ON THE INTEGRAL COHOMOLOGY GROUPS OF
THE CLASSIFYING SPACE FOR BSO

Robert R. Clough

1. INTRODUCTION

E. Thomas has shown [5] that all torsion in H*(B Spin; Z) is of order 2; a result
corresponding to the long-known result for BSO. In the study of spaces realizing the
image of the stable J-homomorphism [2], the cohomology of the classifying space
BBSO for BSO regarded as an H-space is of interest. J. D. Stasheff [3] has found
torsion of order 2" for each n in H*(BBSO; Z). In this paper, we shall present re-
sults for exterior algebras analogous to the results of Thomas for polynomial alge-
bras in [4] and [5], in order to show that Stasheff has found essentially all of the
higher torsion in H*(BBSO; Z).

If X is a graded set and A\: X —» N = {0, 1, 2, -} is a function, then A[)] is the
graded, abelian group generated by the elements of X subject to the conditions
Ax)x = 0.

THEOREM 1. H*(BBSO; Z) and (E(X) A[X]) ® T are isomorphic as groups,
where

(1) E is the graded, anticommutative, Z-exterior algebva on one class Py;.1 of
each degree 4i+ 1 > 5;

(2) A: {ag, |n>1} — N is defined by
Aagn = the greatest integer oK that divides 4n,

and degree (ag,) = 8n;
(3) 2T = 0.

2. PROOF OF THEOREM 1

Suppose X is a space each of whose integral cohomology groups is finitely gen-
erated. Let

p: H( ;2) - H¥( ;Z,) and p"H¥ ;2Z) - H¥ ;Q)
be universal coefficient maps. Let {uj, uz, *=*} € H¥(X; Z), where the u, are all

of odd degree. We shall prove the following analogue of Theorem 4.2 in [5].

PROPOSITION 1. Suppose the cohomology groups of X satisfy the following
three conditions:

(1) H¥X; Z) has no odd torsion.
(2) HY(X; Z3) = Z, Elwy, wp, **; X1, Xz, ***5 V1, V2, ="

20, 21, 22, Z4, " ZZi’ '"]3
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wheve the differentials of the Bockstein spectral sequence satisfy the conditions
(a) dywy = x, for all n (d; = Sql),
(b) dy.z,, =0 for all k and for all n = 23
(c) dyy4(zg2z 2, "**Z,%-1) = Z,x + (sum of decomposables) for k >0,
(d) dyyy, =0 for all n and all k.
(3) pu, = wpx,.
Then theve exist subsets V= {vy, vy, »-} and R={r,, vy, ---} of H¥X; 2)
satisfying the following thvee conditions:
(4) Let n = Eit:l v(i), where 2 < v(1) < .- < v(k) and where each v (i) is a
power of 2. Then order (r,) = 2 v(1);
(5) plry) =2y (1) 2y (k) T tn +p(ay), where t,, is a product of decomposable
elements and v(1)a, = 0; ‘
(6) p(vy) =y,.
Furthermore, if we define x: R — N by AMr,) = v(1) = order (r,), then, as groups,

H*(X; Z) = (ZE[u],; Up, ***, V1, V3, '"] ®A[>"])®T7

where 2T = 0.

We shall prove Proposition 1 in Section 4. Let us apply it now to the proof of
Theorem 1.

Pyoof of Theorem 1. We shall show that BBSO satisfies the conditions of
Proposition 1.

There is a homotopy commutative diagram

¥ K(Zz, 1) _— K(Zz, 1),

l l"l le

L P1
SU — BBSO — BSpin

l ‘L’”l i“z

) P2
SU — BBO —_— BSO

where the rows and columns are fibrations and all maps are the obvious ones. This
diagram is well known, and it is easily deduced from [1].

By 4.3 of [2], H*(BBSO; Z,) = Z, E[e3, e4, €5, *** ], where degree(e,) =n, e, is
p’f applied to the nth Stiefel-Whitney class if n # 2K + 1, and e, = Sqt ez, where
I=(2k-1 .. 4 2) if n=2K+1.

Now take {e,| n is even and n is not a power of 2} as the w; of Proposition 1.
Take {e,| n is odd and n is not 1 plus a power of 2} for the x;. Take {e,| n = 2k}
as the z; and {e,| n=2K+1} as the y;.

It is clear that X satisfies hypotheses (1) and (2) of Proposition 1. Since (2a)
hold in B Spin, it holds in BBSO. Stasheff has shown that
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dnlep (1) ep (k) = €2p k) * tap )

where (u(1), -+, n(k)) = (3, 4, 8, +++, 277!} and t, is decomposable [3]. Thus, if we
replace the e,, by e, +t,, for m = 2K, the new e, satisfy (2b) and (2¢). Condition
(2d) holds in BBSO because it holds in BSpin. Finally, condition (3) is a simple
cor]lsequence of the diagram at the beginning of this proof together with [1, pp. 17-
23. m

3. SOME RESULTS ON BOCKSTEIN EXACT COUPLES

A Bockstein exact couple is an exact triangle

A 2 a4,

6N /p

E

where A and E are either finitely generated, abelian groups or locally finitely gen-
erated, graded, abelian groups. In the latter case, p and 6 have degree 0 and 1,
respectively. In either case, we stipulate in addition that A has no odd torsion and
that 2E = 0. Sometimes we denote the exact couple simply by (A, E).

Let a: (A;, E) — (A,, E) be a map of Bockstein exact couples such that
a: E — E is the identity. The following two lemmas are easily proved.

LEMMA. If a € A, and 2%a =0, then a € Im ().

LEMMA. Ifa € Ay, a #0, and aa =0, then there exist sequences {a_} and
{an} in Ay and {e,} in E that satisfy all of the conditions:

(1) a = ay,

(2) a, = 2ay,

(3) a‘I’l— Ojep = apy; * 0,
4) aarll = 62en‘

If G is an abelian group or a graded abelian group, then T(G) is the torsion sub-
group. From our two lemmas, we obtain the following proposition.

PROPOSITION 2. If a: A;/T(A1) — Ay /T(A,) is an epimorphism, then « is an
isomorvphism of Bockstein exact couples.

Proof. The first lemma tells us that a: A; — A, is epic. The second tells us
that o is monic if A; is (locally) finitely generated, because

a=aj]=2a,=4a3=". N
Let E be the Z,-vector space with basis
{c(i,5)]i>0 and j >0} U {ei,j)|i>1 and j > 0}.
Define a sequence of maps

di: E — E, dj Ker(d;) — Ker(d;), -+, dp+1: Ker(d,) — Ker(d,), ---,
by
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0 k #1),
dkc(ii J) = 0) dke(i’ J) =
cli,j) (k=1i).

Define the mapping : {c(i, j)| i>0 and j >0} — N by
28 ifi>1,
Mc(i, §)) =
0 ifi=0.
Define p: A[A] — E and &: E — A[7] by pc(i, j) = e(i, j) and
se(i, j) = 21-le(i, j), e, j) = O.

Then (A[X], E) is a Bockstein exact couple.

PROPOSITION 3. If (A', E) is a Bockstein exact couple that gives vise to the
spectral sequence (E, d) above, then (A', E) is isomorphic to (A[r], E).

Proof. The statement that d; e(i, j) = c(i, j) means that there are elements
a'(i, j) € A" of order 2! such that
p'a'(, j) = c(i, j) + p'x(i, i),
where 2i-1x(i, j) = 0 and &'e(i, j) = 21-1a'(i, j) if i > 1.

Since all differentials of the c¢(0, j) are 0, we know that 6'c(0, j) € 2™ A for all
n. Thus 6'c(0, j) =0 and c(0, j) = p'(a'(0, j)), where a'(0, j) is of infinite order.
The a'(i, j) can be chosen so that they generate A'.

Define a: A[X] — A' by ac(i, j) =a'(i, j) and a: E — E by
ac(i, j) = c(i, ) +p'x(i, j), ae(i, j) = e(i, j).

Then a: (A[7], E) — (A", E) is a map of exact couples that is an isomorphism on E
and an epimorphism of A[x]/T(A[r]) — A'/T(A'). By Proposition 2, o is an
isomorphism. =

4. PROOF OF PROPOSITION 1

If R is a commutative ring with identity and Y is a set of graded indeterminates,
then RE[Y] is the graded, anticommutative, exterior R-algebra with elements of Y
as generators. We now state the exterior analogue of Theorem 1 in [4] and use it to
prove Proposition 1. The proof of our Lemma follows the proof of Proposition 1.

LEMMA. Let A=Z,E[wy, ***, W} X1, ", Xm; Y1, **", Ynl With devivation d
of degrvee 1 such that dwy = xj. and dyy = 0. Let

E = ZZE[WIXI, Yy WmEm Y1 "'Yn],
and let S be the vector space spanned by all monomials of the form

Vo (1) Xa (1) " Va(a)Xa (@) Wa(1) " Wa(b) Xp(1) " Ey(c) Ye(1) " Ve(e) s

wheve a, B, v, and € satisfy all of the following conditions:



ON THE INTEGRAL COHOMOLOGY GROUPS 313

(1) a, B, v, and £ ave strictly increasing,

(2) »(1) > B(1),

(3) the images of o, B, and y are pairwise disjoint,
(4) a,c,e>0, and b > 1.

Then A = E®S@® d[S] as a vector space. Also,d|$ is monic and
Ker (d) = E@® ds].

Proof of Proposition 1. If we think of the w, and zg as being the w, of our
lemma, of the x,, and z, as being the x,, and of the y, and zy for k=2J>2 as
being the y,, it is evident that

HYX; Z3) = ZoElzgzy; wix), waXp, 05 V1, Y2, 5 22, 24, 1 ©S®4, [8].

Now write down a basis of S corresponding to the e(1, j) of Proposition 3 and a
basis of d[S] corresponding to the c(1, j). By our hypotheses, we can now take as
e(n, j) all monomials

ZoZy(1) " Zyk) Va(1) Fa(1) T Va(a) Xa(2) Y1) T YB(b)

such that n = v(1) + --- + v(j) and zp,,(j) does not occur. We take as c(n, j) all
monomials

Zp(1) T Zp k) WB(1) (1) T Wala) Xafa) YB(1) T YB(b)

such that v(1) is the largest 2J that divides n. As c(0, j), we take the set

{ul, Up, ***; Vi, V2, -« } . where the v; are formal classes mapping to the y;. The
resulting exact couple gives the Bockstein spectral sequence for X, and Proposition
3 completes the proof of Proposition 1. =

Proof of the lemma. We know that
H(A, d) = Z2 Elwy; X1, ***, W Xm; Y1, **"» Ynl-
From the exact sequences
0 - Ker(d) = A —Im(d -0 and O — Im(d) — Ker{(d) — H(A,d) — 0

we see that Ker (d) has dimension 22(mtn)-1  om¥n-1 o4 114 (d) has dimension
22(ntm)-1 _ omin-1 = phe number of quadruples (o, B, v, €) satisfying (1) to (4) is
92(mtn)-1 _ gmin-1 = mhyg we need only show that d[S] generates d[A] as a vector
space. Henceforth, we shall write yg instead of yg(1) **Vg(e) -

Now A has a vector space basis consisting of all wg(1) = Wg(p)X¢(1) " Xp(q)Ve
in which 6, ¢, and ¢ are strictly increasing. The derivatives of all such monomials
generate d[A]; that is, elements of the form

P
j:EI Wo(1) " Wo(3) TTWo(p) Xg(1) T Xg(q) Ve

generate d[A]. Since A is an exterior algebra, all these elements have the form
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b
eq 27 Wg(1)" WB(3) " WB(b) X8() Xy (1) Xy Ve »

where ey = Wg (1)Xg(1) " Wa(a)Xg(a)s Xy = Xp(2) " Xy(c) and «, B, v, and ¢ satisfy
(1), (3), a,nd (4) If B and y do not satisfy (2), observe that

b
d (ea (kE W, (1)WB(1) " WB(K) *** Wg(b) XB(k))XyYe>
=1

i

d(eq Wy (1)d(Wg (1) *** Wg(K)) X, V) = € Xy (1)d(Wg(1) " W (k) Xy, Vg + 0
b

€a Xy(l)( 21 wg(1) " W () "’Wﬁ(b)XB(j))nys :
J:

1l

The remainder of the proof is obvious. =
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