SPECIFIED RELATIONS IN THE IDEAL GROUP
Luther Claborn

Introduction. Let J = 27 xi be the free abelian group based on the set {xi} .
We shall say that a subset I of elements of J satisfies condition o provided (i) all
coefficients occurring on elements of I are nonnegative, (ii) to each finite subset
X], ', X3 of {xi} and each finite set of nonnegative integers n;, -+, n, there
corresponds an element of I whose coefficient on x; is nj.

If A is a Dedekind domain and J is the divisor group of A (the free abelian
group based on the primes of A), then the set I of integral principal divisors satis-
fies (i) by definition, and the weak-approximation theorem says that I satisfies (ii).
Thus I satisfies condition «.

The main result of this paper provides a converse of the weak-approximation
theorem (at least for the case where J has a countably infinite base). We shall
prove a slight refinement (see Theorem 2.1) of the following assertion: If

J=27 x; is the free abelian group based on a countably infinite set {xl} and I is
a subset of J that satisfies condition «, then there exists a Dedekind domain A such
that the primes of A are in correspondence with the x; in such a way that the prin-
cipal divisors of A correspond to the elements of the subgroup generated by I.

This result fails for free groups of larger cardinality (we need a stronger hy-
pothesis on I than condition @, and the proofs require transfinite techniques in
almost every phase).

Section 1 of the present paper is devoted to some lemmas that are basically re-
finements of a technique, due to Goldman [3], for producing discrete valuations of
specified types. In Section 2 we use these lemmas to give a proof of the theorem
indicated above.

In Section 3 we give applications of the main theorem; we produce examples of
1) a Dedekind domain whose class group is cyclic of order n and all of whose prime
ideals fall into one class, 2) a Dedekind domain A whose class group is isomorphic
to Z, and with the property that each proper overring of A is a principal ideal do-
main, and 3) a Dedekind domain that is not an overring of the integral closure of a
principal ideal domain (see [1, Example 1-9 and Remark 1-10 on page 61]).

Finally, in Section 4, we show that we can realize any finitely or countably in-
finitely generated class group by a Dedekind domain with finite residue class fields
and unit group +1 (that is, in Goldman’s sense, by a “special” Dedekind domain).

1. Throughout this section, A denotes a principal ideal domain subject to the
four conditions

(1) A is countable,

(2) A has an infinite number of prime ideals,

(3) A/P is finite for all prime ideals P # (0),

Received May 12, 1966, and October 10, 1966.
This research was partially supported by the National Science Foundation,
GP-5478.

249



250 LUTHER CLABORN

(4) the characteristic of A is 0.

We denote the quotient field of A by F; if P =7A is a prime ideal of A, we de-
note the P-adic completion of F by F;, and the integral elements of F, by Ag. '
By vy we denote the P-adic valuation of Fj (or F).

LEMMA 1-1. Let A be a principal ideal domain satisfying (1), (2), (3), and (4).
Let m be a prime element of A, and let n be a nonnegative integev. Then theve ave
infinitely many maximal ideals M of A[X] such that M is the center on A[X] of a
valuation w with valuation ving W satisfying the three conditions a) W2 A [X],

b) the residue field of W is finite, and c) w(r) = n.

Proof, We treat first the case n > 0. Choose any monic irreducible element
g(X) of A/n[X], and let g(X) be a monic pre-image of g(X). Set M = (m, g(X)).

Since A is countable, the usual cardinality argument shows that there exist ele-
ments of F; that are transcendental over F. Multiplying by an appropriate integral
power of m, we can produce an element t in F; such that t is transcendental over
F and vﬂ(t) = 1. Adjoin to F; a root y of g(X)" - t, and set K = F(y). We can de-
termine an isomorphism a: F(X) — K by setting oz(r(X)) =r(y) for r(X) in F(X).
Let v denote the (unique) extension of v, to K, and define a valuation w on F(X) by
setting w(r(X)) = v(a(r(X))) for r(X) in F(X).

We shall show that w satisfies the required conditions.

Since g(X) is monic, g(X)® - t is monic in F;[X], and so y is integral over A;
This shows that w(X) = v(y) > 0, and clearly w(A) v(A) > 0, so that W2 A[X].
The center of w on A[X] contams 7 and g(X); since (m, g(X)) is a maximal ideal, it
must be the center of w on A[X]. The residue field of v is finite, and therefore the
residue field of w is certainly finite.

To see that w(r) = n, let e denote the reduced ramification index, and f the rela-
tive degree of v over v;. Certainly, [K: F;] < n deg g(X). Since ef < [K: F;], we
get the inequality ef < n deg g(X). If ¥ denotes the image of y in the residue field
of v, then g(y) = 0. Since g(X) is irreducible, we see that

f > deg g(X) = deg g(X).

From the relation g(y)® =t (in K) we deduce that nv(g(y)) = v(t). Thus e >n. We
conclude that f = deg g(X) and e =n. Therefore w(n) = v(n) = evy(n) =e =n.

To handle the case where n = 0, we proceed as follows. Choose any maximal
ideal N = (0, £(X)) with ¢ in A relatlvely prime to 7. Apply the above procedure
to produce a valuation w with center N on A[X] such that w(o) = 1. Then certainly
w(m) =

LEMMA 1-2. Let A be a principal ideal domain satisfying (1), (2), (3), and (4).
Let h(X) be a nonconstant ivreducible polynomial of A[X], and n a nonnegative in-
tegev. -Then there are infinitely many maximal ideals M of A[X] such that M is
the center of a valuation w with valuation ving W satisfying the conditions
a) W2 A[X], b) the residue field of w is finite, and c) w(h(X)) = n.

Proof. Choose any prime element ¢ of A that divides neither the leading coef-
ficient of h(X) nor the discriminant of h(X). Let h(X) denote the image of h(X) in
A/oA[X]. Then h(X) factors into distinct irreducible factors, say
h(X) = q;(X) -+ q(X). Set

g1(X) = q(X) and gx(X) = §2X) - qi(X).
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Then h(X) = g;(X)g,(X), with g;(X) and g,(X) relatively prime. Using Hensel’s
lemma, we factor h{X) over Ay [X] as h(X) = G1(X)G,(X), where

deg G; = degg; and (_}-l(X) =g;(X) (=1, 2).

Assume for the moment that n > 0. Let g;(X) and g,(X) denote elements of
A[X] such that deg g; = deg G; for i=1, 2 and g;(X) = G;(X) modulo ¢**! for
i=1, 2. Let t be an element of F; such that t is transcendental over F and
vg(t) =n. Adjointo Fy; aroot y of g;(X) - t, and let K = Fy(y). As in Lemma 1-1,
let v denote the extension of vy to K. We have an isomorphism ¢: F(X) — K given
by a(r(X)) = r(y) for r(X) in F(X), and we define a valuation w on F(X) by setting
w(r(X)) = v(a(r(X))). Set M = (0, g;(X)).

We shall show that w satisfies the conditions of the lemma. The element g, (X)
need not be monic; but since its leading coefficient is a unit in A, y is integral
over Ag. Thus w(X) = v(y) > 0, and again it is clear that w(A) = v(A) > 0; there-
fore W D A[X]. The center of w on A[X] contains o and g;(X); since (o, g;(X))
is a maximal ideal, it must be the center of w on A[X]. The residue class field of
w is again finite.

Finally we show that w(h(X)) = n. Let e denote the reduced ramification index,
and f the relative degree of v over v, . We have the inequality [K: Fq] < deg g (X),
and hence ef < deg g1(X). If § denotes the image of y in the residue field of v, then
g1(§) = 0. Since g;(X) is irreducible, f > deg g;(X) = deg g1(X). Thus e =1 and
f = deg g;(X). Since g;(y) =t in K, we find that

w(g1 (X)) = v(g,(y)) = v(t) = evy(t) = n.

Since g;(X) and g,(X) are relatively prime, w(g>(X)) = 0. From the relation
h(X) = g; (X) g, (X) modulo o®*! we deduce that w(h(X)) = n.

The case where n = 0 can be treated as in the proof of Lemma 1-1.

Remark. If w is a valuation produced by Lemma 1-1, then there exists a monic
polynomial f(X) in A[X] such that M = (7, £(x)) and w(f(X)) = 1. In fact, in the nota-
tion of the proof of that lemma, the polynomial f(X) = g(X) will do.

Also, if w is a valuation produced by Lemma 1-2, then there exists a monic
polynomial f(X) in A[X] such that M = (o, f(X)) and w(f(X)) = 1. In the notation of
the proof of that lemma, let g;(X) = a XX + -+« +a¢. Since ¢ does not divide ay;
we can choose b in A so that bay =1+ co for some ¢ in A. Let

g(X) = bg(X) - coxk,

Then M = (0, g(X)). Set

g(X) if w(g(X)) =1,
f(X) =
gX)+ o if w(g(X))>1.

LEMMA 1-3. Let wy, ***, Wg be valuations with distinct centers, each of which
is produced as in Lemma 1-1 or Lemma 1-2., Then, for any nonnegative integers
n,, -+, n,, there exists a monic irveducible polynomial p(X) of A[X] such that
w;(p(X)) =n; for i=1, -+, g.

Proof, Let w be one of the valuations, M its center on A[X], and 7 its center
on A. By the remark, we can choose an f(X) such that w(f(X)) =1 and M = (7, f(X)).
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Label the remaining centers so that £(X) is in M, ---, M, while f(X) is not in
Mga+1, ***, M. Notice that 7 cannot be in My, ++-, M,. Let t(X) be in

b
j=a+1 M; but not in LJ1 1 M;. Let c =deg t(X), and let d(X) be a monic poly-

nomial of degree greater than ¢ that is not 1n the center of any w; (i=1, , ).
Consider the polynomial q(X) = d(X)£(X) + 72t(X). By our choices, w(q(X)) =1, but
q(X) has value 0 for any of the remaining valuations. Clearly, q(X) is monic.

This shows that we can produce monic polynomials q;(X), ---, qg(X) such that

g nj
w; (q;(X)) = 6;5. Set P(X) = H1 1 9;(X) '. Then P(X) is a monic polynomial such
that WI(P(X)) n; for i=1, -, g.

Now let =y, **+, my; be the centers on A of wj, -+, wg (the 7; may not be dis-
tinct), let 6 be the product m -+ LA and let n = max; <j <g Nj. Choose a prime
element £ of A outside the set {m}, -, 7 } and let g(X) be a monic irreducible
polynomial over A/eA[X] of the same degree as P(X). Now choose a monic p(X) in

A[X] such that

p(X) = P(X) (6"*1A[X]), p(X)=gX) (cA[X]).

Then p(X) is irreducible, by the second congruence, and it has the same values for
Wy, ***, Wg as P(X), by the first congruence.

2. We now give a precise formulation of the main result.

o]

THEOREM 2.1, Let J = El Z x; be a free, countably genevated abelian group,
and let 1 be a subset of J satisfying condition o. Then theve exists a Dedekind
domain B whose prime ideals ave in correspondence with the genevators x; in such
a way that the principal divisors of A corvespond to the elements of the subgroup of
J generated by 1. B may be chosen so that it is countable and of chavacteristic 0,
and so that all its vesidue class fields are finite.

Proof. Let A be a principal ideal domain satisfying conditions (1), (2), (3), and
(4) of Section 2. Choose one representative from each set of associated irreducible
elements of A[X], and list these in some order t;, t, -

For convenience, let J, denote the subgroup of J that is generated by the ele-
ments of I whose coefficients on xj are 0 for j > n. Note that J, is finitely gen-
erated; in fact, J,, can be generated by a finite number of elements of I.

To begin the construction, we use the appropriate one of Lemma 1-1 or 1-2 to
produce a valuation wj such that wj(t;) = mj; > 0. There will be an element
ig =mjx) + -+ myx, (my, >0) of I. Again using either Lemma 1-1 or 1-2, we
produce valuations w,, :--, w,, with distinct centers on A[X] such that w;(t;) = m
for i=1, 2, ---, u. There exist elements i;, ---, ix of I that, together with ig,
generate J,. By Lemma 1-3 we can choose irreducibles tn y "ty tn from the list

in such a way that the value of t under Wy gives the coefflclent on X, of 1J , for
J
j=1,--,k and g=1,
Now choose the first element in the list that is not in the set {t;, tny, oo t

b

n

k
and call it t5. Let the value of t; for w; be n; (i=1, -+, u). The set I contains
an element

u v
= '21 nx,+ 27 nx. (o >0).
1:

jrurl 1Y
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Again, using Lemma 1-1 or 1-2, produce valuations w,,;, **+, w, such that
(1) Wj(t'z) = 1y for j=u+1l, -, v,

(2) the centers of wyy;, -+, W, are distinct from each other and the centers of

Wl’ o-.’ Wu’

(3) none of the centers of w1, ***, W, contains any of the elements
t;, ta, > " tnk (this is possible, since A[X] is a Hilbert ring; see [3]).
Now choose elements i,.j, ***, iy, of I that, together with ig, iy, =+, i, ip,

generate J,. By Lemma 1-3, we can select irreducibles tnk+1 y "ty tnh from our
list whose values under the w; give the coefficients on x;j of ixy), ***, in, for

j=1, -, V.
We continue this process, by induction, to obtain an infinite sequence {Wi}T of

[>0]
valuations; let W; be the valuation ring of w;. Set B = ﬂizl W;. Then B is the
required Dedekind domain. If t, is any irreducible in our list, then by the construc-
tion there exists an e' > e such that w;(t,) = 0 if i > e'; this shows that each ele-
ment of A[X] has positive value for only a finite number of the w;. B is therefore
a Krull domain. Since the centers of distinct w’s are distinct maximal ideals of
A[X], the prime ideals of height 1 of B are relatively prime to each other; there-
fore B is a Dedekind domain.

Let F be the quotient field of A. Each element f(X) of F(X) can be written as

f(X)=u H:;l t?i, where u is a unit in A and the n; are integers, almost all 0. By
the construction, each t; gives a divisor corresponding to an element of I; this shows
that the divisor of f(X) corresponds to an element from the subgroup of J generated
by 1. Also, the construction provides that every element of I is realizable from
some f(X) in F[X].

The remaining assertions concerning B are clear.

3. We apply Theorem 2-1 to obtain three examples.

Example 3-1. There exists a Dedekind domain B, having cyclic class group of
order n, such that all the prime ideals of B are in one class.

Construction. Let J = Z):Zl Zx;, and let I consist of all elements 27 m;x; of

J such that m; > 0 for all i and n divides 2 mj. The set I satisfies condition a.
By Theorem 2-1, we can produce B, using this J and I. Let P be some prime ideal
of B. If Q is another prime ideal of B, then P™ and P2-1Q are both principal
ideals. This shows that P and Q are in the same class.

Example 3-2. There exists a Dedekind domain B such that the class group of B
is infinite cyclic, and such that if C denotes a generator of the class group of B, then
every prime ideal is either in C or in C-1,

Construction. Let J = 227 X;, and let J,; be the subgroup of J generated by all
elements {x,+ Xn+1}°1° . Let I consist of the elements of J; with nonnegative co-
efficients. I satisfies condition «. Let B realize J and I in accordance with Theo-
rem 2-1. Let P; be the prime ideal of B corresponding to x;, for i=1, 2, ---,
Then P;P;,; is a principal ideal for all i > 1; therefore, if C denotes the class
containing P, then P, is in C for odd n, and in Cc-! for even n.

Remark. If B is a Dedekind domain produced as in Example 3-1 or 3-2, and B'
is a proper overring of B, then B' is a principal ideal domain.
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Example 3-3. There exists a Dedekind domain B such that if a is a nonunit in
B, then (a) is not a semiprime ideal.

Construction. Let J = 27 Z x;, and let J; be the subgroup of J generated by all
elements {x,+ 2x,.;}7 . Let I consist of the elements of J; with nonnegative co-
efficients. I satisfies condition a. Let B realize J and I in accordance with Theo-
rem 2-1. Since the last nonzero coefficient of every nonzero element of J; is even,
no nonunit of B generates a semiprime ideal.

Remark. Since we can choose B of characteristic 0, B cannot be an overring of
the integral closure of a principal ideal domain A in a finite algebraic extension of
the quotient field of A [2, Proposition 2-8, p. 803].

4. The construction involved in Theorem 2-1 gives us no control over the units;
we now rectify this situation.

THEOREM 4-1. Let A be a principal ideal domain satisfying conditions (1), (2),
(8), and (4) of Section 2. Let C be a finitely ov countably infinitely genevated
abelian group. Then theve exists a Dedekind domain B whose class group is iso-
movphic to C and whose units are the same as those of A.

Proof. We can write C ~ R;/K;, where R; is a free group with a countably in-
finite number of generators. We can choose K; free on a basis S; ; by changing the
basis for R, if necessary, we may assume that all coefficients occurring on ele-

ments of S; are nonnegative. (To see this, let R; = ET Z x; ; we know that we may

choose a basis {Wi} for K, where w; = 27 ;z 1 mj Xj.) We shall show by induction
that, changing x; to -x; if necessary, and making elementary transformations on the
w’s, we can obtain the result. Suppose that by such alterations x;, '+, x; have been
changed to Y, ***, Yy, and that w;, *--, wic have been changed to Wy, ', Wi in
such a way that in each W; (1 <i <k) each coefficient occurring on X; (1 <i <k)
is nonnegative. Let

Wil = Drp1¥per .E nyX; .
i<k

If nyyg <0, set Xyi) = - Xkyt1 ; otherwise, set Xiy1 =xk+1. I nj (1 <j<Kk) is
negative and Yj has coefficient 0 in all W; for 1 <i<Kk, set Xj=-Y;. Iithere is
a W, (1 <a <Kk) in which the coefficient on Y; is positive, then add a suitably large
multiple of W, to wy,;.

Order all the elements of R; with nonnegative coefficients as r;, r,, ---. In-

clude R; in the larger free group R =R; @ EoloZyi. Augment S; to Sz by add-
ing to S; all elements of the form y;+ r;. Let K, be the subgroup of R, generated
by all elements of S;. Then clearly Rz /K2 ~ R1/Kj . Continue this process to pro-
duce R, and S, for each n > 0. Set

o oo
s=URr, ama 1=Us,.
n=1 n=1

Then I satisfies condition @ and is free, and if K is the subgroup of J generated by
I, then J/K ~ C.
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Now apply the construction of Theorem 2-1, using this J and I. It is clear that
since the elements of I are free, we may make the irreducible elements of A[X]
correspond to the elements of I.

Let F be the quotient field of A, and let £f(X) be in F(X). Write

[se] n.
f(X)=u Hi:l t;(x) *, where u is a unit of A and t;(X) is an irreducible element of
A[X]. If s; is the element of I to which t;(X) corresponds, then £(X) corresponds

0
to 27;-; n;s;. If £(X) is a unit in B, then n; = 0 for all i, since the s; are free.
We conclude that £f(X) is a unit of A.

COROLLARY 4-2. Let C be a finitely (or countably infinitely) generated
abelian group. Then there exists a Dedekind domain B all of whose vesidue class
fields are finite, whose unit group is +1, and whose class group is isomorphic to C.

Proof. Apply Theorem 4-1 with A = Z.
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