INTERTWINING ANALYTIC TOEPLITZ OPERATORS
James A. Deddens

Let A and B be bounded linear operators on Hilbert spaces ¢ and X, re-
spectively. We say that a bounded linear operator X from & into K inferiwines
A and B if XA = BX. B. Sz.-Nagy and C. Foias [8] have shown that any intertwining
operator between two contractions extends to an intertwining operator between their
coisometric extensions (see also [3]). However, an intertwining operator between
two subnormal operators need not extend to an intertwining operator between their
normal extensions (example: A =T, and B = 0; see also [1]). R. G. Douglas and
C. Pearcy [2] gave a necessary and sufficient condition that there be no nonzero in-
tertwining operator between two normal operators; because of the theorem of
Fugledge and Putnam, this condition is symmetric in the two operators. However,
there exist operators for which this property is not symmetric. That is, there exist
operators A and B such that there are nonzero operators intertwining A and B but
no nonzero operators intertwining B and A (example: A =T, and B =0). These
two phenomena make the study of intertwining operators between analytic Toeplitz
operators of interest. In this note, we obtain an asymmetric, sufficient condition for
the nonexistence of nonzero intertwining operators between two analytic Toeplitz
operators. By means of this result, we then obtain an example of an operator whose
commutant is abelian but that does not have a cyclic vector.

For convenience, we consider H? to be the Hilbert space of analytic functions in
the unit disk for which the functions f.(6) = f(reif) are bounded in the LZ-norm, and
H® to be the linear manifold of bounded functions in H2. For ¢ € H®, Tg (or
T¢(z)) is the analytic Toeplitz operator on H2 defined by the relation
(Tyf) (z) = ¢(z)f(z). We shall denote the spectrum of Ty by 0(Tg) and the set
{¢(z): |z| <1} by range (¢). Then 0(Tg) = closure (range (¢)) [4, Problems 26 and
197]. If ¢ € H2, then the function ¢ defined by &(z) = ¢(Z) is also in HZ. _For
|| <1, define hy € H2 by the relation hy(z) = (1 - Az)"1. Then Tghy\ = ¢(A) hy for
¢ € H® [7].

LEMMA. If A is an uncountable subset of the disk |\| <1, then {hy: 2 € A}
spans HZ.

Proof. Suppose f € H? is orthogonal to {hy: A € A}. Then f(}) = (f, hy)=0
for X € A, I A is uncountable, then f = 0, since f is analytic. Hence {hy: X € A}
spans HZ.

THEOREM. Let ¢, ¥ € H®. If range (¥) € 0(Ty), then the only bounded linear
opevator X satisfying the condition XTg =Ty X is X=0.

Proof, Let N =range () N C\ U(T¢). Then N is either a nonempty open set
or a singleton, depending on whether range (i) is an open set or a singleton (that is,
whether Y is nonconstant or constant). In either case, ¥ -1(N) is a nonempty open
subset in {z: |z| <1}, and hence uncountable. By our lemma, {h,: X € ¥~ 1(N)}
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spans H2. Suppose X satisfies XT¢ = TwX. Then T(;X* = x* T"Jj; evaluating at h, ,
we find that

T(X* hy) = () (X*hy),

since h, is an eigenvector for T:L. Consequently, for each |A| < 1, either Y()) is
an eigenvalue for T; or X*hy = 0. Since A € y-I(N) implies that v(d) ¢ G(T¢), or
equivalently, that Y(A) ¢ o(T3), the number ¥(A) cannot be an eigenvalue for T$.
Thus X*h, =0 for X € ¢-1(N). Since {hy: X € y-}(N)} spans H2, X*=0, or
equivalently, X = 0.

A theorem of M. Rosenblum [5] states that if A and B are operators such that
0(A) N 6(B) =@ and XA = BX, then X = 0. In the case of analytic Toeplitz opera-
tors, our theorem is stronger, because it allows for a possible overlapping of the
spectrums.

COROLLARY 1. Let ¢, € H®. If
(i) interior (closure (range (¢))) = range (¢), and

(ii) range (Y¥) & point spectrum (T:;;),
then the only bounded lineay opevator X satisfying the condition XT¢ = T‘!/X is
X=0.

Proof. First observe that (i) implies C \ range (¢) = closure (C \ c(T:};)).
Consequently

closure (C \ G(T;‘S)) O C\p.s. (T(’;) o C\ O(Tfp'

It then follows from (ii) that N =range (¥) N C \ p.s. (T¥) either contains a non-
¢

empty open set or else is a singleton, depending on whether i is nonconstant or con-
stant. The proof now proceeds exactly as above, with the use of the uncountable set

¥-YN).
COROLLARY 2. If ¢ € H®, ¢ #0, and |a| > 1, then XTgy = ToeX implies
X = 0.

Proof. Since |Ol| > 1, range (a¢) ¢ 0(T¢).
COROLLARY 3. If ¢ € H® and a # 0, then XT¢ = Ta+¢X implies X =0,
Proof. Since ¢ # 0, range (¢) 0(Ta+¢).

We comment on Corollary 3. For an operator A on a Hilbert space &, define
Ap , the derivation of A from £ () into Z(o ), by the equation A 5(B) = BA - AB.
In this setting, Corollary 3 states that 0 is the only eigenvalue of the derivation of
an analytic Toeplitz operator. A consequence of a theorem of D. Kleinecke is that if
XT¢ = Ta+¢X, then X is quasinilpotent. Corollary 3 is stronger, because it states

that X must be 0 [4, Problem 184].

We remark that our condition range (V) & 0(T¢) is not necessary; example:
Y =0 and ¢ is an outer function with 0 € O(T¢). We also remark that the condition
range (¥) & range (¢) is not sufficient; example: ¥(z) =z and ¢ is a singular inner
function. However, we conjecture that the condition range (¥) € p. s. (T:;) is both
necessary and sufficient for the nonexistence of a nonzero intertwining operator.
The necessity seems very difficult; however, we can verify it in a few cases.

PROPOSITION. Let ¢, ¥ € H” , and let ¢ be univalent. If
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range () C range (),

then there exists a nonzevo bounded linear opevator X satisfying the condition
XT(l) = Tw X.

Proof. Since ¢ is one-to-one and range (y¥) C range (¢), the function
F(z) = ¢-1(¥(z)) is analytic in {|z| <1} and {F(z): |z| <1} c ¢ |C| <1}, I
we define X on HZ by (Xf)(z) = #(¢-1(¥/(z))), then Theorem 1 in [6, p. 348] implies

that X is a nonzero bounded linear operator on H2. A computation shows that
XT¢ = Tw X.

At the International Symposium on Operator Theory at Indiana University, B.
Sz.-Nagy asked what the relations are between the two conditions

(i) T and T* have cyclic vectors,

(ii) {T}'={s € £(o#): ST = TS} is abelian.

We shall use our Theorem to show that, in general, (ii) does not imply (i). That is,
we shall present an example of an operator whose commutant is abelian but that
does not have a cyclic vector.

For o #0,let T=T,® Ty, on H2@ H?. Then {T}' is abelian. For if

Se {T}', then
S; S
S; Sy

Sl € {Tz}l, S4 € {Ta'i-z}' = {Tz} |’ TzSZ = SZTOH-zs Ta+zs3 = S3Tz'

Applying Corollary 3, we note that S, = S3 =0 and hence {T}'= {T,}'® {T,}'.
Since {T,}' is abelian [7], {T}' is abelian.

Next we show that for 0 < |a| < 2, T does not have a cyclic vector, although
for |a| >2, T does have a cyclic vector. We first consider the case 0 < |e| < 2.
Suppose f (P g is a cyclic vector for T =T, @ Ty+z. Then there exist polynomials
{pn} such that

with

I pA(T, ® Ty, ) E@e) - (@ 0)]* < 1/,
or equivalently, that
Ipa(T ) - £]% + [pn(Tgs el * < 1/n.
Now, for each p € {z: |z| <1 and |z - a| <1},
(*) |pale) - 112 [#0)[* Ky + [p(e)|? |ele - @) |*K,_o < 1/m,

where for |z| <1, K,=(1- |z|2) is a nonzero constant depending only on z [4,
Problem 31]. Consider the set

Z = {z: |z| <1, |z-a| <1, £(z) #0, gz - @) #0}.
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Since f and g are cyclic for T, and Ty, ,, respectively, they are analytic functions
that are not identically zero. Hence Z is a nonempty set for 0 < lzl < 2. Letting

p € Z and considering (*), we conclude that p,(p) — 1 and p,(p) — 0, which contra-
dicts the assumption that T has a cyclic vector. Hence, for |a@| <2, T has no
cyclic vector. In case |oz| > 2, the operator T has a cyk:lic vector because of the
relation

"de®Ta+z = A7, @ dTou—z’

where &, is the closure in the weak operator topology of the algebra of polynomi-
als in A. The assertion about the algebra generated by T, ® T, , holds because
the spectrums of T, and Ty, are disjoint disks.

A. Shields has pointed out that in case 0 < |a| < 1, the noncyclicity of T fol-
lows from the fact that range (T) is a closed subspace of codimension at least 2.
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