(y) = 2 b, |Dg (V)]
|s|=k

then these estimates and the formulas (3) and (4) give (with appropriate constants
bg > 0) the bound

(5) el < S e |x - - T

lmk
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Clearly, f,, > 0, the supports satisfy the inclusion relation supp f, C supp g,,, and
(by virtue of (2)),

£l , < const. 27,

£
From (5) and the fact that g > 1 on F, we infer that Uknz 1 on F. Now we put

Then f > 0 and f € LP(R™), since

[~e)

[~e)
lell, < Zl} 2,1, < const. 71_7 27" < o,

The function f has bounded support, since supp f,, C supp g, and supp g, is uni-
formly bounded in n. Finally, Uf( = on F, because for each N

N
Ulf((x) > 2 Ulf{n(x) >N whenxe F.
n=1

Hence the function f has all the properties required for f in Theorem 1.

3. PROOF OF THE SUFFICIENCY IN THEOREM 1

We shall use the theory of singular integrals from Calderon and Zygmund [1] and
Fuglede [2] (see in particular [2, pp. 193-198]). For & > 0 and corresponding to any
function f, we put

_ 1
9 (x) = (|x|2 +g2)im-K)/2”
N S
¢(X) - lem-k ’

and

w® = § o~ i ay = (ge* D),

u(®) = (¢f) (x) = UL(x) .
Then u, € C% and DS ug(x) = (DS de *f) (x) for every s. Now

const.

s
ID ¢E(X)| < lem-k‘l'lS' ’

and the right-hand side is locally integrable when ]s} < k. By Lebesgue’s
dominated-convergence theorem, this means that, for ]sl <k, DS¢g— D%¢ in
the mean of order 1 over every bounded set, as € — 0. Using the inequality
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le*tll, < |lelts [£]lp, with g equal to D° ¢¢ - D* ¢ in a certain neighbourhood of the
origin and O elsewhere, we obtain the following proposition.

If f € LP, f has bounded support, and |s| <k, then D®ugy — (D° ¢) *f in the
mean of order p over every bounded subset of R™, as ¢ — 0.

For |s| =k, we shall use the following lemma from the theory of singular inte-
grals.

LEMMA (Calderon and Zygmund [1]; Fuglede [2, p. 195]). Let DSug be an
arbitvary derivative of ovder Is| =k of the function ug = ¢g *f, wheve ¢g is defined
by (6) and 1 <k <m.

a) If 1<p <~ and f € LP(R™), then D°u, converges in the mean of order p
over R™ as € — 0.

b) If f is Lebesgue-measurable, f log* |f| e LYR™), and f has compact sup-

port, then D° u. convevges in the mean of ordev 1 ovev every subset of R™ of
finite Lebesgue measure, as € — 0.

Now suppose that F is a compact subset of R™ , p> 1, and 1 <k <m. Suppose
that there exists a nonnegative function f € LP(R™) with compact support such that

the potential Ui is infinite on F. If p = 1, we also assume that f log* f € LI(R™).
Consider ug = ¢g *f with this function f, where ¢, is defined by (6). Clearly,

ug(x) ~ u(x) = Ufc(x) as ¢ N 0. Since F is compact and Ufk(x) = on F, we can, for
every positive integer n, choose an £, > 0 such that uan(x) >n for x € F. Put

where ¥ € Cy is 1 on F. Then f, € Cy and f, > 1 on F. We wish to prove that

S
(7) 2 |p fn”p——» 0 asn-—oow.
|s|<k
In fact, by Definition 1, (7) implies that Iy, p(F) = 0.

By Leibnitz’s rule,

1
(8) D° i, = n

2 Cs,aDs_ausn -D% v,

<

where the cg, o are constants. To prove (7), we shall estimate ||DS e ug Daw”p
n

for different values of a and s, with |s| <k.

Convergence in the mean of order p implies uniform boundedness in the LP-
norm. We may therefore use the lemma and the remarks preceeding it to conclude

that if ]s] < k, then the LP-norm of D%~% ug_ over any fixed compact subset of R™
is bounded in n. Hence, for all @, the quantity |D°® %u, -Dazpllp is bounded in n
n

when |s| < k. This and (8) give (7), and the proof of Theorem 1 is complete.



262 HANS WALLIN
4, REMARKS
For p =1, the condition f logt f € L1(R™) occurs in one half of Theorem 1. In

the following proposition we shall show that the theorem is not true if we omit this
condition.

PROPOSITION 1. Consider R™ for m=2, k=1, p =1, and
F = {xeR?| |x| =1}.

Then Ty 1(F) > 0, and theve exists a nonnegative function f € L1(R™) with compact
support such that

U{(x)=5m=°o for x € F.
|x - vl

Proof. Suppose f € CBO and f>1 on F. If (r, #) are polar coordinates in RZ,
then for all 6

* lat(x, ) * lot(r, 6
0 or = J ar =

because the total variation of f is at least 1 on the half-line determined by 6 and
1 <r <. By integrating with respect to 0, we conclude that I} ;(F) > 0.

Now we turn to the construction of f. Let i be a measure supported by F such
that p is uniformly distributed on F and p(R™) > 0. It is easy to see that

Ui‘(x) = S—L—du(y) = for xeF,.
|x - y]

[oe]
Take u = ti so that El [,Ll(Rm) <o, Put fi = l,Ui *Ui, where l[/iZO, yl/i € CBO, lpi
is supported by a fixed bounded set, and || ¥ " 1 = 1. We can also choose each y; so

that Uii 2> 1 on F, since

f: . .
U = t,bi*Ullll and U‘(lj'l(x) — © asx—Xy€F.
0
If we now put f =2 1 Ij, then the function f fulfills the conditions in the proposition.

In fact, Uﬁ = on F, since Ufi >1 on F for each i, and

e, <205l < 20wl v @) < =,
1 1

We shall now comment on the cases kp > m and k = m.

PROPOSITION 2. Suppose p>1and m >k >1. Then Ty p(F) > 0 for every
nonempty compact set F if and only if kp > m.

Pyroof. This may be proved by means of Theorem 1, for example. Assume that
kp > m, and let f € LP(R™) be a function with compact support. An application of
Holder’s inequality shows that
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{p-1)/p
okl < il (§ ) <

supp £ |X _ y|(m-k)p/(p—l)

for all x, since (m - k)p/(p - 1) < m. Hence Uf( is finite everywhere, and Theorem
1 gives one half of our assertion. :

If kp <m and 1 <k <m, we can make Ulf{ infinite at some point, for instance
at 0, by using a nonnegative function f with compact support such that f ¢ LP(R™) if
p>1 and flog*fe LI(R™) if p=1. Infact, Uf((O) = o if we choose

x| * J1og x| (]x] <1/2),
f(x) =
0 (|x| >1/2).
By Theorem 1, this means that Pk, p(F) =0 when F consists of a single point.

Remark. The result corresponding to Proposition 2 for the p-module was
proved in a different way by Fuglede [2, p. 190].

PROPOSITION 3. If p > 1 and k =m, then Ty, p(F) > 0 for all nonempty
sets F.

Proof. For every f € CJ,

™ i(y)dy
f = .
00 =) _ %5 o

This is obtained by repeated integration in the right-hand member of the equation. If
there exists at least one point x at which f(x) > 1, the equation above gives

> 1

z b

1

o™ f
ayl ayz e aym

and from this the proposition follows.
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