STRUCTURE THEOREMS FOR
REGULAR LOCAL NOETHER LATTICES

Kenneth P. Bogart

1. INTRODUCTION

The concept of a Noether lattice was introduced by R. P. Dilworth [2] as an ab-
stration of the concept of the lattice of ideals of a Noetherian ring. A Noether lattice
is a modular multiplicative lattice satisfying the ascending chain condition in which
every element is a join of elements called principal elements. The principal ele-
ments are characterized by a pair of identities that are satisfied by the principal
ideals of a ring. A generalization of Krull’s principal-ideal theorem for Noether
lattices states that the rank of a minimal prime containing a principal element is at
most 1.

A Noether lattice is local if it has a unique proper maximal element. The defini-
tions of dimension and rank carry over directly from Noetherian rings to Noether
lattices. A local Noether lattice of dimension n is 7regular if its maximal element
is a join of n principal elements. The structure of arbitrary regular local Noether
lattices is closely related to a special class {RLn} of Noether lattices.

The elements of RL, are those ideals of F[xj, :--, X, which are joins of
products of the ideals (x;), (x5), +-+, (x,). We show that RL_ is a sublattice of the
lattice of ideals of F[x 19 "% xn], and that it is a regular local Noether lattice. Our

main results describe the relationship between {RLn} and arbitrary regular local
Noether lattices as follows.

A local Noelher lattice L of dimension n is vegular if and only if theve exists a
sublattice L' of L with the property that prime, primary, and principal elements in
L' are, respectively, prime, primary, and principal in L, and L' is isomorphic to
RL,.

A distributive regulay local Noether latlice is isomorphic to one of the lattices
RL,.

In addition, we show that for n > 2, RL, is not isomorphic to the lattice of ideals
of any ring. In fact, an appropriate quotient sublattice of RL2 provides an example
of a Noether lattice for which the usual “converse” to Krull’s principal-ideal theo-~
rem (a prime of rank 1 is a minimal prime of some principal ideal) does not hold.

2. PRELIMINARY DEFINITIONS AND RESULTS

The notation and terminology of this paper are the same as those of [2], with the
exception that we use VV and A to denote the lattice operations, and < to denote the
lattice partical ordering, with < reserved for proper inequality.

By a multiplicative lattice we mean a complete lattice L containing a unit ele-
ment I and a null element 0, and provided with a commutative, associative, join-

Received September 11, 1967,

167



168 KENNETH P. BOGART

distributive multiplication for which I is an identity element. For each A, B in L,
A :B is the join of all X in L such that XB < A. An element E € L is principal if

(2.1) (AAB:E)E=AEAB (all A, Be L)
and )
(2.2) (AV BE):E =A:EVB (all A, Be L).

We reserve the letters E, F, and H for principal elements.

Prime and primary elements are defined for Noether lattices just as prime and
primary ideals are defined for rings. The usual theorems about the existence and
uniqueness of primary decompositions hold for Noether lattices.

Let P be a prime element of a Noether lattice L. P has 7ank r if r is the
maximum of the lengths of chains of distinct primes less than P. P has dimension
d if d is the maximum of the lengths of chains of distinct proper primes greater
than P. Let A € L. Then A hasyank r if r is the minimum of the ranks of its
associated primes; A has dimension d if d is the maximum of the dimensions of its
associated primes. If L is local, then dim (0) is finite and is called the dimension
of L.

This paper uses an abstract version of Krull’s intersection theorem [2]; re-

stricted to a local Noether lattice with maximal element M, it states that /\Mk = 0.
k

The following important lemma is an immediate consequence of the intersection
theorem.,

LEMMA 2.1. If L is a local Noether lattice and A, B € L, then AB = B implies
A=1Ior B=0.

Proof. Let A #1. Then

B =A"B <M* (all k).

Thus B < /\MX = 0, so that B = 0.
k

LEMMA 2.2. Let L be a local Noether lattice, Then an element of L. is prin-
cipal if and only if it is join-ivveducible.

Proof. Clearly, join-irreducible elements are principal; so let E be a principal
element in L (E #0). Let E=D; V -+- V D,. Then, by equation (2.1),
D; = (D;: E)E (all i).
Thus
E=(D;:EEV - V(D,:EE = (D;:EV -V D,:E)E.
By Lemma 2.1,
(Dy:E)V *»«V (D,:E) = I.

Since L is local, there must exist a j such that D;: E =1I; but this implies that
E < Dj, so that E = Dj.
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COROLLARY 2.1. Let L be the lattice of ideals of a local Noetherian ring R.
Then the principal elements of L are precisely the principal ideals of R.

Applying the Kurosh-Ore theorem to the dual lattice of a local Noether lattice,
we obtain the following corollary.

COROLLARY 2.2, Let L be a local Noether lattice, and let A € L., Then any
two minimal representations of A as a join of principal elements have the same
numbey of principal elements.

Of course, the usual replacement properties [1] of the Kurosh-Ore theorem fol-
low also.

Some of the examples and proofs in this paper use computations with quotient
sublattices L/D = {A € L| A > D}. With the multiplication AoB = AB V D, L/D
is a Noether lattice, and if F is a principal element in L, then F V D is principal
in L/D [2].

LEMMA 2.3. If L is a local Noether lattice, then the principal elements of L/D
are precisely the elements of the form DV E, wherve E is principal in L.

Proof, Let E' be a principal element in L/D. There exist Ey, -+, E in L
such that

E'=DVE,V: - VE =({DVE)V: V(DVE).

E' is principal in L/D, so that we can apply Lemma 2.2 to L/D to obtain a j such
that E' =DV EJ-.

If L is a local Noether lattice of dimension n, a set of n principal elements
whose join is primary with respect to the maximal element of L is a system of
pavameters., A set of n principal elements whose join is the maximal element is a
regulay system of parameters, and if L. has a regular system of parameters, L is
a regular local Noether lattice.

3. EXAMPLES OF LOCAL NOETHER LATTICES

In the proof that every local ring has a system of parameters, the following lem-
ma is often used. If P;, P,, ---, P, are prime ideals of a Noetherian ring R and A
is an ideal of R not contained in any Pj;, then there exists a principal ideal (a) <A
such that (a) £ P; for all i [3, p. 12]. This lemma does not hold for Noether lat-
tices, as the following example shows.

Let RL, be the set consisting of (0) and all the ideals of F[x, y] (F a field) of
the form

@)D (7)) v v (x)HR) ()i,

It is easily seen that RL) is closed under join and multiplication. We shall show
that if

A = \/(X)i(S)(y)j(S) and B = \/ (x)k(t) (y)h(t),
s t

then

ANB-= \{ (L.c.m. (x}{s) yils) xk(t) yh(t)y)
s,
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Clearly, 1.c.m. (xi(s)yi(s) xk(t)yhl{t)y ¢ A A B: therefore, let p(x, y) be in A A B.
Since p(x, y) € A, there exist polynomials p¢(x, y) such that

px, y) = 2ip,(x, y)x{E)yils),
S

Thus each nonzero term of p(x, y) is divisible by xi(s)yj(s) for some s. Similarly,
each term is divisible by xk(t)yh(t) for some t. Therefore,

p(x, y) € \V/ (1. c. m. (xi{s) yils) yk(t) yhit))y

s,t

This shows that RL; is closed under meet. To show that RL, is closed under
residuation, observe that since A:(BV C)=A:BA A:C and A:(BC)=(A:B):C, it
is sufficient to show that A:(x) is in RLy for all A in RL,. We assume that
A':(x) is in RL, if A' is a join of fewer (x)'(y)} than A. If A = (y)J, then
A:(x)=(yP:(x) = (y)) € RL,, so that we may assume

A=&IIVA (1>1).
Then, using equation (2.2), we find that
A:(x) = @)UYV A(R);

the right-hand member is in RL;, by the induction hypothesis. But now, since prin-
cipal elements are defined by equations using meet, join, multiplication, and residu-
ation, the elements (x)'(y)} are principal in RL,. Thus RL, is a Noether lattice.

We note also that RL, is distributive; for if
A=(@)V Vi@, B=(m)V: V), C=(])V: Vi

are elements of RL;,, then

=V @eom.(a;, b))V V (Lc.m. (a;, ¢5) = (A AB)V (A A C).

i,j i,j

It is clear that the only proper prime elements of RL, are (x) V (y), (x), (y),
and (0). However, by Lemma 2.2, the only principal elements in RL, are the ele-
ments (x)(y)). Thus every principal element of RL is less than or equal to (x) or
(y). Now, with A = (x) V (y), P; = (x), and P, = (y), it is clear that A £ P; and
A £ P,, while every principal element contained in A is contained in either P; or
P,. Clearly, though, RL, has a system of parameters, and in fact it is regular.

Next we give an example of a local Noether lattice without a system of parame-
ters. Let L =RL,/(x)(y). By Lemma 2.3, all principal elements of L are less than
or equal to (x) or (y), since (x)(y) is less than both (x) and (y). But since (x) and
(y) are primes of rank 0, every principal element of L. has rank 0. Thus (x) V (y)
is a prime of rank 1 containing no principal elements of rank 1, so that the “con-
verse?” to the Krull theorem does not hold for L. and L has no system of parameters.
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These examples show that RL, cannot be isomorphic to the lattice of ideals of
any ring.

4. REGULAR LOCAL NOETHER LATTICES

The concept of a Noelher-lattice imbedding is used in the main theorem of this
section. Let L and L' be Noether lattices. We say that ¢: L — L' is a Noether-
lattice imbedding of L. in L' if ¢ is an isomorphism of L into L' and the images
under ¢ of prime, primary, and principal elements of L are prime, primary, and
principal, respectively, in L',

Recall that RL, consists of all joins of products of the ideals (x;), (x), ***, (x,)
in the lattice of ideals of F[x;, **, x,]. As in the case of RL, it is easily verified
that RL, is a regular local Noether lattice that is not isomorphic to the lattice of
ideals of any ring. Again, since the meet of two elements in RL, is the join of the
ideals generated by the least common multiples of their generators, we can apply the
computation by which we showed that RL; is distributive to prove that RL,, is dis-
tributive. The main theorem states that if L is a local Noether lattice of dimension
n, then L is a regular local Noether lattice if and only if there exists a Noether-
lattice imbedding of RL, in L.

In the proof of the main theorem, we shall use two theorems that are generaliza-
tions of well-known theorems [3, p. 73], [4, p. 303] about regular local rings. The
following lemma and its corollary form the basis of the proof of these two theorems.

LEMMA 4.1. Let L be a local Noethey lattice, let A=E; V -V E, bea
membeyr of L, and let A have dimension s. Then the dimension of E; V -V E._;
is at most s + 1.

Proof. Let dim(E; V -V E__;)=s+i. Then there exists a chain of primes
P> >Pgi > Pgyyy1 2 BV or VEL .

Since E,. is a principal element, there exists (by Lemma 6.4 of [2]) a chain of
primes

_ p¥ *
Py =P1>Pp> >Ps+1>Ps+i+l

such that P%,; > E.. Since P%;; > A and A has dimension at least s +1i - 1, we
see that s > s +i - 1, which implies that i <1,

COROLLARY 4.1. Let L be a regular local Noether lattice, and let
{E;, -, E,} be a regular system of pavameters for L. Then

dim(E;V -V Ey) = n - k.

Proof., Apply Lemma 4.1 n - k times to show that dim(E; V -+ V E}) is at
most n - k. Suppose dim(E; V .-V Ey) is n-k -1i (i > 0). Then apply Lemma
4.1 k times to show that dim (0) < n - i. Thus n <n - i, which implies i = 0.

The usual ring-theoretic proof [3, p. 75] shows that if L is a regular local
Noether lattice of dimension one, then every element of L is of the form Ek where
E 1s the maximal element of L. Clearly, this implies that 0 is a prime in L for if
Ek were 0, then E would be contained in some prime of rank 0, contrary to the re-
lation rank (E) = dim (0) = 1. The next theorem extends this remark and its proof is
a rather natural extension of the simple computation used to prove the remark.



172 KENNETH P. BOGART

THEOREM 4.1. Let L be a regular local Noether lattice. Then any join of a
subset of a regulayr system of pavameters is a prime.

Proof. Let {E;, ---, E,} be a regular system of parameters for L. The proof
uses induction on n - r to show that 0 is a prime in L/(E; V -+ V E;). By Lemma
4.1 and the remark above, 0 is a prime in L/{(E V -V Ep_}).

Assume E; V ¢+ V E,. is a prime if r > i. Let
L' = L/(E; V =+ V E,),

and let X' denote XV E; V .- V E; for all X in L. By the induction hypothesis,
E is a prime in L' for all j > i. Now EJ must contain a m1n1mal prime of 0', for
1t is prime. By Corollary 4.1, L' has dimension n - i and E has dimension
n-i-1. By Lemma 6.4 in [2] there exists a chain

(El Ve VE) > P"l< > >PF L > Px'1-i

Bn! L' such that PY_. ; > Ej. Thus Ej = P}_;i-1, and Ej is not a minimal prime of
Now let P' be a minimal prime of 0' contained in Ej Since P'= (P': E')E' and
P' is prime, P': Ej < P'. Therefore, P'=P': Ej, and so P'=P' Ej, which 1mp11es

that P'=0', by Lemma 2.1. Therefore 0'isa prlme in L', and hence
E;V e V E is a prime for all i.

THEOREM 4.2, Let L be a vegular local Noether lattice, and let D be an ele-
ment of L. Then L/D is vegulay if and only if D is a join of a subset of a regular
system of parameters,

Proof. Corollary 4.1 implies that if L is a regular local Noether lattice and
{E, -+, E,,} is a regular system of parameters for L, then L/(E; V --- V Ej) is
regular.

Assume that L/D is regular, and let M be the maximal element of L. Then, by
Lemma 2.3, M=DV F;V ... V F, where {DV Fi, «-, DV Fi} is a regular
system of parameters in L/D. Let D=H; V -+ VV H,.. Since

{DV Fy, -, DV Fy}

is a regular system of parameters, we may assume, by renumbering the H; and
dropping superfluous ones, that

M=H1V"'\/HS\/F1\/ "'VFk

is a2 minimal representation of M as a join of principal elements. By Corollary 2.2,
s +k = dim (I); therefore {H, -+, Hgf is a subset of a regular system of parame-
ters. Thus H;V -« VH,=D' is a prime. But rank D'=s and

dim(D) = k = dim(L) - s,

so that rank (D) < s, which implies that D = D'.

In proving the main theorem, we shall use the fact that in a Noether lattice
A:B = A if and only if no associated prime of A contains B (this can be proved as
for rings; see [3, p. 23]). We shall also need the following lemma (the symbol ~
indicates lattice isomorphism).
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LEMMA 4.2. Suppose that 1. is a Noethey lattice in which 0 is a prime, that
A, E € L. (E principal), and that A:E = A, Then

(EV A)/(E}V A) ~ I/(E-1 V A).
Proof. In the relations

(EV A)/(E'VA) =[EV (E'VA)]/EV A) ~ E/[EA (EV A)

E/[E'1V (E A A)] = E/[E' V (A:E)E] = E/(E! V EA)
= E/[(E"! V A)E] ~ /(B! v A),

the first isomorphism follows by modularity, the second by Lemma 6.3 of [2].

THEOREM 4.3. Let L be a local Noether lattice of dimension n. Thern L is a
regular local Noether lattice if and only if therve exists a Noether-~lattice imbedding
of RLy in L.

Proof, Clearly, if RL, can be imbedded in L, the maximal prime of RL,, maps
onto the maximal prime of L. Thus the maximal prime of L is a join of n principal
elements, and L is regular.

Now assume that L is a regular local Noether lattice, and let {Ej, -, En} be
a regular system of parameters for L. Define ¢: RL, — L by ¢(0) = 0 and

¢[\/ (x)H D) (x,)i:2) ... (xn)i(j,n):' _ /gl gil2) L gilm)
J J

Note that RLj. may be considered as a subset of RL, . We shall use induction to
prove that ¢ is a Noether-lattice imbedding; in particular, we shall show that ¢ re-
stricted to RLj is a Noether-lattice imbedding of RLy in L for k <n.

The restriction of ¢ to RL; is an isomorphism of RL; into L, since the image
of ¢ is a regular local Noether lattice of dimension 1 and is therefore isomorphic
to RL; (see the remark preceding Theorem 4.1). A simple inductive argument

shows that Ej is primary; since E; is both principal and prime (Theorem 4.1), it
follows that this isomorphism is a Noether-lattice imbedding.

Now assume that ¢ restricted to RL; is a Noether-lattice imbedding of RL; in
L, for j <k < n. Denote the restriction of ¢ to RLy by ¢'. To show that ¢' is an

isomorphism, observe first that ¢' preserves products and joins. It is evident that
¢' preserves meets of principal elements, for

El'i(l) A Eiz(z) A eee A E%((k) = Eii(l)Eiz(Z) ...Ei(k) .
Thus
i(1 i(2 i(k i(1 i{2 j(k) _ 1 2) k
E]i( )Elé( )...Ell-{( )/\ EJI( )EJZ( )...Ei](( - Elin( )Elén( ...Elr{n( ),

where m(t) = max (i(t), j(t)).

We shall use computations with residuations to show that ¢' preserves arbitrary
meets; but first we must prove that ¢' preserves residuation in certain special
cases. Let
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A= Ve g3 L gl
h

Then, by the induction hypothesis, the element A has a normal decomposition in

which all the associated primes are contained in E;, V -+ V E;, and since
E; £E, V- VE, A:E| = A,

Thus, in view of equation (2.2),
¢' [B:(x)] = ¢'(B): ¢' [(x;)].
Since X:(YZ) = (X:Y): Z, it follows that
¢'(B: F) = ¢'(B): ¢'(F)

for all B € RLy and all principal elements F € RL, . Also,

$'(BA F) = ¢'[(B: F)F] = ¢'(B: F)¢'(F) = [¢'(B): ¢"(F)]¢'(F) = ¢'(B) \ ¢'(F).

We shall now show that ¢' preserves all meets. Since RL; is distributive,
(AVB)AF=(AA F)V (B A F) for all A, B, and principal elements F in RL;.
Then, in L,

¢'[(AV B)A Fl] = [¢"(A) A ¢'(F)] V [¢'(B) A ¢'(F)].

Now let C =F; V =V Fg € RL,. Temporarily, let ¢'(X) = X'. Assume that
(4.1) (Fy vV " VF)AD = (F)AD)V Vv (F,ADY),
for all r <s and for all D'. Then

(F} V=« VF)AD = (F} V =V F)) A(F, V D') AD'
= {F, V[(F} V-V F,_|)A (F, VD')]} AD'

{FLVI[F; A@F, VD)V VI[F,_; A(F, VD)} AD'
=[FL V(FiAF)V(FIAD)V -V (Fs_| AFY)V (Fg_ AD)AD
= [FLV (Ff AD)V ==V (Fi_; AD)IA D'
= (F, AD')V (F; AD")V -V (F,_, A D).

This shows that equation (4.1) holds for all r. Now let D=H; V -V H;. Then

¢'(C) A ¢'(D) = (F V =+ V FL)AD' = (Ff AD)V (F5 A D)V - V (F, A D')

=V (5 A ) =V g(F) A 9(H))
i,j i.j

=V ¢, A H;) = ¢'[V(Fi A Hj)] = ¢'(C A D).
i, i,j
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Now, since X:(Y V Z)=(X:Y) A (X: Z) and ¢'(A: F) = ¢'(A): ¢'(F), ¢' pre-
serves residuation and is therefore a homomorphism.

But ¢'(RLy) is distributive, and therefore two elements are equal if and only if
they are joins of exactly the same principal elements. But this implies that the
mapping ¢' is one-to-one, since it is clearly one-to-one on principal elements.
Thus ¢' is an isomorphism.

By Lemma 2.2, the only principal elements of RLjy are the elements
(xl)l(l)(xz)l(z) (xk)l(k therefore ¢' maps principal elements to principal ele-
ments. By Theorem 4.1, ¢' maps primes to primes. To show that ¢' is a Noether-
lattice imbedding, we must show that it preserves primary elements. Since every
meet-irreducible element is primary, since the intersection of primaries with the
same associated prime is primary, and since every element is an intersection of
meet-irreducible elements, it is sufficient to show that ¢' preserves meet-irreduc-
ible elements.

Since RLj is distributive, it is easy to see that the only meet-irreducible ele-
ments in RLj are the elements of the form (x1)i1)V .. V (xp)HR) | Now, in L, the
elements E; V :-- V E4 are meet-irreducible, since they are prime by Theorem

4.1. We shall use 1nduct1on to show that the elements E:1) \/ - v El(s) are irre-
ducible in L. Suppose that El(l) -y El(z) Ve V El(s is irreducible in L. Then,
by Lemma 4.2, B = El( Vv oo v EL®) g irreducible in Bj/B, where

B; =E; V Eé(z) Ve V El(s). Now assume that B=C; A -+ A Cyr. Since
B=BA Bj,

B = (Bl N Cl) VANRALIVAN (Bl AN Cr).
Since B is irreducible in B; /B, there exists a j such that B=B; A C j, and there-

fore

B:E; = (B; AC;):E] = Bj:E] ACj:E; = Cj:Ep,

since E; < B;. Thus

i(1)-1
11()

C; < Cj:Ej = BiE; = E v END v v ELS)

But this implies that C; is in B) /B, hence C; = B. Therefore B is meet-irreduci-
ble, and ¢' preserves meet-irreducible elements. This implies that ¢' is a
Noether-lattice imbedding of RL; in L. But now, by induction, ¢ is a Noether-
lattice imbedding of RL, in L.

5. DISTRIBUTIVE REGULAR LOCAL NOETHER LATTICES

In this section, we show that the lattices "RL,, are the only distributive regular
local Noether lattices.

Let L be a distributive regular local Noether lattice with regular parameters
E;, -»-, E,, and let E #1I be a nonzero principal element of L. Then

E=EAN(E;V VE)=(EAE])V - V(EAE),.

By Lemma 2.2, E = E A E; for some i. Now let EJi.(i) be the highest power of E;
containing E. Then
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E = (E: 5l - g gy .oy Fp g
¢ i 1 l i m i 2

where E:E{(i) =F, V-V F,. By Lemma 2.2, E = F. Eg(i) for some k. If
Fy #1, then Fi < Eg for some s #1i. Thus, by iteration, E may be written

R = HEj(l)Ej(Z)---Ej(n)
1 2 n ?

where H is principal and E—'}il(h) is the highest power of E; containing E. Thus

H £ E; for each i, so that H = I. Thus every principal element of L is a product of
powers of the E;. Define ¢: RL, — L as in Theorem 4.3; that is, let ¢(x;) = E;.
Then ¢ is an isomorphism of RL, into L; but since every element in L is a join of
principal elements, ¢ is onto and L and RL, are isomorphic. This proves the fol-
lowing theorem.

THEOREM 5.1. A distributive vegulay local Noether lattice is isomorphic to one
of the lattices RL,.
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