ON EQUATIONS IN FREE GROUPS
Arthur Steinberg

1. INTRODUCTION

It is well known that if elements u;, **, u, in a free group satisfy some non-
trivial relation w(u;, **-, u,) = 1, then the rank of the free subgroup generated by
u;, ***, U, isat most n - 1. We are interested in conditions on w under which such
a subgroup can in fact have rank n - 1. We obtain a necessary and sufficient condi-
tion (see Theorem 3), namely, that w = w(x;, ***, X,) lie in the normal closure of
some element from a free basis for the free group F freely generated by
X3, ***, X, . Unfortunately, this is not entirely satisfactory, since no general method
is known for deciding whether a word w meets the criterion. However, for special
classes of w, we succeed in making this condition more explicit.

One special case of our problem has received some attention. If elements a, b,
and ¢ of a free group satisfy a relation a™b”cP =1, where |m|, |n|, |p| > 2, then
the rank of the group generated by a, b, and ¢ is at most 1. This was proved for
Im| = |n] = |p] =2 by R. C. Lyndon [6], for |m| = |n| = |p| > 2 by E. Schenkman
[11], J. Stallings [13], and G. Baumslag [1], and for general |m|, |n|, |p| > 2 by
M. P. Schiitzenberger [12] and by Schiitzenberger and Lyndon [7].

The last result is contained in the following theorem of Baumslag [2]. Suppose
that w = W(x;, -, X,) is an element of the free group F freely generated by
X1, °**, Xn, that w is not a primitive, in other words, is not a member of a free
basis of F, and that w is not a proper power, thatis, w #uk if k > 1 and u € F. If
elements y;, -, yn+1 satisfy the relation W(y;, -, y) = yni1 for some m > 1
and generate a free group, then the rank of this free group is at most n - 1.

We obtain a theorem that contains Baumslag’s result:
THEOREM 1. Let w=W(X(x;, >, x), Y(y,, ", ¥) (W #1) be an element

of the free group F freely generated by xy, ***, Xpn, Y1, s Ym- Suppose that
neither X nor Y is a proper power, and set W(X, 1) = XP and W(1, Y) = YK, I
ovder that elements uy, ">, u,, vy, ***, vV, satisfying the velation

W(X(u;, -, up), Y(vy, o, v)) =1

genevate a free group of rank n+m - 1, it is necessary and sufficient that at least
one of the following three conditions hold.

(i) X(x;, -, xp) and X(y;, =, Yo) a@ve both primitive.

(ii) X(xy, -, Xp) ¢S primitive and k is a multiple of h, or Y(y, ***, V) S
primitive and h is a multiple of k.
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(iii) The normal closure N in F of some primitive in F contains either
X =X(x;, *, X)) or Y=Y(y,, **, Yu). If N contains X, then k = 0; if N contains
Y, then h =0,

We obtain Theorem 1 as a consequence of the following more general result.

THEOREM 2. Let w=W(X(x;, -, x,), Y(¥y1, ", Ym), =, Z(2zy, =", 2p))
(w # 1) be an element of the free group F freely generated by x,, ‘-, x,,
Y1, s Ym>s ***s Z1, ***, Z2¢ . Suppose that none of X, Y, ---| Z is a proper power in
F. In order that elements uy, ", u,, vy, ***, Vo, ***, Wy, **, Wo Salisfying the
relation W(X(uy, =+, up), Y(vy, =, v, ==+, 4wy, -, wy)) = 1 genevate a free
group of vank n+m + -+ + 2 - 1, it is necessary and sufficient that at least one of
the following two conditions hold:

(i) a) Let F denote the free group freely genevated by X, 7y, -+, z. Then there
exists a primitive P(x,y, -+, z) whose normal closure in F contains W(x,y, ---, z).

b) There exists a partition of

{X(xl: "ty Xn), Y(Y]_; tt Ym)’ Tty Z(Zl’ I ZQ)}

into a pair of mutually exclusive subsets,

{X: Y, -, Z} = {XI’ Ty Xt} U {Xt+1’ ot XS},
wherve {Xi;1, ***, Xg} is nonempty and is part of a free basis of F.
c) The set {P,, -+, P.} is a set of primitives of F, where P;
(i=1,2, -, t) is oblained from P(X(xy, ***, x), Y(¥y1, """, Ym)> =", Z(21, ***, 2yp))

by rveplacing X; in P by 1.

(i1) Ome of the elements X(xy, **, Xp), Y(¥1, =", Yu)s =" Z(21, ***, Zy), say
X = X(x1, -+, Xpn), is in the normal closure in ¥ of some primitive P, and the nor-
mal closure of X in F contains W(X(x;, -, ), Y(¥1, =**, Ym), ***» Z(z1, ***, 29)).

Our method of proof, which is different from that used by others in earlier work
on this problem, rests on the arguments by which W. Magnus [8] proved the
Freiheitssatz and related results. Using these arguments, we obtain a statement
(Theorem 4) that generalizes a theorem of A. Karrass, W. Magnus, and D. Solitar
[4] on the elements of finite order in groups with a single defining relation. We
shall use explicitly the Hauptform of the Freiheitssaiz [8], Grushko’s Theorem [5],
and a result of Magnus [9], that if a group defined by n generators and a single re-
lation w = 1 can be generated by n - 1 elements, then it is a free group.

2. DEFINITIONS AND PRELIMINARY RESULTS

If p and q are elements of a group F and q lies in the normal closure of p in
F, we call p a root of q in F, and we write p 2gp q. I FC ?, then clearly p —g q
implies p —F ¢, while the converse need not hold; however it is easy to see that the
converse does hold if F is obtained by adjoining to F an element u such that ut is
a primitive of F for some t # 0.

A word w=w(x;, ***, X,) (w #1) in a group F freely generated by x;, *-*, X,
is called simple if there exists a free group of rank n - 1 generated by elements
uj, -, u, that satisfy the relation w(u;, -, u,) =1. This is equivalent to the con-

dition that the group G = <x1 sy Xy wixg, o, X)) = 1> (defined by generators
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Xy, ***, X, and the single defining relation w(x,, ---, x;) = 1) has a quotient group
that is free and of rank n - 1.

THEOREM 3. An element w of a free group F is simple if and only if w has a
primitive voot,

Proof. Let w(x;, *-*, x) have a primitive root y,;, which must then be an ele-
ment of a basis y1, ***, yn for F. Suppose ¢ is the retract of F onto its subgroup
generated by y2, -+, ¥n; then, since y; is in the kernel of ¢, w is in the kernel of
¢; therefore w is simple.

Conversely, let w be simple, and suppose w¢ =1 for some homomorphism ¢ of
F onto a free group H with basis y;, -**, yn-1. By Grushko’s Theorem, F has a
basis x;, ***, X, such that

\9=Y1, ', X9 =Vna1, X0=1.

Clearly, the kernel of ¢ is the normal closure of x,,. Since w is in the kernel of ¢,
it follows that x,, is a primitive root of w.

The application of this criterion would presumably require finding all roots of w
and then deciding which of these roots, if any, are primitive. Using topological tech-
niques, J. H. C. Whitehead [14] gave a solution of the second problem: to decide when
an element u in F is primitive. Later, E. S. Rappaport [10], and more recently, J.
P. Higgins and Lyndon [3], rederived Whitehead’s solution, using algebraic methods.
The problem of finding all roots of a word w appears to be very difficult, and we are
unable to solve it. However, we do obtain conditions on the roots of w, under certain
restrictions on w.

In looking for primitive roots p of an element r in a free group F, one must at
times distinguish between the cases r € F' and r ¢ F'. (F' denotes the derived
group of F.) For example, we have the following result.

THEOREM 5. Let F be a free group, and suppose p,q, r € F, r ¢ F'. If p is
primitive, p > r, and q — r, then p — q.

COROLLARY. Let F be free, and suppose p,q,r € F, r ¢ F'. If p and q are
primitive, p - v, and q — r, then p is either conjugate to q or to q-1.

The corollary follows from the theorem and a result of Magnus [8] to the effect
that if p and q are elements of a free group F, p is primitive, and q — p, then p
is conjugate either to q or to q-!.

The hypothesis that r ¢ F' is necessary. Otherwise, if r € F' and F is al-
ready free of rank 2, every primitive p has the property that p — r. Moreover, in-
finitely many primitives q in F are conjugate neither to p nor to p-!. For each
such q it follows that q — r and p % q.

To prove Theorem 5, note that, since q — r, we have the relation

r = II &' ¢®it,
i

for some t; in F and for some integers &;. Moreover, 27 £; #0, since r ¢ F'.
Since p is primitive, we see that F/N = F*  where F* is free and N is the normal

7 .
closure of p in F. From the relation r = Hi t; ! q81 t; it follows that
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= I (0 @5 ).

But rN =1, since p —p r. We want to show that p — q, in other words, that
gN =1,

Suppose gN #1. Let the first term of the lower central series of F* in which

gN does not lie be the kth term, and denote it by Fj. If the image of qN in F*/F¥
is g*, then g* # 1, but q* is in the center of F*/F{. Hence, by the relation

IT (¢;3)-1(aN)%i(t; N),

i

we see that 1 = q*zﬂ"L . This is a contradiction, since 27 ¢; # 0 and F*/Ff isa
free nilpotent group without elements of finite order.

3. SUFFICIENCY

THEOREM 2S. Let w = W(X(x3, -+, Xp), Y(y1, =", Ym), =*°, Z(z1, ", 2p))
(w # 1) be an element of the free group F freely generated by

X1y "5 Xny Y15 "5 ¥Yms 77Ty Z}, » 4y -

Suppose none of the elements X, Y, -+, Z is a proper power in F. Let F be the
Jree group on the free genevators X, y, ***, z. Then W is simple if one of the fol-
lowing two conditions holds:

(i) a) Theve exists a primitive voot P(x,y, -, z) of W(x,y, """, z) in F.
b) There exzsts a partition of {X Y, -, Z} mto a pair of mutually exclu-
sive subsets, {X, Y, -+, Z} = {Xy, - xt} U {xtH, -, X}, where
{Xt+ XS} zs not empty and is part of a free basis of F. (It may bethat t=0
and in, X} is empty.)

c) The set {P; , Pp, =, P:} is a set of primitives of F, where P;
(i=1,2, -, t) is obtained from PX(x1, -**, Xp), Y(¥1, ***, Ym), *°*, Z(Z1, ", Zp))
by replacing X; in P by 1. (If t =0, this condition is vacuous.)

(ii) There exists a primitive p such that p =5 U and U —5 w, where U is one
of the elements X, Y, -, Z.

LEMMA 1. If condition (i) of Theovem 2S holds, then
P(X(xy, ) Xq), Y(y1, =", Yy 75 Blz), °, 29)
is primitive in F.
Proof. For the sake of definiteness, assume that the elements X, Y, ---, Z have
been ordered so that X =X;, Y =X;, ---, Z =Xg, and that x, y, -**, z have been

relabeled so that u; =x, uz =y, *°*, ug =z. If t =0, the statement is obvious.
Otherwise, we show successively that '

R, = P(X;, up, ***, ug) is primitive,
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R, = P(X;, X,, u3z, ', ug) is primitive, ---,
R; = P(Xy, X, =, X;, W34, **, Ugy1, *°°, Ug) is primitive, -,
R; = P(X;, X,, ==+, X;, Uy, *°, Ug) is primitive.
Observe that R; is primitive if and only if G = <x1 , 'y Xp, U2, **,Ug; Ry = 1>

is free. But G is a free product of a pair of free groups with an amalgamated sub-
group; in particular, G has the presentation

<u1’°'°:us;P(u1,""us)=1> * (Xl;'“’xn>'
u1=X1

Clearly, G is free if u; is a primitive in the free group

<u19 Tty Ug P(ul’ Ty us) = 1> ’
or, equivalently, if (ul, e, Uug; Plug, o, ug) =1, u; = 1> is free and of rank
s - 2. But
<u1, uz’ L us; P(ul, uz, ---, us) = 1’ ul = 1> = <u2’ -.-’ us; P(l, uz’ -.., us) = 1>

is free and of rank s - 2, since, by (i), P; = P(1, Y, *-*, Z) is primitive in F, and
hence is primitive in the free subgroup generated by Y, ---, Z. Similarly, the fact
that R; is primitive implies that R;;; is primitive; hence,

Rt = P(XI: "t Xt7 Uger, °°°, us)

is primitive. Since {Xt 1 T XS} is part of a basis of F, the conclusion now
follows.

The proof of Theorem 28 is now clear. For if condition (i) holds, then Lemma 1
implies that P(X, Y, ', Z) is primitive in F. Moreover, by (i), P(x, y, ---, z) is a
root of W(x, y, ---, z); therefore, P(X, Y, *--, Z) isa root of w=W(X, Y, -, Z),
and w is simple by Theorem 3. If (ii) holds, then X is a root of w=W(X, Y, -, Z)
and P is a primitive root of X. This implies P is a primitive root of w, and again
w is simple.

THEOREM 18. Let w=W(X(x;, **, Xp), Y(¥1, ***, Ym)) (W #1) be an element
of the free group F freely generated by X;, ***, X, Y1, **"s Ym - Suppose that
neither X = X(x), -, x,) nor Y =¥(y,, .-+, y,,) ¢S a proper power in F, and let
W(X, 1) =Xb, W(1, Y) =YK, Then w is simple if one of the following conditions
holds:

(i) X and Y are both primitive;
(ii) X is primitive and k is a multiple of h, or Y is primitive and h is a
multiple of k; ,

(iii) X has a primitive root and k = 0, or Y has a primitive root and h = 0.

Proof. We apply Theorem 2S. Note first that condition (i) a), which asserts that
there exists a primitive root P(x, y) of W(x, y), is always satisfied. Moreover, if
P(x, 1) =x* and P(1, y) = yP, then (a, b) = 1, and P(x, y) can be chosen so that
ka = hb. (If W(x, y) is not an element of the commutator subgroup F' of the free
group on x and y, then Ial and |b| are fixed by the requirement that P(x, y) be a
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primitive root of W(x, y). If W(x, y) € F', then each primitive in F is a root of
W(x, y).) It now follows that the conditions of Theorem 1S imply the conditions of
Theorem 28S; in each case, w is simple.

4. ON FINDING ROOTS

LEMMA 2. Let F be the free group on the free genevalors xy, ***, X, let Hj
be the subgroup with basis X ltx xt for 2 <1i<n andall integers t cmd let H, be

the subgroup with baszs x (for some fixed k > 0) together with X7 tx. x1
2<iLn, t=0,1, - 1). (It is well known that these are bases, that Hj is
the normal subgroup of F generated by xz, ***, X,, and that H; is the normal sub-
group of F generated by xl, Xp, ***y Xp.) Suppose q € Hj, r € Hj (j=1 or 2), and
q —y T, where q is cyclically reduced If r contains exacltly one conjugate of X5,
say Xl "x,xY\, and q contains X,, then q has some conjugate q' = X7 qx such that
q — H; r.

Proof. Since q is a cyclically reduced root of r in F, we have the relation

r= Hi T 1q81 T; for some elements T; in F and certain integers €i . Hence,

* H(f‘lT) x; tax) )P i(x; Ty,

where, if H; = H}, a; is the exponent sum on x; in T;, and if H; =H,, a; is the
exponent sum on x; in T;, reduced modulo k, so that 0 <a; <k - 1 In each case,

r is in the normal subgroup of H; generated by the conjugates x1 qx1 . But r
contains exactly one conjugate of x,. It follows, by the Haupiform of the Frei-
heitssatz [8], that if q contains x;, then exactly one a; = a enters into the expres-

sion (*) above, and x;*qx} g T

THEOREM 4. Let w=W(X(x1, ***, Xp), Y(¥1, ", ¥m), " Z(z1, ***, 2g))
(w # 1) be an element of a free group F freely generated by

xl: '"7Xn, yl) T yms Ty Zl; T, 2.
Suppose none of the elements
X = X(X]., ...) xn)’ Y = Y(YI’ .'.’ ym): ...’ Z = Z(Zl’ ..-’ Z,Q)

is a proper power in F, and let q denote a root of w in F. Then either

(i) @ =% U and U —f w, where U is one of the elements X, Y, -, Z, or

(ii) q is conjugate to some element p = P(X, Y, -+, Z), where P(X, Y, ---, Z)
isawordin X, Y, *--, Z.

Moveover, if F is the free group on the free genevators X, y, ***, 2, then
P(X, Yy o, Z) —F W(X, y, ©*, 2

Proof. Note first that if only one set of generators, say xi, , Xn, appears in
W, then W = X* for some integer r. In this case, the theorem asserts that each root
q of XT is either a root of X or is con]ugate to Xt for some integer t. Equivalent-

ly, if the group ( Xy, v, X5 Ulxy, 7, X)) = 1> has an element X (X # 1) of finite
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order dividing r, then U(x;, -:-, X,) is conjugate to Xt. (This is a theorem of
Karrass, Magnus and Solitar [4] )

We may therefore assume that at least two sets of generators, say x;, ---, x,
and y;, ***, Ym, appear in W. Let q = Q(x1, -+, zg) be a cyclically reduced root of
w in F. The proof proceeds by induction on the sum ¢ of the lengths of
X, Y, -+, Z. The initial case is trivial. For the induction, we can assume that the
length of X, say, exceeds 1, and, since X is not a proper power, that X contains at
least two generators, say x; and Xx;.

Suppose first that neither x; nor x, has exponent sum 0 in X, and write these
two exponent sums as d-s and d-t, where (s, t) =1. Embed F in a free group F*
by ad]o1n1ng to F an element X such that xt =Xxj. Then F* has a basis
Xl, XZ_X2X1’ X3 =X3, "7y zﬂ =2y

Let X and @ denote the revisions of X and Q, respectively, written as words
relative to this basis. The exponent sums on X; in X and in Q are D a_nd k, say. If

k = 0, let FJ denote the subgroup of F* with basis X]'&2%j, =+, X1 2 Qxl, for all
1ntegers i; 1f k #0, let FJ denote the subgroup of F* whose bas1s is x'kI together
with x7i%, %}, xl zﬁxl (i=0,1, -, |k| - 1). Then X and Q are 1n FJ, and,
written as words XJ and QJ relative to the basis above, XJ has shorter length than
X. Since the corresponding words YJ . ZJ have not changed the corresponding
sum o7 is smaller than o. Moreover, if X Y, , Z are not proper powers, then
J, Y}, -+, ZJ are not proper powers. Also, the relation q —y w implies that
q —px W.

If X) or Xp, say X, has exponent sum 0 in X, we proceed similarly, taking
X; =X}, X3 =Xp, "'+, 29 =279 . In either case, the induction hypothesis applies to q
and w as elements of FJ.

(i) Suppose now that Q is a word in x;, -*-, X, alone. Then, if we set x; =1
for all i, the relation Q — W(X, Y, -+, Z) implies that 1 — W(1, Y, ---, Z); hence,
W(1,Y, -, 2)=1 and X — W. Also, if N is the normal closure of Q in F, then

F/N ~ <X1, ey Xn§Q=1> * <Y1, T Zﬂ> .

Now, the fact that WN = W(XN, YN, ---, ZN) =1 in this free product implies XN = 1;
hence Q — X, and condition (i) is fulfilled.

(i) In the remaining case q contains y;, say. K WJ is the revision of W in
FJ, then W) contains x7 1 y1Xj only for i = 0. Therefore, Lemma 2 is applicable,

and q is conjugate in FJ to some element q' such that ¢' _)F wi . By the induction

hypothesis (we have disposed of case (i)), we conclude that q' is con]ugate in F to

some element p = P(xJ, Y3, .-+, ZJ); hence, q and p = P(X, Y, *-, Z) are conjugate
in FJ and thus are con]ugate in F* Since p and q liein F, 1t follows by an earlier
remark that p and q are conjugate in ¥. Moreover,

P(X: Yy, s Z) - % W(X: Y, "’,'Z).

5. NECESSITY

THEOREM 2N. Let w=W(X(x;, ", Xp), Y(¥y1, ", Ym)s =" Z(z1, **, 20))
(w #1) be an element of the free group F freely genevated by x;, ***, X,,

Yys s Yo s Z1, *t, Zg . Suppose that none of the elements X, Y, -, Z is a
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proper power in F, Let F be the free group on the free genevators X,y, -,z If
w is simiple, then one of the following two conditions holds:

(i) a) There exists a primitive root P(x, y, **, z) of W(x,y, ***, z) in F.
b) There is a partition of {X, Y, =+, Z} into a pair of mutually exclusive
subsets, {X, Y, -+, Z} = {X|, X2, ***, X¢} U {Xiy1, =7, Xs}, wheve
{Xt+1 , vy Xgf is not empty and is part of a free basis of F. (It may be that t =0
and {X;, -+, Xt} is empty.)
c) The set {Pl, Py, -, P} is a set of primitives of F, wheve P;
i=1,2,--,t) is obtained from P(X(xy, -**, x), Y(y1, ***, ¥e), ***, Z(z, -, Zp))

by replacing X; in P by 1. (If t =0, this condition is vacuous.)

(ii) There exists a primitive p such that p —g U and U — W, where U is one
of the elements X, Y, -+, Z.

Proof. If w is simple, it has a primitive root p, by Theorem 3. By Theorem 4,
either condition (ii) above holds, or we may assume that p = P(X, Y, :--, Z) is a
word in X, Y, -+, Z. Also, P(x, y, ***, z) is a root of W(x, y, -+, z) in F, and
since P(X, Y, ---, Z) is primitive, it follows that P(x, y, -:, z) is primitive in F,
and (i) a) holds. Let {X.;;, ', X4} be the maximal subset of {X, Y, -, Z} con-
sisting of primitives. We show that {Xt+ 1, ***, Xs} is not empty; clearly, it is part
of a free basis of F.

Let N be the normal closure of p in F. Then F/N, free of rank
n+m+ -+ £ -1, has as a homomorphic image the free product

(X1, "ty Xp; X = 1> * <Y1, Y, ¥m, ", 21, v, 203 P(L Y, -, Z)=1> .

By Grushko’s Theorem [5], F/N has a basis consisting of n+m + -+ ¢ - 1
elements whose images are wholly contained in (and therefore generate) each free
factor. Therefore, either the first factor is generated by fewer than n generators,
or the second factor is generated by fewer than m + -+ + £ generators. The theo-
rem of Magnus [9] then implies that one of the two factors is free and either X or
P(1, Y, ---, Z) is primitive. I P(1, Y, ---, Z) is primitive, then repetitions of the
argument above eventually show that at least one of the elements X, ¥, -+, Z is
primitive; hence {Xt+1, vy Xs} is not empty. Moreover, if X, is not primitive,
then P; is primitive.

THEOREM 1N. Let w = W(X(x;, -+, Xp), Y(¥1, ***, V) (W #1) be an element
of the free group F freely genevated by xy, ***, Xpn, Y1, *°"» Ym- - Suppose neither X
nov Y is a propev power in F, and let W(X, 1) = XP W(1, Y) = YK, Ifw is simple,
then one of the following thvee conditions holds:

(i) X and Y are both primitive;

(ii) X is primitive and Kk is a multiple of h, or Y is primitive and h is a
multiple of k;

(iii) X has a primitive root and k = 0, or Y has a primitive voot and h = 0.

Proof. Theorem 1N follows immediately from Theorem 2N, for condition (ii) of
Theorem 2N is equivalent to condition (iii) above. Otherwise, conditions (i) a), b), c)
hold and (i) or (ii) above follow, since the fact that W(X, 1) = X is primitive implies
that |h| =1 and k is a multiple of h. Similarly, the fact that W(1, Y) = Yk is
primitive implies that h is a multiple of k.
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