PERIODIC SOLUTIONS OF THE TRICOMI PROBLEM
Dan Petrovanu

INTRODUCTION
Consider the system of differential equations

u(x, y) = Flx, y, u, v),
(0.1)
vy(x, y) = G(x,y, u, v)

and the boundary conditions
(0.2) u(0, y) = 7(y), v, 0)=o0(x).

Here F(x, y, u, v) and G(x, y, u, v) are continuous vector functions (possibly of dif-
ferent dimensions) defined in a region

x| <a; <=, |y] <ay<°, |u] <uy, |v] <vy,

while o(x) and 7(y) are prescribed continuous vector functions defined for

le Laj;<L» and ]y] <ap <o, Tricomi's problem (see [10]) is to find two vector
functions u(x, y) and v(x, y) that, together with u, and u,, are continuous in

|x| <a;, |y| <a,, and that satisfy the system (0.1) and the boundary conditions
(0.2) on |x| <aj, |y| <az. We emphasize that a solution of (0.1) - (0.2) does not
generally have a continuous second-order mixed partial derivative, so that the sys-
tem (0.1) - (0.2) cannot generally be reduced to a system of the form

Wiy = H(X, ¥, W, Wy, wy).

Under some regularity conditions on F and G (see F. Tricomi [8], G. Villari
[10], G. Santagati [7]), there exists at least one solution of problem (0.1) - (0.2);
under other more restrictive conditions, there exists a unique solution of
(0.1) - (0.2). In this paper we investigate the existence of periodic solutions for the
Tricomi problem. We use a method of L. Cesari [5], which consists in treating first
a slightly modified (relaxed) problem. In particular, L. Cesari used the method in
[2], [3], and [4] to obtain the periodic solutions of the Darboux problem

Uygy = £(x, ¥, u, uy, uy),  ulx, 0) = v(x), w0, y) = pny).

We remark that the problem (0.1) - (0.2) is equivalent to the problem of finding
continuous solutions of the system

u(x, y) = 7(y) +S F[&, y, u(t, y), v(E, y)lag,
0

Y
v(x, y) = G(x)+5 Glx, n, u(x, n), v(x, n)ldn .
(6]
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If F, G, and 0 are periodic of period T in x, a continuous solution u(x, y),
v(x, y) may nevertheless fail to be periodic in x, for y # 0. One sees immediately
that a necessary condition for a solution u(x, y), v(x, y) to be T-periodic in
x (|y| <a) is that

T
{7 Fle, v, u, 9, v, piag =0 (Iy] <a).
0

This leads us to consider (see [3]) the modified problem
u, = F(x, y,u,v) -m(y), vy=G(xy,uv),
ux+T,y) = ux, y), vx+T,y)=v(x y),

(0.3) u(0, y) = 7(y), u(x, 0) = o(x),

T
m(y) = 71 | Flg, v, ute, v), v(e, vag,
0

where |x| <« and |y| < a, where o(x) is a prescribed continuous vector function,
T-periodic in x, where 7(y) is a prescribed continuous vector function, and where

F and G are T-periodic in x. Suppose we prove that under certain conditions (see
for example Theorem 1 below) the modified problem (0.3) has a solution; then a
second problem arises, namely to find additional conditions that allow us to deter-
mine the data o(x) and 7(y) in such a manner that m(y) = 0. In this paper, we shall
discuss this second problem not in its generality, but only in a simple case. On the
other hand, if we try to find criteria for the existence of periodic solutions that are
T-periodic in x and y, as in [4], we must consider another modified problem (see
Section 2). In Sections 1 and 2, the reader will observe a close analogy with Cesari’s
arguments and results in [2], [3], [4]. In Section 3, we extend the existence theorems
of Sections 1 and 2 to the modified problem. The extension is analogous to extensions
of Cesari’s theorems that A. K. Aziz [1] obtained by using more stringent estimates
in Cesari’s treatment of the relaxed problem. With obvious modifications, our re-
sults can probably be extended to more general systems, as is indicated in Villari’s
paper [10].

1. BASIC THEOREMS

In what follows, |z| denotes the Euclidean norm of the vector z.

THEOREM 1. Lel a and T > C denote posilive constants, and lel
Ng, Ny, S, 8,, L, M, P, P, be nonnegative constants such that

(1.1) N; +5 T < Py, No +852a < P2,
and denote by A and R the intevvals
A=[0<x<T [y[<al, R=[0<x<T, |y|<a, |u| <Py, |v] <P;].

Suppose o(x) and 7(y) ave n- and m-dimensional, veal-valued vector functions,
continuous in 0 < x < T and |y| < a, and such that
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(1.2) o(T) = 0(0), |ox)| <N, ((0<x<T)),
(1.3) 70| <Ny (Jy| < a).

Suppose F(x, y, u, v) and G(x, y, u, v) arve m- and n-dimensional, real-valued vec-
tor functions, continuous in R and satisfying the conditions

(1'4) F(T’ Y’ u’ v) = F(OJ Y’ u, v)’ G(T’ y, u, v) = G(O, y, u, V)’
(1.5) | Fx, y, u, v)| < Sy, |G, v, u, v)| < S;
and

|F(X) Y, ﬁ; V)—F(X, Yy, u, V)I S Llﬁ"u, ’
(1.6)
IG(X; Yy, q, {’)'G(X; y, u, V)I S M‘{"V'

for 0<x<T; |yl <a; |ul, |u] <P1; |v|, |¥] < P2. Then, for
(1.7) 2LT < 1 and Ma <1,
theve exist two vector functions &(x, y) and ¥(x, y) (the first m-dimensional, the

second n-dimensional) defined and continuous (together with dy and \IJY) in A, and
an m-dimensional vector function m(y), continuous in |y| < a, such that

(1.8) ®(0, y) = &(T, y) = 7(y),

(1.9) ¥(x, 0) = o(x), ¥(0,y)=¥(T,y),
(1.10) m(y) = T™' S:JF(E, y, ®(&, y), ¥(§, y))d§,
(1.11) d.(x, y) = Fx, y, ®(x, y), ¥(x, y)) - m(y),
(1.12) Vo (x, y) = Glx, y, 2(x, y), ¥(x, y)),

for all (x, y) € A. Thus, if we extend ®(x, y), ¥(x, y), F(x, y, u, v), and

G(x, vy, u, v) toall of |x| <=, |y| <a, |u| <Py, |v| <Pz, by means of T-

jl)e';lfiodz'cz'ty in X, then equations (1.11) and (1.12) ave satisfied in the stvip |x| < oo,
y| La.

Proof. Let ¢(x, y) and ¥(x, y)be m- and n-dimensional vector functions.
Remark 1. If ¢(x, y) and Y(x, y) satisfy the conditions

#0, y) = (T, y) = 7(y), w¢(x 0)=o0(x), T,y =0,y),
(1.13)

lo(x1, ¥) - ¢lxz, Y| <281 |x1 - x,|, |Wlx, y1) - ¥(x, y2)| <Sz2ly;-7v2

for all 0 <x, x;, x, < T and |y|, |y1|, |y2! < a, then

(1.14) lo(x, v)| < Py, |9x v)] <Pz (% ¥) € A).
Indeed,
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lox, v < 60, ¥)| + | ¢(x, y) - (0, ¥)| < |7(v)| +28,x,
lo(x, y)| < |&(T, 9| + | (T, ¥) - ¢(x, y)| < |7(y)] +2S, (T - x);
thus
|o(x, y)| < Ny +28; min(x, T-x) < N; +8; T < P,.
On the other hand,
lu(x, v)| < Jwtx, 0] + |w(x, ¥) - wix, 0)] < |o&)| +5;|y| < Ng+Sa < Py,

Note also that (1.13) implies the existence a.e. of ¢, and ¥y, together with the
condition |¢,| < 281, [¥y| < S, a.e.in A.

Now F(x, y, u, v) and G(x, y, u, v) are continuous on R, and o(x) and 7(y) are
also continuous functions. Thus there exist scalar functions w(a), w,(8), w3(),
wyla), m1(a), 72 (B), m3(y), m4(B), continuous and nondecreasing in [0, +), such that

w1(0) = wx(0) = w3(0) = wa(0) = 71(0) = 7(0) = 73(0) = w4(0) = O
and
| F(xy, v, 0, v) - F(x,, 5, u, v)| < 0,(]x; - x5]),
|F(x, y1, 4, v) - F(x, y2, 4, v)| < wally1 - y2]),
IF(X’ ¥y, 4, vl) - F(x, y, u, VZ)I < (U3(|V1 - VZI);

(1-15) IG(X]_y y, u, V) - G(XZy y, u, V)l ﬂl('Xl - XZI)J

IN

AN

!G(X: i, 4, V)"G<X: Y2, 4, V)i 772(13’1 —yZI)’

lG(X’ y, up, V) - G(X, y, uz, V)I _<_ 7T3(|111 - uZI);
lotx)) - o) < wullxy - x2]), |7 - 72| < 7mallyy - y2D),

for 0<%, x1, X2 <5 |y], [val, [val <a5 ul, juil, Jual <Pys vl [vil,
lv,| <P,. Let

(1.16) 11 (8) = (1 - 2LT) ! [m4(8) + 2T w,(B) + 2T w3(S,B)],
(1.17) np(a) = (1 - aM)~!w (@) +an; (@) +an;(25;2)].

Evidently, n,(8) and 7, (a) are continuous and nondecreasing in [0, +<), and
n1(0) = 112(0) = 0.

Now let E be the linear space of the (m + n)-dimensional vector functions that
are continuous in A. Denote by ¢(x, y) the vector formed by the first m compo-
nents of an element of E and by ¥(x, y) the vector of its last n components. Thus,
an element of E will be denoted by

o(x, y)
z(x, y) = .
Y(x, y)
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Let " . “ denote the norm

(1.18) lz|| = sup|¢(x, y)| +sup |y(x, v)]

in E, where the supremum is taken in A. The convergence in this norm is the uni-
form convergence on A for each component of the vector z € E.

Let K consist of all elements of E satisfying (1.13) together with the inequalities
|¢’(X: yl) - ¢(X, Yz)l S 171 (Iyl - yZI);

|¢(X1, Y) - ‘J’(xzy Y)l S 772(|X1 - le)

(1.19)

For any z =l: 3] € K, (1.13) is satisfied, and thus, by Remark 1, the inequali-

ties (1.14) are satisfied. Hence, F(x, y, ¢(x, y), ¥(x, y)) and G(x, y, ¢(%, ¥), ¥¢(x, y))
are defined and continuous in A. Thus

T
(1.20) m(y) = T1 | FG, v, o, v), wle, y)at
0

is defined and continuous in |y| < a. Now let

¢(%, y) ®(x, y)
T: z(x, y) = - Z(x, y) =
Y(x, y) ¥(x, y)

be the map Z(x, y) = (72) (X, y) defined by

o(x, y) = 7(y) + SX {F(E, v, o(¢, v), WE, v) - m(y)} dE,
0
(1.21)

Yy
¥(s,¥) = 06+ | Glo m, s, 1), Yl 1)

for every z(x, y) € K.

We shall prove that 7 maps K into K. Observe first that
(1.22) lm@y)| <s;  (Jy| <a).
We see from (1.20) and (1.21) that
(T, y) = 7(y) = (0, y), ¥(x,0)=o0(x), ¥(T,y)=¥0,y).
On the other hand, (1.21), (1.22), and (1.5) imply that
|@(x1, ¥) - ®(xz, )| < 281 [x) - x5],

III’(X’ Y]) - \I’(X; yZ)I < SZ IYI - YZI .
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Thus &(x, y) and ¥(x, y) satisfy (1.13). From (1.20), (1.15), (1.6), (1.13), (1.19), we
now obtain the inequality

|m(y)) - m(y2)| < wallyr - val) +ws(Sz|y1 - v2|) + Lo (|y1 - v2]),
and hence, from (1.21), (1.3), (1.16), we find that
{‘I’(X, y1) - o(x, Yz)l
Sagllyr - va) +2Twy(ly) - ya) + 2T wa(Sa |y - v2| ) +2TLy (y; - v2])
=n,(|lyy - v,D)-
Similarly, we deduce from (1.21), (1.15), (1.6), (1.13), (1.19), (1.17) that

I‘I’(X]_y Y) - ‘I’(XZ; Y)I

~

< w4(|x1 - le) +a.111(|x1 - xz|)+a113(281 [x1 - le)+aMn2(]x1 - xzi)

= n2(]x; - x3]).

Thus 7 maps K into K.

It is obvious that
| 721 - 72, < @TL+aM)|z; - 2| + 2T ws(|z; - z2])) + 75(]|z; - 22)

for z,, z, € K, and hence 7 is a continuous map from K to K.

Finally, it is clear from (1.13) and (1.19) that K is convex, closed, and (by the
theorem of Arzeld and Ascoli) compact with respect to the norm of E. By Schauder’s

®(x, y)
fixed-point theorem, it follows that there exists an element Z(x, y) = € K
T(x, y)
such that
a(x, 3) = T+ | {F(E, v, 9(E, ), W, ¥) - my)} g,
0
Yy
ik, y) = o)+ | Gl m, 6k, 1), Wk, n)an,
0
e
m(y) = mg g(y) = T~ S F(¢, y, ®(&, y), ¥(£, y)dE,
’ 0

for 0 <x< T, |y| <La. Obviously, ®, and ¥, exist and are continuous everywhere
in A, and we have the relations

d,(x, y) = F(x, y, ®(x, y), ¥(x, y)) - m(y),

v (x, y) = G(x, y, &(x, y), ¥(x, y)).
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This completes the proof of Theorem 1.

Remark 2. The conditions of Theorem 1 are not enough for uniqueness, as the
following example shows: Take T=1, a=1, o(x)=0, 7(y) =0,

F(x, y, u, v) = 37vsin 27x, G(X,y,u,V) = ZIuIUz sin 7x,
for 0 <x<1 and for all y, u, v. Then the system

= 2|u| 1/2 gin 7x

u 3nv sin 27x, v

X

Yy
has the trivial solution u =0, v =0, and also the solution

6

ly|ysinbax, v(x,y) = |y|ysin*

X .

u(x, y)

Both solutions satisfy the condition m(y) = 0. We cantake Ng=N; =M =L =0,
T=1 a=1, S;=3n, S2=2, P; =47, P2 =3, and we observe that although all con-
ditions of Theorem 1 hold, there are two distinct solutions of (1.8) - (1.12).

THEOREM 2 (uniqueness). Let w3(6)=L06, m3(y) = My, where L) and M)
are nonnegative constants. Then, under the hypotheses of Theovem 1, theve exist a
unique vector function

®(x, y)
7Z(x, y) = ,
¥(x, y)

continuous (together with ®, and V) in A, and a unique vector function m(y), con-
tinuous in [-a, a], such that conditions (1.8) to (1.12) are satisfied.
Proof. We employ a standard technique used by Cesari in [2]. Let
$1(x, y) ®2(%, )

Zl(X’ y) = ’ ZZ(Xy Y) =
(%, y) V2(x, y)

and let m;(y) (i =1, 2) be given by (1.10). Suppose that (1.8) to (1.12) are satisfied
by both Z,(x, y) and Z,(x, y). Since Z;(x, y) = Z,(x, y) implies m;(y) = mz(y), it
suffices to prove that Z;(x, y) = Z,(x, y), in other words, that &;(x, y) = ®,(x, y)
and ¥(x, y) =¥,(x, y). Suppose this is false. Then

(1.23) x(x, y) = |&,(x, ¥) - @5(x, y)| + |T1(x, ¥) - ¥a2lx, y)| # 0

in A. Without loss of generality, we can suppose that there exists a minimal number
s (0 < s < a) such that x(x, y) #0 in each strip

0<x<T, s<y<s+c (c>0,s+tc <a).

Let @ = sup |®(x, y) - ®2(x, y)| and B = sup |¥,(x, y) - ¥2(x, y)|, where the
supremum is taken over the strip 0 <x<T, s<y<s+c (s+c<a). Then
|m (y) - my(y)| < Lo +1L,8,
and hence
|®1(x, y) - ®2(x, y)| < 2TLa +2TL; 8
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for 0<x<T, s<y<s+c. Also,

|9, (%, ¥) - ¥,(%, y)| < cMB+cM, o
for 0 <{x<T, s<y<s+ec, and thus
(1.24) a < 2TLa +2TL;B8, B < cMB+cM;a.
It follows from (1.23) that
(1.25) a+B>0 and a>0,8>0.

If a =0, the second relation of (1.24) gives B < cMB < aMB, that is, 8 = 0 (because
Ma <1 in (1.7)). Thus (1.25) does not hold. If a > 0, then we deduce from (1.24)
that

2TL

* S 1oorn P

and choosing ¢ small so that

2TL, M,
Ct=e| Mtyogn | < b

we obtain the inequality 0 < 8 < c; 8, with ¢; < 1; hence 8 =0. Putting 8 =0 in the
first of relations (1.24), we find that o < 2TLea, with 2TL < 1, by (1.7). This contra-
dicts our assumption that @ > 0. Theorem 2 is thereby proved.

THEOREM 3 (stability). Under the conditions of Theorems 1 and 2 (that is, with
w3(6) = L 6, m3(y) =My, and L, M > 0) the unique solution &(x, y), ¥(x, y),
m(y) of (1.8) - (1.12) depends continuously on o(x) and 7(y).

Proof. We prove the theorem for the strip A'=[0<x<T, 0 <y <c], with
¢ = a/k sufficiently small (k is an integer). By repeating the argument for the

strips [0<x<T, nc<y<(n+1)c] (n=1,2, -+, k-1, n=-1, -2, -=-, -k), one
®(x, y)

shows the continuous dependence of Z(x, y) = on 0(x) and 7(y)..
¥ (x, y)

Let 0, (x), 7(y) and 0,(x), 7,(y) be two pairs of functions as in Theorems 1
and 2, and let ®; (x, y), ¥, (x, y), ®2(x, y), ¥2(x, y), m(y), mp(y) be the correspond-
ing solutions of (1.8) - (1.12). Let

£ = sup |0 1(x) - 02(x)| +sup |71(y) - T2(¥)],
a = sup |@(x, y) - (%, ¥)|,
B = SUP l\pl(xy Y) - \IIZ(X: Y)l )

where the supremum is taken over 0 < x < T, 0 <y < c. We obtain the relations
|my(y) - mp(y)| < Lo+L,8,
|®, (%, y) - &,(x, y)| < 2TLa +2TL,B+¢,

I\Ill(x, y) - ¥, (x, y)[ < eMB+cM;a+¢.
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Thus
a < 2TLa +2TL B +¢, B <cMB+cMja+e,

and hence, by (1.25), (1.7), and the inequality ¢ <a,

cM, 1

(1.26) BT tT ot

The last relation and the first condition in (1.25) imply that

(1.27) <| a1, 2TL; M, o+l 1+ 2TL,
. a < T+————————1_aMc 1 - aM €.
Taking

a _ (1 -aM)(1-2TL) _

k- ©¢< 2TL, M, = Mz,

that is, k > aM;!, we obtain the estimate

o+ MLy <
TLtg—aw ¢ = Ms <1,
and thus, by (1.27),

1.28 1 (2T

(1.28) OJST—_'—E +1-3.M € = Mye.

Inequality (1.26) implies 8 < M5¢, and from (1.28) it follows that
a+f S (M4+M5)8 .

This completes the proof of Theorem 3.
As in [2], we now specialize to the case where m(y) = 0.

PROPOSITION 1. Suppose that all the hypotheses of Theovem 1 hold, and that
F(x, y, u, v), G(x, y, u, v), 0(x), 7(y) are defined for |x| <=, |y| <a, |u| <Py,
|v| < P,. Suppose that the velations

Fx+T,y,u,v)=Fxyuv), GEx+T,yuv)=G6Ey,uv)),

and
(1.29) F(-x,y,u,v)=-Fx,y,u,v), o(-x)=0(x), G(-x,y,u, v)=G(X,y,u, V)

hold for |x| <=, |y| <a, |u| <Py, |v| < P,. Then the conclusion of Theorem 1
holds with m(y) = 0.

Proof. Let K; consist of all vector functions in K that satisfy (1.13), (1.19), and
the relations

(1-30) ¢(-X, Y) = ¢(X’ Y); IP('X, Y) = lp(x’ Y)-
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By virtue of the relations (1.29) and (1.30), the function

t(x, y) = F(x, y, ¢(x, y), ¥(x, y))

satisfies the relation f(-x, y) = -f(x, y), and it follows that
LT
m(y) = T {71, y)ag = 0.
0

Furthermore, from (1.21) and (1.30) we see that &(-x, y) = ®(x, y) and
¥(-x, y) =¥(x, y). Thus 7 maps K; into K;, and the remainder of the proof of

Theorem 1 remains unchanged.
2. PERIODIC SOLUTIONS OF THE TRICOMI PROBLEM

THEOREM 1*. Let T be a positive constant, let No, Ny, S}, S,, L, M, P;, P,
be nonnegative constants such that

N1 +8;T<P, Ng+8T<P;,,
and denote by A* and R* the intevvals
A*=[0<x<T, 0<y<T], R*=[0<x<T, 0<y<T, |ul| <Py, |v|] <P,].

Suppose o(x) and 7(y) ave n- and m-dimensional vector functions, continuous
in 0<x<T, 0Ly <T, and such that

o(T) = 0(0), |ox)| <Ny ©<x<T),
7(T) = 7(0), |7(¥)| < N; (O<Ly<T).

Suppose F(x, y, u, v) and G(x, y, u, v) are m- and n-dimensional vector functions,
continuous in R*, and satisfying the relations

F(T, y,u, v) = F(0, y, u, v), F(x, T, u, v) = F(x, 0, u, v),
(2.1)
G(T’ Y} u’ v) = G(O, Y’ u’ V)’ G(X’ T’ u’ V) = G(x’ 0’ u’ v) ?
(2.2) IF(X, Yy, 4, V)l _<_ S]_ s IG(X1 y, u, V)l _<_ SZ’
and
| Flx, y, §, v) - Fix, v, u, v)| < Lli-uf,
(2.3) )
|G(X’ y, u, v) - G(x, v, u, V)l < lef - VI

forall 0<x<T, 0<y<T; |u|, |8 <P1; |v|, |¥]| £ P2. IF2LT <1 and
2MT < 1, then for 0 < x, y < T there exist two vectov functions &(x, y) and ¥(x, y)
that ave continuous, together with &, and Ty, and two continuous vector functions
m(y) and n(x), such that

(2.4) ®(0, y) = &(T,y) = 7(y), @, 0) = &(x, T),
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(2.5) ¥(0, y) = ¥(T,y), ¥(x, 0)=19(xT)=o0(x)),
T

(2.6) m(y) = 70 [ FE, v, 2, v), v, v,
0
T

(2.7) n(x) = 71 S G(x, n, ®(x, n), ¥(x, n))dn ,
0

(2.8) . (x,5) = F(x, y, (x, y), ¥(x, y)) - m(y),

(2.9) \Ify(x, y) = G(x, y, ®(x, y), ¥(x, y)) - n(x)

forall (x,y) € A*. Thus, if we extend all functions &(x, y), ¥(x, y), m(y), n(x),
F(x, y, u, v), G(x, y, u, v) to all of |x| <=, |y] <, |u| <Py, |v] <P, by
means of T-periodicity in x and y, then the system (2.8) - (2.9) is satisfied in the
whole x,y-plane.

Proof. Note first that the relations (2.4), (2.5), (2.8), and (2.9) imply (2.6) and
(2.7). Note also that (2.1), (2.4), (2.5), (2.6), and (2.7) imply that

m(0) = m(T), n(0) = n(T).

(Thus the extension of m(y) and n(x) by T-periodicity in x and y is justified after
we have proved the theorem.)

Remark 1*, If ¢(x, y) and ¥(x, y) satisfy the conditions
'#(0, y) = ¢(T, y) = 7(y), ¢(x, 0) = ¢(x, T),
(2.10) <¢(0,y) = ¥(T, y), ¥(x, 0) =y (x T) = o(x),
|6y, ¥) - o(xp, ¥)| <281 % - x5, |wix, y) - wx, v2)l < 2850y - v,
for 0<%, Xy, X5, ¥, ¥1, Y2 < T, then one can prove, as in Section 1, that
lox, )| < P, |wlx, 9| <Py

forall x and y (0<%, y<T).

On the other hand, there exist scalar functions
wy (@), w,(B), ws(y), wyle), m (@), 7,(B), m5(v), 7,(B),
continuous and nondecreasing in [0, «), such that
w;(0) = wy(0) = w3(0) = wy(0) = 7(0) = 7,(0) = 7w3(0) = 7, (0) = O

and
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IF(X]_; y, 4 v) - F(Xz; Yy, 4, V)I S wl(lxl-XZ')’
’F(X, Y1:u’ V)— F(X, YZ’ u, V)I _<_ wz(lyl' Yzl):

|F(X, v,u, vy - Fx, 5,1, Vz)l < w3(|V1 - VZ‘)’

(2.11) { |G(x}, v, 4, V) - G(x,, y, 0, V)| < m(|x; - x,]),
IG(X; Yi, 4, V) - G(X, Y2, 4, V)l S 7T.?.(Iyl - YZI)’
|Gx, v, uy, v) - G(x, y, uz, v)| < 73(|u; - uz|),

T(y2)| < mllyy-va]).

|o(x)) - o(xx)| < wullxy - %5]), |7(y))

Let now

0.12) { n3@) = (1 - 2LT) "1 4B) + 2Tw, (8) + 2Tw; (25, 8)],
12
ni@) = (1 - 2MT) " [w () + 2Tr (@) + 2T75(28; @)].

Then n’f and 777? are nondecreasing and continuous, and 75 71(0) = nz*(O) = 0. Let
E* be the space described in Section 1, except that the interval A is replaced by the
interval A*. Let the norm in E be defined as in (1.18), with the difference that the
supremum is taken on A*. Let K* consist of all elements of E* satisfying (2.10)

and

{|¢(X, vi1) - ¢(x, Yz)l < WT(Iyl - Yzl),
(2.13)

lwix1, ¥) - wxz, v)| < n2(]x1 - x2]).

Consider the map 7% z(x, y) — Z(x, y), where

[ #(x, Y)] |:<I>(x, y):l
z(x, y) = and 2Z(x,y) =
(x, y) ¥(x, y)

2(x,3) = T)+ | {F(E, v, 6, 3), W&, v) - m»)} ag,
0

are defined by

(2.14)

Yy
¥(x, y) = o(x)+j {G(x, 1, ¢(x, n), ¥(x, n)) - nx)} an,
0
with

1 T
m(y) = T~ S F(E, y, $(¢, y), W(E, y))dE,
0

T
n(x) = T'IS Glx, 1, ¢(x, 1), ¥x, 1))an .
0
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Almost exactly as in the proof of Theorem 1, one can show that 7* maps K* into
K* and that 7* is a continuous map in the norm of K*. Since K* is convex, closed,
and compact, Theorem 1* is a consequence of Schauder’s fixed-point theorem.

Appropriate changes produce the following analogue to Proposition 1.

PROPOSITION 1*, Suppose that all the hypotheses of Theorem 1* hold, and that
F(x, y, u, v), G(x, y, u, v), 0(x), 7(y) are defined for |x| <=, |y| <, |u| <P,
]Vl L Py. Suppose

Fx+T,y,u,v)=FXx,y,uv)=Fx y+T,uv),

Gx+T,y,uv) =G y,uv)=Gx y+T,u v),
and
F(-x, y,u,v) = -Fx, y,u, v) = -F(x, -y, u, v),
G("'X, Yy u, V) = G(X, Y, u, V) = _G(X, -Y) uJ V))
o(-x) = o(x), 7(-y)=7(y).

Then the statement of Theovem 1* holds with m(y) =0 =n(x).

We leave the proof to the reader. It is similar to that of Proposition 1, with the
difference that one considers the transformation 7* on the subset K’f consisting of
all pairs of functions (¢(x, y), ¥(x, y)) that satisfy the conditions

¢('X, Y) = ¢(X, .V) = ¢'(XJ _Y)y W(*Xy Y) = ¢(X, Y) = ll/(xy _Y)-
We can now prove a uniqueness and a stability theorem similar to Theorems 2

and 3. Notice that by means of the principle of contractive maps we can easily prove
the following existence and uniqueness theorem.

THEOREM 4%*. Under the hypotheses of Theorem 1%, suppose that ws(y) =Ly
and m3(6) = M; 6, andlet L* = max (L, L), M* = max(M, M,). Then, if

0 < 2T(L*+M*) < 1,

there is a unique solution (®(x, y), ¥(x, y)) of (2.4) - (2.9). This solution is the
(uniform) limit of the successive approximations given by .

b5, ) = 7@+ §{FE, 5, 0p1(, ¥, W16 ¥) - my ()} g,
0

Yy
W, ¥) = 06+ | {G(, m, op1(x 1), Yo 105, 1) - my_1 (0} dn
0
(p=1,2, ), where ¢o(x, y) = 7(y), Yo%, y) = 0(x), and where

T
my(y) = T} SO F(E, v, dplE, ¥), Wolt, y)dE,
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T
np(x) = T SO Glx, 1, dp(x, 1), Wplx, n))dn .

3. EXTENSIONS

Let a and T be positive constants, and let S;, S, M, M, P;, P, be nonneg-
ative constants such that

(3.1) M2+2SIT S Pl’ M1+Sza S P,.

Let A=[0<x<T, |y|<a], R=[0<x<T, |y|] <a, |z| <P;, |w| <P,]. De-
note by (H;) and (H,) the following hypotheses.

(H{) The vector functions F(x, y, z, w) and G(x, y, 2z, W) are continuous in R
and satisfy the conditions

|F(x, y,21, wy) - Fx, 5, 22, wp)| < wi(|z] - z2|)+wp(|wy - w2|),

(3.2)

|G(X, Y, 2, Wl) - G(X’ Yy, 22, WZ)’ .._<_ w3(|21 - z2|)+w4(|w1 B W21)3
and
(3.3) |Fx, v, z, w)| <81, |G 7,z w)| <S;

for 0<x<T, |y| <a; |z|, |z1], |22] < Py1; |w], |wi], |wa] < P2, where
wia), wa(B), wila), wa(B) are continuous and nondecveasing scalar functions in
[0, =), with w1(0) = w(0) = w3(0) = w4(0) = 0. Suppose also that

KT, y, z, w) = F(0, y,z,w), G(T,y,z w) =G(0,y,z w)

for |y| La, |z| <Py, |w| <P,.

(Hp) The vector function o(x) is continuous in 0 < x < T, and o(0) = o(T). The
vector function 7(y) is continuous in |y| < a, and

(3.4) l[ox)| <M, |7 <M,

for 0<x<T, |y| La.

Consider the problem

(3.5) uy = F(x, y,u, v) - m(y), vy=G(xy,uv)),
T
(3.6) m(y) = T {7 R, v, ue, v), v, s,
0
(8.7) u©, y) = w(T, y) = 7(y), v(x,0)=o0(), v0,y)=v(T,y),

for (x, y,u, v) € R,

Remark 1. Set uy(x, y) = p(x, y), vy(x, y) = q(x, y). Then two vector functions
u(x, y), v(x, y), continuous in A, with partial derivatives u, and v, continuous in A,
and satisfying (3.5), (3.6), and (3.7), have the property that p(x, y), q(x, y) satisfy
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p(x, y)
T
(3.8) = F(x,y, (B1p)x, y), (B2q)x,y)) - T~} S F(&,y, (B1p)(&,y), (B2a)(&, y))dE,
0

a(x, y) = G(x, y, (By p)(x, y), (B2a)(x, y)),

where

(3.9) (B16)(x,y) = 1)+ 0, e,
0
¥y

(3.10) (B20)(x, y) = o)+ | 0, m)an.
0

Conversely, if (p(x, y), a(x, y)) is a continuous solution of (3.8) such that

q(T, y) = q(0, y), and if we set u(x, y) = (B;p)(x, y) and v(x, y) = (B24q) (x, y), then
(u(x, y), v(x, y)) is a solution of (3.5), (3.6), (3.7).

Remavrk 2. Taking into account the continuity of F and G under the hypothesis
(H;), we conclude that there are two scalar functions 7 (@), 7,(8), continuous and
nondecreasing in [0, «), with 7;(0) = 7,(0) = 0, such that

|F(x1, v, 2, w) - Fxz, v, z, w)| < m1(|x;1 - x2]),
|F(x, y1, 2, W) - F(x, y2, 2, W| < 72(ly1-vy2l]),
(3.11) |G(xy, ¥, 2, w) - G(x2, ¥, z, w)| < m1(]x] - x2]),
|Gx, y1, 2, W) - G(x, v, 2z, W)| < 75(|y1 - v2l),
lo(x1) - oxp)| < millx1-x2]), 7@y - 7G| < 7(ly; - v,D)

for 0<x, %1, x,<T; |y, |y1], lv2| <a; |z] <Py; |w| <Py,
Let

{ Q1(6) = 71 (6) + w1 (281 8), R2(6) = 2[7(8) + w2(S26)],
(3.12)

93(6) = Wl(ﬁ) + w3 (281 5), 94(5) = T2 (5) + (x)4(Sz 6).

THEOREM 5 (existence). Suppose that hypotheses (H;) and (H,) hold and that,
with the notation (3.12), the continuous solutions of the equations

t
p(t; 0) = ﬂ1(6)+w2[7r1(5)+5 p3(T; 6)dTJ (t [0, a]),
0



346 DAN PETROVANU

t
pa(t; 6) = 2,(8) + w, [nz(é)-l—S pa(T; 8)dr
0

T T
-+ T-l W, ﬁ2(6)+5 pz('rl; 5)d71 dr (t € [OJ T])J

_ . -
p3(t; 8) = Q3(6) + wy 171(<3)+5 p3(7; 6)aT (t € [0, al),
0

t
p4lt; 0) = ©4(0) + w3 WZ(6)+S p2(7; d)ar (t € [0, T])
0 _

satisfy the conditions limg_, o p;(t; 6) =0 (i =1, 2, 3, 4), uniformly with respect to t.

Then theve exists a solution (u(x, y), v(x, y)) of (3.5), (3.6), and (3.7), continuous
in A together with vy and v . (Thus, extending this solution by T-periodicity in x,
zlfoglretkefr with F, G, and o, we obtain a periodic solution in the stvip !x[ < oo,
vyl La.)

p(x, y)
alx, y) |’
where p and q are m- and n-dimensional continuous vector functions in A.

Proof. Let E be the linear space of the continuous vector functions (:

Let K be the subset of the elements of E satisfying
T
(3.13) |p(x, y)| <281, Jalx y)| <8z, o, y) = q(0,y), 5 p(¢, y)di = 0
0

for (x,y) € A, and
(3.14) {'P(Xl: y1) - plx,, Yz)l < pilyy, |xg - Xz|)+Pz(Xz, ly1 - v2]),
latx;, v1) - alxp, v2)| < pslyy, [%) - x]) +palxz, |y1 - v2l).
Let | - | be the norm of E, defined by

p(x, y)
= sup lp(X, Y)I + sup IQ(X, y)l ’

q(x, y)

where the suprema are taken over (x, y) € A. Define the map 7: [ g ] _,[ g:l by

T
P(X, Y) = F(X: Y, (B]_ p)(x; Y), (qu)(xa Y)) - %‘S‘ F(E; Y, (Bl p)('g’ Y)’ (qu)(f, y))d‘ga
0

Q(x, y) = G(x, y, (B1p)(x, ¥), (Bra)x, y)).

By (3.9), (3.10), (3.4), (3.13), and (3.1), we see that |Bjp| < M, +28;T < Py,
|B,q| <M, +aS, < P,, that is, P(x, y) and Q(x, y) are defined and continuous for
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P | ¢ K. On the other hand, the set K is obviously convex and closed. By the

theorem of Arzela and Ascoli, it is also compact in the norm of E. Thus, if we
prove that 7 maps K into K and that 7 is continuous in the norm of K, then
Theorem 5 is a consequence of Schauder’s fixed-point theorem applied to the map 7
and the set K.

We prove first that 7 maps K into K. For l:g:l € K, it follows from (3.9),
(3.10), (3.11), (3.13), (H,), and (H,), that

¥l
S p3(n; |x1 - x2|)dn
0

|P(x;, v1) - Plxa, v)| < my|x) - x3|) + 01028, [x; - x5])

¥
S ps(m; |x; - x,|)dn
0

+ w; [ﬂl(lxl - le)+

]

91(!?{1 - le)-i-wzlj’nl(lxl - X2|)+

= p1(v1; |x1 - %2{),

IP(Xz, Yl) - P(XZ’ Yz)] < Qz(lyl = Yzl)

X2
+w; Iiﬂz(lyl -ya) + SO pa(&; |y - YZl)d§:|

1 T £
+T° wy| 7|y, - y2|)+j po(&y; |yy - v2|)dg) |a¢
0 0

= py(x5; |y1 - ¥2).
Qx;, v1) - Qlxz, v1)| < Q3(|%) - x3])

Y1
50 P3(77§ |X1 - le)dn

:|= P3(yy; |X1 - le)’

+ w4|:171(|x1 -X2|)+
|Qx,, v) - Qlx,, ¥2)| < Q4llyy - v2l)

X2
+w3[w2(lyl - Yz|)+S po(&; |y; - yzl)dé] = palx,; ly; - v, ])-
0

Thus,
| P(x;, v1) - P(xz, y2)| < pily1; |x1 - x2]) + p2(x2; |y1 - v2I),

Q(x1, v1) - Qlx2, v2)| < p3ly1; |x1 - x2|) +palxz; |y1 - v2|) -
On the other hand,

T
|Px, y)| <28, |Q& y)| <S8z, QT,y) =QO,y)), j; P(t, y)dt = O
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for[g:le K, and hence 7 maps K into K. Now, if Zi=[g%], zi=|:gi]
: .
(i=1,2), then '

12, - Z,|
< 20(T ||z) - 2z3]]) + 2w2(a |21 - z2|) + 03(T || 2 - 2z2]) + wala ||z - 2z2]).

This shdws that 7 is continuous.

COROLLARY. Suppose that w,(8) = Ld, wy(0) = M6, where L, M are positive
constants, and that

(3.15) el’T < 14217,

Then the second hypothesis of Theovem 5 holds, and thus theve exists a solution
of (3.5), (3.6), (3.7) in the stvip |x| <=, |y| <a.

We do not give the proof here, because it is a simple transposition of the proof
given by A. K. Aziz [1, Corollary 2.1, page 564]. We merely remark that while the
single restriction on the constant M is that it be positive, condition (3.15) on L is
less restrictive than condition (1.7).
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