RIESZ POTENTIALS, k, p-CAPACITY, AND p-MODULES

Hans Wallin

1. INTRODUCTION

Let R^m denote m-dimensional Euclidean space with points $x=(x_1,\,x_2,\,\cdots,\,x_m)$ and Euclidean norm $\|x\|$. For $p\geq 1,$ we denote by $\|f\|_p$ the L^p -norm of f taken over the whole space R^m . Let $s=(s_1\,,\,s_2\,,\,\cdots,\,s_m)$ be a multi-index with length $|s|=\sum s_i$, and let D^sf be the corresponding derivative of f of order |s|. As usual, C_0^∞ is the class of all infinitely differentiable functions with compact support. Finally, k is a positive integer, and F is a compact subset of R^m .

A measure of the size of a set F is given by the k, p-capacity of F, which we define as follows.

Definition 1. The k, p-capacity of F is

$$\Gamma_{k,p}(F) = \inf_{f} \sum_{|s| \le k} \|D^s f\|_p^p,$$

where the infimum is taken over all $f \in C_0^\infty$ with $f \geq 1$ on F.

We get the same class of null-sets if in the definition we require all the functions f to have support in some fixed neighbourhood O of F. In fact, if $\phi \in C_0^{\infty}$ has support in O and $\phi = 1$ on F, then $f\phi$ has support in O, $f\phi \geq 1$ on F, and

$$\sum_{|s| \leq k} \|D^{s}(f\phi)\|_{p} \leq \text{const.} \sum_{|s| \leq k} \|D^{s}f\|_{p},$$

where the constant does not depend on f.

We also get the same class of null-sets if in the sum in the definition we take |s| = k instead of $|s| \le k$ (if $kp \ge m$, we must then assume that the support of f is a subset of a fixed sphere). This may be proved by means of inequalities of Sobolev type.

For k = 1, the notion of k, p-capacity was used by Serrin [4] in the investigation of removable singularities of partial differential equations. It has also been used in the theory of quasiconformal mappings in R^{m} (Gehring [3]).

By the Riesz potential of order α (0 < α < m) of the function f (or the α -potential of f) we shall mean the function U_{α}^{f} defined by

$$U_{\alpha}^{f}(x) = \int \frac{f(y) dy}{|x - y|^{m-\alpha}}.$$

The purpose of this paper is to prove the following theorem.

Received June 10, 1970.

Michigan Math. J. 18 (1971).

THEOREM 1. Suppose that F is a compact subset of R^m , $p \ge 1$, and $1 \le k \le m$. A necessary condition that

$$\Gamma_{k,p}(F) = 0$$

is that there exists a nonnegative function $f \in L^p(\mathbb{R}^m)$ with compact support such that

$$U_k^f(x) = \int \frac{f(y) dy}{|x - y|^{m-k}} = \infty \quad \text{for every } x \in F.$$

For p > 1, the condition is also sufficient; for p = 1, it is sufficient under the additional assumption that $f \log^+ f \in L^1(\mathbb{R}^m)$.

The condition $f \log^+ f \in L^1(\mathbb{R}^m)$ for p = 1 may not be omitted. We prove this in Section 4, where we also comment on the cases kp > m and k = m.

Before proceeding to the proof of Theorem 1, we shall give an account of the connection between this theorem and earlier results. For this purpose, we introduce the p-module of certain systems of k-dimensional Lipschitz surfaces in R^m . A k-dimensional Lipschitz surface S in R^m is a nonempty Borel subset of R^m that is locally the image of some open subset of R^k , under a one-to-one transformation having the Lipschitz property in both directions. Let $d\sigma$ denote the surface measure of S (which can be defined for a k-dimensional Lipschitz surface; see Fuglede [2, p. 184]).

Definition 2 (Fuglede [2, p. 187]). Let E be a nonempty subset of R^m , and let k be an integer $(1 \le k < m)$. Let $\mathfrak{S}^k(E)$ be the system of all k-dimensional Lipschitz surfaces that intersect E. The p-module of $\mathfrak{S}^k(E)$ is

$$M_p(\otimes^k(E)) = \inf_f \|f\|_p^p,$$

where the infimum is taken over all Lebesgue-measurable, nonnegative functions f such that

(dσ denotes surface measure).

Fuglede has proved the following theorem (stated for $kp \leq m$).

THEOREM 2 (Fuglede [2, p. 191]). Theorem 1 remains valid if $\Gamma_{k, p}(F)$ is replaced by $M_p(\mathfrak{S}^k(F))$ (even if F is an arbitrary set).

Remark. Theorem 2 remains true even if only very regular surfaces are considered, instead of Lipschitz surfaces.

Fuglede [2, p. 199] and I [6] have given connections between the condition that a certain potential-theoretic α -capacity of F equals zero and the conditions $M_p(\mathfrak{S}^k(F)) = 0$ and $\Gamma_{k, p}(F) = 0$, respectively. However, because of an ϵ -gap, these results do not reveal the exact connection between the conditions $M_p(\mathfrak{S}^k(F)) = 0$ and $\Gamma_{k, p}(F) = 0$. Recently, Ziemer proved a theorem (stated for p < m) that implies the following result.

THEOREM 3 (Ziemer [7, p. 50]). Suppose F is a compact subset of R^m , $p \ge 1$, and k = 1 < m. Then

(1)
$$\Gamma_{k,p}(F) = 0 \iff M_p(\otimes^k(F)) = 0.$$

It is not obvious that Ziemer's proof can be generalized to the case k > 1. For k = 1, Theorem 1 is a consequence of Theorems 2 and 3. On the other hand, for p > 1, Theorem 1 together with Theorem 2 yields a new proof of Theorem 3 and generalizes it to the case k > 1. Theorems 1 and 2 imply that (1) holds if F is compact, p > 1, and $1 \le k < m$. The method by which we shall prove Theorem 1 shows clearly the connection between α -potentials and the condition $\Gamma_{k,p}(F) = 0$.

2. PROOF OF THE NECESSITY IN THEOREM 1

Suppose F is a compact set, $p \ge 1$, and $1 \le k < m$. Suppose that Γ_k , p(F) = 0. By the definition of Γ_k , p(F), there exist functions $g_n \in C_0^\infty$ ($g_n \ge 1$ on F) such that

(2)
$$\sum_{|s|=k} \|D^{s}g_{n}\|_{p} < 2^{-n} \quad (n = 1, 2, \dots).$$

We may also assume that the support of g_n is a subset of a fixed bounded set (see the remarks after Definition 1).

We shall use the following representation formulas (see Wallin [5, p. 71]), where the a_s are constants and the sums extend over a number of multiindices s with length |s| = k: If either m - 2k > 0 or else m is odd and m - 2k < 0, then

(3)
$$g_n(x) = \sum a_s \int D^s(|x - y|^{2k-m}) D^s g_n(y) dy$$
;

if $m - 2k \le 0$ and m is even, then

(4)
$$g_n(x) = \sum a_s \int D^s(|x - y|^{2k-m} \log |x - y|) D^s g_n(y) dy$$
.

Observe that the equations (3) and (4) hold for all x, since both members are continuous functions. Now, for |s| = k,

$$D^{s}(|x - y|^{2k-m}) \le \frac{\text{const.}}{|x - y|^{m-k}}.$$

Furthermore, for $m - 2k \le 0$ (m even) and m - k > 0, it is easy to see that

$$D^{s}(|x - y|^{2k-m} \log |x - y|) \le \frac{\text{const.}}{|x - y|^{m-k}}.$$

If we put

$$f_n(y) = \sum_{|s|=k} b_s |D^s g_n(y)|$$

then these estimates and the formulas (3) and (4) give (with appropriate constants $b_s \ge 0$) the bound

(5)
$$|g_{n}(x)| \leq \int \frac{f_{n}(y) dy}{|x - y|^{m-k}} = U_{k}^{f_{n}}(x)$$
.

Clearly, $f_n \ge 0$, the supports satisfy the inclusion relation supp $f_n \subseteq \text{supp } g_n$, and (by virtue of (2)),

$$\|f_n\|_p < \text{const. } 2^{-n}.$$

From (5) and the fact that $g_n \ge 1$ on F, we infer that $U_k^{f_n} \ge 1$ on F. Now we put

$$f = \sum_{1}^{\infty} f_n$$
.

Then $f \ge 0$ and $f \in L^p(\mathbb{R}^m)$, since

$$\left\|f\right\|_{p} \leq \sum\limits_{1}^{\infty} \left\|f_{n}\right\|_{p} < const. \sum\limits_{1}^{\infty} 2^{-n} < \infty.$$

The function f has bounded support, since supp $f_n\subseteq supp\ g_n$ and supp g_n is uniformly bounded in n. Finally, $U_k^f=\infty$ on F, because for each N

$$U_k^f(x) \geq \sum_{n=1}^N \, U_k^{f_n}(x) \geq N \quad \text{ when } x \in F \; .$$

Hence the function f has all the properties required for f in Theorem 1.

3. PROOF OF THE SUFFICIENCY IN THEOREM 1

We shall use the theory of singular integrals from Calderon and Zygmund [1] and Fuglede [2] (see in particular [2, pp. 193-198]). For $\epsilon > 0$ and corresponding to any function f, we put

$$\phi_{\varepsilon}(x) = \frac{1}{(|x|^2 + \varepsilon^2)^{(m-k)/2}},$$

$$\phi(x) = \frac{1}{|x|^{m-k}},$$

and

$$u_{\varepsilon}(x) = \int \phi_{\varepsilon}(x - y) f(y) dy = (\phi_{\varepsilon} * f) (x) ,$$

$$u(x) = (\phi * f) (x) = U_{k}^{f}(x) .$$

Then $u_{\mathcal{E}} \in C^{\infty}$ and $D^s u_{\mathcal{E}}(x) = (D^s \phi_{\mathcal{E}} * f)(x)$ for every s. Now

$$\left|D^{s} \phi_{\varepsilon}(x)\right| < \frac{\text{const.}}{\left|x\right|^{m-k+\left|s\right|}},$$

and the right-hand side is locally integrable when |s| < k. By Lebesgue's dominated-convergence theorem, this means that, for |s| < k, $D^s \phi_{\varepsilon} \to D^s \phi$ in the mean of order 1 over every bounded set, as $\varepsilon \to 0$. Using the inequality

 $\|g*f\|_p \leq \|g\|_1 \, \|f\|_p$, with g equal to $D^s \, \phi_E$ - $D^s \, \phi$ in a certain neighbourhood of the origin and 0 elsewhere, we obtain the following proposition.

If $f \in L^p$, f has bounded support, and |s| < k, then $D^s u_{\varepsilon} \to (D^s \phi) *f$ in the mean of order p over every bounded subset of R^m , as $\varepsilon \to 0$.

For |s| = k, we shall use the following lemma from the theory of singular integrals.

LEMMA (Calderon and Zygmund [1]; Fuglede [2, p. 195]). Let $D^s u_{\epsilon}$ be an arbitrary derivative of order |s| = k of the function $u_{\epsilon} = \phi_{\epsilon} *f$, where ϕ_{ϵ} is defined by (6) and $1 \le k \le m$.

- a) If $1 and <math>f \in L^p(\mathbb{R}^m)$, then $D^s u_\epsilon$ converges in the mean of order p over \mathbb{R}^m , as $\epsilon \to 0$.
- b) If f is Lebesgue-measurable, f $\log^+|f|\in L^1(\mathbb{R}^m)$, and f has compact support, then $D^s u_{\varepsilon}$ converges in the mean of order 1 over every subset of \mathbb{R}^m of finite Lebesgue measure, as $\varepsilon \to 0$.

Now suppose that F is a compact subset of R^m , $p \geq 1$, and $1 \leq k < m$. Suppose that there exists a nonnegative function $f \in L^p(R^m)$ with compact support such that the potential U_k^f is infinite on F. If p=1, we also assume that $f \log^+ f \in L^1(R^m)$. Consider $u_{\mathcal{E}} = \phi_{\mathcal{E}} * f$ with this function f, where $\phi_{\mathcal{E}}$ is defined by (6). Clearly, $u_{\mathcal{E}}(x) \geq u(x) = U_k^f(x)$ as $\epsilon \leq 0$. Since F is compact and $U_k^f(x) = \infty$ on F, we can, for every positive integer n, choose an $\epsilon_n > 0$ such that $u_{\mathcal{E}_n}(x) > n$ for $x \in F$. Put

$$f_n = \frac{u_{\varepsilon_n} \cdot \psi}{n}$$

where $\psi \in C_0^\infty$ is 1 on F. Then $f_n \in C_0^\infty$ and $f_n \geq 1$ on F. We wish to prove that

(7)
$$\sum_{|s| \leq k} \|D^{s} f_{n}\|_{p} \to 0 \quad \text{as } n \to \infty.$$

In fact, by Definition 1, (7) implies that $\Gamma_{k,p}(F) = 0$.

By Leibnitz's rule,

(8)
$$D^{s} f_{n} = \frac{1}{n} \sum_{\alpha < s} c_{s,\alpha} D^{s-\alpha} u_{\varepsilon_{n}} \cdot D^{\alpha} \psi,$$

where the $c_{s,\alpha}$ are constants. To prove (7), we shall estimate $\|D^{s-\alpha}u_{\epsilon_n}D^{\alpha}\psi\|_p$ for different values of α and s, with $|s| \leq k$.

Convergence in the mean of order p implies uniform boundedness in the L^p -norm. We may therefore use the lemma and the remarks preceding it to conclude that if $|s| \le k$, then the L^p -norm of $D^{s-\alpha}u_{\epsilon_n}$ over any fixed compact subset of R^m is bounded in n. Hence, for all α , the quantity $\|D^{s-\alpha}u_{\epsilon_n}\cdot D^{\alpha}\psi\|_p$ is bounded in n when $|s| \le k$. This and (8) give (7), and the proof of Theorem 1 is complete.

4. REMARKS

For p=1, the condition $f \log^+ f \in L^1(\mathbb{R}^m)$ occurs in one half of Theorem 1. In the following proposition we shall show that the theorem is not true if we omit this condition.

PROPOSITION 1. Consider R^m for m = 2, k = 1, p = 1, and

$$F = \{x \in R^2 | |x| = 1\}.$$

Then $\Gamma_{1,1}(F)>0$, and there exists a nonnegative function $f\in L^1(\mathbb{R}^m)$ with compact support such that

$$U_1^f(x) = \int \frac{f(y) dy}{|x - y|} = \infty \quad \text{for } x \in F.$$

Proof. Suppose $f \in C_0^{\infty}$ and $f \ge 1$ on F. If (r, θ) are polar coordinates in R^2 , then for all θ

$$\int_0^\infty \left| \frac{\partial f(\mathbf{r}, \theta)}{\partial \mathbf{r}} \right| \, \mathbf{r} \, d\mathbf{r} \, \geq \, \int_1^\infty \left| \frac{\partial f(\mathbf{r}, \theta)}{\partial \mathbf{r}} \right| \, d\mathbf{r} \, \geq \, \mathbf{1} \, ,$$

because the total variation of f is at least 1 on the half-line determined by θ and $1 \le r < \infty$. By integrating with respect to θ , we conclude that $\Gamma_{1,1}(F) > 0$.

Now we turn to the construction of f. Let μ be a measure supported by F such that μ is uniformly distributed on F and $\mu(R^m) > 0$. It is easy to see that

$$U_1^{\mu}(x) = \int \frac{1}{|x-y|} d\mu(y) = \infty \quad \text{for } x \in F.$$

Take $\mu = \mu_i$ so that $\sum_{1}^{\infty} \mu_i(R^m) < \infty$. Put $f_i = \psi_i * \mu_i$, where $\psi_i \geq 0$, $\psi_i \in C_0^{\infty}$, ψ_i is supported by a fixed bounded set, and $\|\psi_i\|_1 = 1$. We can also choose each ψ_i so that $U_1^{f_i} \geq 1$ on F, since

$$\mathbf{U}_{l}^{f_{i}} = \psi_{i} * \mathbf{U}_{l}^{\mu_{i}} \quad \text{ and } \quad \mathbf{U}_{l}^{\mu_{i}}(\mathbf{x}) \, \rightarrow \, \infty \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_{0} \, \epsilon \, \, \mathbf{F} \, \, .$$

If we now put $f = \sum_1^{\infty} f_i$, then the function f fulfills the conditions in the proposition. In fact, $U_1^f = \infty$ on F, since $U_1^{f_i} \geq 1$ on F for each i, and

$$\|f\|_{1} \leq \sum_{1}^{\infty} \|f_{i}\|_{1} \leq \sum_{1}^{\infty} \|\psi_{i}\|_{1} \mu_{i}(R^{m}) < \infty.$$

We shall now comment on the cases kp > m and k = m.

PROPOSITION 2. Suppose $p\geq 1$ and $m>k\geq 1$. Then $\Gamma_{k,p}(F)>0$ for every nonempty compact set F if and only if kp>m.

Proof. This may be proved by means of Theorem 1, for example. Assume that kp > m, and let $f \in L^p(\mathbb{R}^m)$ be a function with compact support. An application of Hölder's inequality shows that

RIESZ POTENTIALS, k, p-CAPACITY, AND p-MODULES

$$\big|\, U_k^f(x) \,\big| \, \leq \, \big\|\, f \, \big\|_p \, \left(\, \int_{\text{supp } f} \frac{dy}{\, \big|\, x \, - \, y \, \big|^{(m-k)p/(p-1)}} \, \right)^{(p-1)/p} < \, \infty$$

for all x, since (m - k)p/(p - 1) < m. Hence $U_{\rm k}^{\rm f}$ is finite everywhere, and Theorem 1 gives one half of our assertion.

If $kp \le m$ and $1 \le k < m$, we can make U_k^f infinite at some point, for instance at 0, by using a nonnegative function f with compact support such that $f \in L^p(\mathbb{R}^m)$ if p > 1 and $f \log^+ f \in L^1(\mathbb{R}^m)$ if p = 1. In fact, $U_k^f(0) = \infty$ if we choose

$$f(x) = \begin{cases} |x|^{-k} |\log |x||^{-1} & (|x| \le 1/2), \\ 0 & (|x| > 1/2). \end{cases}$$

By Theorem 1, this means that $\Gamma_{k,p}(F) = 0$ when F consists of a single point.

Remark. The result corresponding to Proposition 2 for the p-module was proved in a different way by Fuglede [2, p. 190].

PROPOSITION 3. If $p \ge 1$ and k = m, then $\Gamma_{k, p}(F) > 0$ for all nonempty sets F.

Proof. For every $f \in C_0^{\infty}$,

$$f(x) = \int_{y \le x} \frac{\partial^m f(y) dy}{\partial y_1 \partial y_2 \cdots \partial y_m}.$$

This is obtained by repeated integration in the right-hand member of the equation. If there exists at least one point x at which $f(x) \ge 1$, the equation above gives

$$\left\| \frac{\partial^{\mathbf{m}} f}{\partial y_1 \partial y_2 \cdots \partial y_{\mathbf{m}}} \right\|_1 \geq 1,$$

and from this the proposition follows.

REFERENCES

- 1. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952), 85-139.
- 2. B. Fuglede, Extremal length and functional completion. Acta Math. 98 (1957), 171-219.
- 3. F. W. Gehring, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 353-393.
- 4. J. Serrin, Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247-302.
- 5. H. Wallin, Continuous functions and potential theory. Ark. Mat. 5 (1963/65), 55-84.
- 6. , A connection between α -capacity and L^p-classes of differentiable functions. Ark. Mat. 5 (1963/65), 331-341.
- 7. W. P. Ziemer, Extremal length and p-capacity. Michigan Math. J. 16 (1969), 43-51

University of Umea, Umea, Sweden