ON THE INTEGRAL COHOMOLOGY GROUPS OF THE CLASSIFYING SPACE FOR BSO

Robert R. Clough

1. INTRODUCTION

E. Thomas has shown [5] that all torsion in H*(BSpin; Z) is of order 2; a result corresponding to the long-known result for BSO. In the study of spaces realizing the image of the stable J-homomorphism [2], the cohomology of the classifying space BBSO for BSO regarded as an H-space is of interest. J. D. Stasheff [3] has found torsion of order 2ⁿ for each n in H*(BBSO; Z). In this paper, we shall present results for exterior algebras analogous to the results of Thomas for polynomial algebras in [4] and [5], in order to show that Stasheff has found essentially all of the higher torsion in H*(BBSO; Z).

If X is a graded set and λ : $X \to N = \{0, 1, 2, \dots\}$ is a function, then $A[\lambda]$ is the graded, abelian group generated by the elements of X subject to the conditions $\lambda(x) = 0$.

THEOREM 1. H*(BBSO; Z) and (E \bigotimes A[λ]) \bigoplus T are isomorphic as groups, where

- (1) E is the graded, anticommutative, Z-exterior algebra on one class P_{4i+1} of each degree $4i+1 \geq 5$;
 - (2) $\lambda: \{a_{8n} \mid n \geq 1\} \rightarrow N$ is defined by

 $\lambda a_{8n} = the greatest integer 2^k that divides 4n,$

and degree $(a_{8n}) = 8n$;

(3) 2T = 0.

2. PROOF OF THEOREM 1

Suppose X is a space each of whose integral cohomology groups is finitely generated. Let

$$\rho$$
: H*(; Z) \rightarrow H*(; Z₂) and ρ ': H*(; Z) \rightarrow H*(; Q)

be universal coefficient maps. Let $\{u_1, u_2, \dots\} \subset H^*(X; Z)$, where the u_n are all of odd degree. We shall prove the following analogue of Theorem 4.2 in [5].

PROPOSITION 1. Suppose the cohomology groups of X satisfy the following three conditions:

- (1) H*(X; Z) has no odd torsion.
- (2) $H^*(X; Z_2) = Z_2 E[w_1, w_2, \dots; x_1, x_2, \dots; y_1, y_2, \dots;$

$$z_0, z_1, z_2, z_4, \cdots, z_{2^i}, \cdots],$$

Received July 29, 1968.

where the differentials of the Bockstein spectral sequence satisfy the conditions

- (a) $d_1 w_n = x_n \text{ for all } n (d_1 = Sq^1)$,
- (b) $d_k z_n = 0$ for all k and for all $n = 2^j$,
- (c) $d_{k+1}(z_0 z_1 z_2 \cdots z_{2k-1}) = z_{2k} + (\text{sum of decomposables})$ for $k \ge 0$,
- (d) $d_k y_n = 0$ for all n and all k.
- (3) $\rho u_n = w_n x_n$.

Then there exist subsets $V = \{v_1, v_2, \cdots\}$ and $R = \{r_2, r_4, \cdots\}$ of $H^*(X; Z)$ satisfying the following three conditions:

- (4) Let $n = \sum_{i=1}^{k} \nu(i)$, where $2 \le \nu(1) < \dots < \nu(k)$ and where each $\nu(i)$ is a power of 2. Then order $(r_p) = 2 \nu(1)$;
- (5) $\rho(\mathbf{r}_n) = \mathbf{z}_{\nu(1)} \cdots \mathbf{z}_{\nu(k)} + \mathbf{t}_n + \rho(\mathbf{a}_n)$, where \mathbf{t}_n is a product of decomposable elements and $\nu(1)\mathbf{a}_n = 0$;
 - (6) $\rho(\mathbf{v_n}) = \mathbf{y_n}.$

Furthermore, if we define $\lambda: R \to N$ by $\lambda(r_n) = \nu(1) = \operatorname{order}(r_n)$, then, as groups,

$$H^*(X; Z) = (ZE[u_1, u_2, \dots, v_1, v_2, \dots] \otimes A[\lambda]) \oplus T$$

where 2T = 0.

We shall prove Proposition 1 in Section 4. Let us apply it now to the proof of Theorem 1.

 $Proof\ of\ Theorem\ 1.$ We shall show that BBSO satisfies the conditions of Proposition 1.

There is a homotopy commutative diagram

*
$$\rightarrow$$
 K(Z₂, 1) \rightarrow K(Z₂, 1),

 \downarrow κ_1 \downarrow κ_2

SU $\xrightarrow{\iota_1}$ BBSO $\xrightarrow{\rho_1}$ BSpin

 \downarrow \downarrow π_1 \downarrow π_2

SU $\xrightarrow{\iota_2}$ BBO $\xrightarrow{\rho_2}$ BSO

where the rows and columns are fibrations and all maps are the obvious ones. This diagram is well known, and it is easily deduced from [1].

By 4.3 of [2], H*(BBSO; Z_2) = Z_2 E[e_3 , e_4 , e_5 , \cdots], where degree (e_n) = n, e_n is ρ_1^* applied to the nth Stiefel-Whitney class if n \neq 2^k + 1, and e_n = Sq^I e_3 , where I = (2^{k-1}, \cdots , 4, 2), if n = 2^k + 1.

Now take $\left\{e_n \middle| \ n \text{ is even and } n \text{ is not a power of 2} \right\}$ as the w_i of Proposition 1. Take $\left\{e_n \middle| \ n \text{ is odd and } n \text{ is not 1 plus a power of 2} \right\}$ for the x_i . Take $\left\{e_n \middle| \ n = 2^k \right\}$ as the z_i and $\left\{e_n \middle| \ n = 2^k + 1\right\}$ as the y_i .

It is clear that X satisfies hypotheses (1) and (2) of Proposition 1. Since (2a) hold in BSpin, it holds in BBSO. Stasheff has shown that

$$d_n(e_{\mu(1)}\cdots e_{\mu(k)}) = e_{2\mu(k)} + t_{2\mu(k)},$$

where $(\mu(1), \dots, \mu(k)) = (3, 4, 8, \dots, 2^{n-1})$ and t_n is decomposable [3]. Thus, if we replace the e_m by $e_m + t_m$ for $m = 2^k$, the new e_m satisfy (2b) and (2c). Condition (2d) holds in BBSO because it holds in BSpin. Finally, condition (3) is a simple consequence of the diagram at the beginning of this proof together with [1, pp. 17-23].

3. SOME RESULTS ON BOCKSTEIN EXACT COUPLES

A Bockstein exact couple is an exact triangle

$$\begin{array}{ccc}
A & \xrightarrow{2} & A, \\
\delta & & /\rho \\
E
\end{array}$$

where A and E are either finitely generated, abelian groups or locally finitely generated, graded, abelian groups. In the latter case, ρ and δ have degree 0 and 1, respectively. In either case, we stipulate in addition that A has no odd torsion and that 2E = 0. Sometimes we denote the exact couple simply by (A, E).

Let α : $(A_1, E) \rightarrow (A_2, E)$ be a map of Bockstein exact couples such that α : $E \rightarrow E$ is the identity. The following two lemmas are easily proved.

LEMMA. If $a \in A_2$ and $2^n a = 0$, then $a \in Im(\alpha)$.

LEMMA. If $a \in A_1$, $a \neq 0$, and $\alpha a = 0$, then there exist sequences $\{a_n\}$ and $\{a_n'\}$ in A_1 and $\{e_n\}$ in E that satisfy all of the conditions:

- (1) $a = a_1$,
- (2) $a_n = 2a_n^1$,
- (3) $a'_n \delta_1 e_n = a_{n+1} \neq 0$,
- (4) $\alpha a_n^{\dagger} = \delta_2 e_n$.

If G is an abelian group or a graded abelian group, then T(G) is the torsion subgroup. From our two lemmas, we obtain the following proposition.

PROPOSITION 2. If α : $A_1/T(A_1) \rightarrow A_2/T(A_2)$ is an epimorphism, then α is an isomorphism of Bockstein exact couples.

Proof. The first lemma tells us that $\alpha: A_1 \to A_2$ is epic. The second tells us that α is monic if A_1 is (locally) finitely generated, because

$$a = a_1 = 2a_2 = 4a_3 = \cdots$$
.

Let E be the Z₂-vector space with basis

$$\left\{ c(i,\,j) \middle| \ i \geq 0 \ \text{ and } \ j \geq 0 \right\} \ \cup \ \left\{ \left. e(i,\,j) \middle| \ i \geq 1 \ \text{ and } \ j \geq 0 \right\}.$$

Define a sequence of maps

by

$$d_1: E \to E, \quad d_2: \operatorname{Ker}(d_1) \to \operatorname{Ker}(d_1), \quad \cdots, \quad d_{n+1}: \operatorname{Ker}(d_n) \to \operatorname{Ker}(d_n), \quad \cdots,$$

$$d_k c(i, j) = 0,$$
 $d_k e(i, j) = \begin{cases} 0 & (k \neq i), \\ c(i, j) & (k = i). \end{cases}$

Define the mapping $\lambda \colon \left\{ c(i,\,j) \middle| \ i \geq 0 \ \text{and} \ j \geq 0 \right\} \to N$ by

$$\lambda(c(i, j)) = \begin{cases} 2^i & \text{if } i \geq 1, \\ 0 & \text{if } i = 0. \end{cases}$$

Define $\rho: A[\lambda] \to E$ and $\delta: E \to A[\lambda]$ by $\rho c(i, j) = c(i, j)$ and

$$\delta e(i, j) = 2^{i-1} c(i, j), \quad \delta c(i, j) = 0.$$

Then $(A[\lambda], E)$ is a Bockstein exact couple.

PROPOSITION 3. If (A', E) is a Bockstein exact couple that gives rise to the spectral sequence (E, d) above, then (A', E) is isomorphic to $(A[\lambda], E)$.

Proof. The statement that $d'_n e(i, j) = c(i, j)$ means that there are elements $a'(i, j) \in A'$ of order 2^i such that

$$\rho'a'(i, j) = c(i, j) + \rho'x(i, j),$$

where $2^{i-1} x(i, j) = 0$ and $\delta' e(i, j) = 2^{i-1} a'(i, j)$ if $i \ge 1$.

Since all differentials of the c(0, j) are 0, we know that $\delta'c(0, j) \in 2^n A$ for all n. Thus $\delta'c(0, j) = 0$ and $c(0, j) = \rho'(a'(0, j))$, where a'(0, j) is of infinite order. The a'(i, j) can be chosen so that they generate A'.

Define $\alpha: A[\lambda] \to A'$ by $\alpha c(i, j) = a'(i, j)$ and $\alpha: E \to E$ by

$$\alpha c(i, j) = c(i, j) + \rho' x(i, j), \qquad \alpha e(i, j) = e(i, j).$$

Then α : $(A[\lambda], E) \to (A', E)$ is a map of exact couples that is an isomorphism on E and an epimorphism of $A[\lambda]/T(A[\lambda]) \to A'/T(A')$. By Proposition 2, α is an isomorphism.

4. PROOF OF PROPOSITION 1

If R is a commutative ring with identity and Y is a set of graded indeterminates, then RE[Y] is the graded, anticommutative, exterior R-algebra with elements of Y as generators. We now state the exterior analogue of Theorem 1 in [4] and use it to prove Proposition 1. The proof of our Lemma follows the proof of Proposition 1.

LEMMA. Let $A = Z_2 E[w_1, \dots, w_m; x_1, \dots, x_m; y_1, \dots, y_n]$ with derivation d of degree 1 such that $dw_k = x_k$ and $dy_k = 0$. Let

$$\mathbf{E} = \mathbf{Z}_2 \mathbf{E}[\mathbf{w}_1 \mathbf{x}_1, \cdots, \mathbf{w}_m \mathbf{x}_m; \mathbf{y}_1 \cdots \mathbf{y}_n],$$

and let S be the vector space spanned by all monomials of the form

$$\mathbf{w}_{\alpha(1)}\mathbf{x}_{\alpha(1)}\cdots\mathbf{w}_{\alpha(a)}\mathbf{x}_{\alpha(a)}\mathbf{w}_{\beta(1)}\cdots\mathbf{w}_{\beta(b)}\mathbf{x}_{\gamma(1)}\cdots\mathbf{x}_{\gamma(c)}\mathbf{y}_{\epsilon(1)}\cdots\mathbf{y}_{\epsilon(e)}$$

where α , β , γ , and ε satisfy all of the following conditions:

- (1) α , β , γ , and ε are strictly increasing,
- (2) $\gamma(1) > \beta(1)$,
- (3) the images of α , β , and γ are pairwise disjoint,
- (4) a, c, e > 0, and b > 1.

Then $A = E \oplus S \oplus d[S]$ as a vector space. Also, $d \mid S$ is monic and $Ker(d) = E \oplus d[S]$.

Proof of Proposition 1. If we think of the w_n and z_0 as being the w_n of our lemma, of the x_n and z_1 as being the x_n , and of the y_n and z_k for $k=2^j\geq 2$ as being the y_n , it is evident that

$$H^*(X; Z_2) = Z_2 E[z_0 z_1; w_1 x_1, w_2 x_2, \dots; y_1, y_2, \dots; z_2, z_4, \dots] \oplus S \oplus d_1[S].$$

Now write down a basis of S corresponding to the e(1, j) of Proposition 3 and a basis of d[S] corresponding to the c(1, j). By our hypotheses, we can now take as e(n, j) all monomials

$$z_0 z_{\nu(1)} \cdots z_{\nu(k)} w_{\alpha(1)} x_{\alpha(1)} \cdots w_{\alpha(a)} x_{\alpha(a)} y_{\beta(1)} \cdots y_{\beta(b)}$$

such that $n = \nu(1) + \cdots + \nu(j)$ and $z_{2\nu(j)}$ does not occur. We take as c(n, j) all monomials

$$\mathbf{z}_{\nu(1)} \cdots \mathbf{z}_{\nu(k)} \mathbf{w}_{\beta(1)} \mathbf{x}_{\alpha(1)} \cdots \mathbf{w}_{\alpha(a)} \mathbf{x}_{\alpha(a)} \mathbf{y}_{\beta(1)} \cdots \mathbf{y}_{\beta(b)}$$

such that $\nu(1)$ is the largest 2^j that divides n. As c(0, j), we take the set $\{u_1, u_2, \cdots; v_1, v_2, \cdots\}$, where the v_i are formal classes mapping to the y_i . The resulting exact couple gives the Bockstein spectral sequence for X, and Proposition 3 completes the proof of Proposition 1.

Proof of the lemma. We know that

$$H(A, d) = Z_2 E[w_1 x_1, \dots, w_m x_m; y_1, \dots, y_n].$$

From the exact sequences

$$0 \rightarrow \text{Ker}(d) \rightarrow A \rightarrow \text{Im}(d) \rightarrow 0$$
 and $0 \rightarrow \text{Im}(d) \rightarrow \text{Ker}(d) \rightarrow \text{H}(A, d) \rightarrow 0$

we see that Ker (d) has dimension $2^{2(m+n)-1}+2^{m+n-1}$ and Im (d) has dimension $2^{2(n+m)-1}-2^{m+n-1}$. The number of quadruples $(\alpha,\beta,\gamma,\epsilon)$ satisfying (1) to (4) is $2^{2(m+n)-1}-2^{m+n-1}$. Thus we need only show that d[S] generates d[A] as a vector space. Henceforth, we shall write y_{ϵ} instead of $y_{\epsilon(1)}\cdots y_{\epsilon(e)}$.

Now A has a vector space basis consisting of all $w_{\theta(1)} \cdots w_{\theta(p)} x_{\phi(1)} \cdots x_{\phi(q)} y_{\epsilon}$ in which θ , ϕ , and ϵ are strictly increasing. The derivatives of all such monomials generate d[A]; that is, elements of the form

$$\sum_{j=1}^{p} w_{\theta(1)} \cdots \hat{w}_{\theta(j)} \cdots w_{\theta(p)} x_{\phi(1)} \cdots x_{\phi(q)} y_{\varepsilon}$$

generate d[A]. Since A is an exterior algebra, all these elements have the form

$$\mathbf{e}_{\alpha} \sum_{\mathbf{j}=1}^{\mathbf{b}} \mathbf{w}_{\beta(1)} \cdots \hat{\mathbf{w}}_{\beta(\mathbf{j})} \cdots \mathbf{w}_{\beta(\mathbf{b})} \mathbf{x}_{\beta(\mathbf{j})} \mathbf{x}_{\gamma(1)} \mathbf{x}_{\gamma} \mathbf{y}_{\varepsilon},$$

where $e_{\alpha} = w_{\alpha(1)} x_{\alpha(1)} \cdots w_{\alpha(a)} x_{\alpha(a)}$, $x_{\gamma} = x_{\gamma(2)} \cdots x_{\gamma(c)}$, and α , β , γ , and ϵ satisfy (1), (3), and (4). If β and γ do not satisfy (2), observe that

$$\begin{split} d\left(\mathbf{e}_{\alpha}\left(\sum_{k=1}^{b}\mathbf{w}_{\gamma(1)}\mathbf{w}_{\beta(1)}\cdots\hat{\mathbf{w}}_{\beta(k)}\cdots\mathbf{w}_{\beta(b)}\mathbf{x}_{\beta(k)}\right)\mathbf{x}_{\gamma}\mathbf{y}_{\varepsilon}\right) \\ &= d(\mathbf{e}_{\alpha}\mathbf{w}_{\gamma(1)}d(\mathbf{w}_{\beta(1)}\cdots\mathbf{w}_{\beta(k)})\mathbf{x}_{\gamma}\mathbf{y}_{\varepsilon}) = \mathbf{e}_{\alpha}\mathbf{x}_{\gamma(1)}d(\mathbf{w}_{\beta(1)}\cdots\mathbf{w}_{\beta(k)})\mathbf{x}_{\gamma}\mathbf{y}_{\varepsilon} + \mathbf{0} \\ &= \mathbf{e}_{\alpha}\mathbf{x}_{\gamma(1)}\left(\sum_{j=1}^{b}\mathbf{w}_{\beta(1)}\cdots\hat{\mathbf{w}}_{\beta(j)}\cdots\mathbf{w}_{\beta(b)}\mathbf{x}_{\beta(j)}\right)\mathbf{x}_{\gamma}\mathbf{y}_{\varepsilon}. \end{split}$$

The remainder of the proof is obvious.

REFERENCES

- 1. H. Cartan, Démonstration homologique des théorèmes de periodicité de Bott. Séminaire Henri Cartan, 12ième année: 1959/60; Fasc. 2, Exp. 16 and 17. École Normale Supérieure, Secrétariat mathématique, Paris, 1961.
- 2. R. R. Clough, The Z_2 cohomology of a candidate for $B_{\text{Im}(J)}$. Illinois J. Math. (to appear).
- 3. J. D. Stasheff, Torsion in BBSO. Pacific J. Math. 28 (1969), 677-680.
- 4. E. Thomas, A note on certain polynomial algebras. Proc. Amer. Math. Soc. 11 (1960), 410-414.
- 5. ——, On the cohomology groups of the classifying space for the stable spinor group. Bol. Soc. Mat. Mexicana (2) 7 (1962), 57-69.

University of Notre Dame Notre Dame, Indiana 46556