ON THE ORDER OF A SIMPLY CONNECTED DOMAIN
Donald Sarason

In an earlier paper [5] dealing with a problem about bounded analytic functions, I
was led to associate with each bounded simply connected domain in the plane a cer-
tain countable ordinal number, called the order of the domain. The question was
left open whether there actually exist domains of all possible orders. The purpose of
the present note is to answer this question in the affirmative. The appropriate con-
struction turns out to be almost embarrassingly easy. It nevertheless seems worth
presenting, because it provides easily visualized examples of an interesting phenom-
enon connected with weak-star topologies.

In Section 1, we recall the basic definitions and describe the construction. The
application to weak-star topologies is given in Section 2.

1. Let G be a bounded, simply connected domain in the plane. The Carathéodory
hull (or €-hull) of G is by definition the interior of the polynomially convex hull of
G, that is, the interior of the set of points z, in the plane such that for all polynomi-
als p,

|p(zo)| < sup{|p(z)|:z € G}.

The €-hull of G can be described in purely topological terms as the complement of
the closure of the unbounded component of the complement of the closure of G. The
components of a €-hull are always simply connected.

If E is a bounded, simply connected domain containing G, then the relative hull
of G in E, or the E-hull of G, is by definition the interior of the set of points z; in
E such that for all functions f bounded and analytic in E,

|#(z9)| < sup{|i(z)|: z € G}.

Relative hulls can also be described in purely topological terms: the E-hull of G is
the interior of the set of points in E that cannot be separated from G by a crosscut
of E (see [5]). The components of a relative hull are always simply connected.

For each countable ordinal number & we now define a simply connected domain
G® containing G. First we let G! be the component of the %-hull of G that con-
tains G. We then proceed by induction, assuming GB has been defined for all 8 < «.
K o is not a limit ordinal, we let G® be the component of the G%~1-hull of G that
contains G. If a is a limit ordinal, we let G® be the component of the interior of

B GB that contains G. From the topological description of relative hulls given
above, it follows that if the inclusion G&*1 c G? is proper, then G¥ - G¥*1 has in-
terior points. Hence the inclusion is proper for at most countably many ordinals ¢,
so that there is a least ordinal y for which GY = GY*!, The ordinal y is called the
ovder of G.
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Figure 1.

In Figure 1 we depict a domain of order 2, and by modifying this domain we shall
obtain domains of all possible orders. To avoid any possible ambiguities, I shall de-
scribe in detail how the domain of Figure 1 was constructed.

We start with three sides pr, rs, and sq of a rectangle prsq. On the missing
side pq we draw in the closed middle third, tu. With tu as base we construct an
isosceles triangle tuv, say with a height of one-half the length of its base. On the
missing segment pt we choose a sequence {Wm}‘i° converging monotonically to t,
and we set w, = p. For each n > 0 we draw the segment parallel to tv connecting
w, with the extension of uv; we then connect the upper extremity of this segment
with w,_; . Similar segments are drawn on the other side of the triangle tuv. When
we finish, we have drawn the boundary of a simply connected domain G. Clearly, G!
is obtained from G by adding the open segment tu and the interior of the triangle ‘
tuv. Thus G2 = G; that is, G has order 2.

The exact proportions used in constructing the domain of Figure 1 are not im-
portant; they were chosen for convenience in drawing. The important property is _
that the tips of the spikes on either side of the triangle tuv converge to the vertex v.

By an obvious modification of the domain of Figure 1 we can obtain a domain of |
order 3; such a domain is shown in Figure 2. It is only slightly more difficult to :
construct domains of arbitrary orders. I shall describe the construction for the
case of a limit ordinal. This will suffice, because if G is a domain of order y and
a is an ordinal less than 7, then G® has order «.

Let v be a countable limit ordinal. As before, we start with three sides pr, rs, J
and sq of a rectangle prsq. We mark the midpoint, o, of the missing side pq. We
assume the rectangle is positioned so that o is the origin of the plane and pq lies on
the real axis (so that p = -q).

We now use the well-known fact that every countable well-ordered set can be
realized as a subset of the line. Thus, we can choose on the open segment po a
well-ordered set A = { ay }Ol<'y of type y (where the notation is chosen so as to
make the map @ — a, order-preserving). We may assume, moreover, that o is a
limit point of A, and that the order topology of A coincides with the topology that A
inherits from the plane. For each a <y we draw the segment with endpoints a,
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Figure 2.

and -iay, and the segment with endpoints -ay and -ia, . We obtain a transfinite
sequence of tents, each covering its successors. Outside the first tent we draw
spikes, as indicated in Figure 3, just as we did in constructing the domain of Figure
1. Between the ath and (o + 1)st tents we draw more spikes, as indicated in Fig-
ure 4. We do this for each a <y, and we thus obtain the boundary of a simply con-
nected domain G. A simple induction argument shows that for each « <y, the do-
main G¢ is obtained by adding to G the open segment with endpoints ag and -ag,
and the interior of the triangle with vertices ay, -ag, and -iag. Thus

a<y G¥ =G U {o}; that is, G¥ = G. Hence G has order 7, as desired.

Figure 3.
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2. Let B be a separable Banach space. A theorem of Banach states that for a
linear manifold in B* to be weak-star closed, it is necessary and sufficient that it
be weak-star sequentially closed [1, p. 124]. However, if a linear manifold in B* is
not weak-star closed, then in order to form its weak-star closure it does not suffice, |
in general, merely to add to it all the limits of its weak-star convergent sequences. |
The first example of this phenomenon was given by Mazurkiewicz [3] in the space ¢! '
(= (¢()*). To form the weak-star closure of a linear manifold M in B*, one must
take the union of the so-called derived sets of M. Namely, let M? = M, and for any
countable ordinal number «, define M% inductively to be the set of limits of weak-

star convergent sequences in U3<a MP . The manifold M% is called the ath de-

vived set of M. The manifold _Ua<Q MY is clearly weak-star sequentially closed,
and therefore it is the weak-star closure of M. Moreover, the manifolds M% even-
tually become constant; that is there exists a least ordinal y such that MY = MY *+1
[1, p. 213]. Hence the weak-star closure of M is actually MY . The ordinal y is
called the order of M.

In [1, pp. 209-213], using a construction based partly on the one of Mazurkiewicz, |
Banach shows that there exist linear manifolds in ¢! of all finite orders. He then l
goes on to assert more, namely, that there exist linear manifolds in ¢! of arbitrarily‘
high orders [1, p. 213]. However, the paper to which he refers for the proof was
never published, and I know of no proof in the literature either of Banach’s assertion
itself or of the analogous assertion with ¢! replaced by some other dual space. (A
Fourier-analytic proof of Banach’s assertion has recently been found by Carruth
McGehee [4].)

The connection between all this and what is discussed above emerges when one
takes B* to be the space H™ of bounded analytic functions in the open unit disk.
(The corresponding space B is then a certain quotient space of L! of the unit
circle.) Let G be a bounded simply connected domain, and ¢ a conformal map of
the unit disk onto G. Let M be the set of polynomials in ¢. Then M is a linear
manifold in H*, and the following theorem, proved in [5], describes explicitly the
derived sets of M: For each countable ovdinal o, the manifold M? consists pre-
cisely of all functions ¥ in H™ such that Yo ¢-1 is the restriction of a function
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bounded and analytic in G%. In particular, the orders of M and G coincide. On the
basis of the above construction, we can therefore assert that therve exist in H™
linear manifolds of all possible orders.

The problem of proving a comparable theorem for other familiar dual spaces
seems interesting. On the basis of the result for H*, it is easy to show that in the
space £° (= (21)¥), theve exist linear manifolds of all possible ovders. In fact, let
{z,}T be a dominating sequence for H®, that is, a sequence of points in the open
unit disk with the property that

sup |Y(z,)| = sup |Y(z)]
n 'z|<l

for all ¥ in H®. (A dense sequence will do.) We can then map H® isometrically
into ¢ by sending a function y in the former onto the sequence {l,b(zn)} in the
latter. It is easy to show that this map is a weak-star homeomorphism, so that it
sends a linear manifold in H* onto one in £ of the same order. The desired con-
clusion follows.

In closing, I raise two questions.

1. Can one construct in {* weak-star dense linear manifolds of all possible
orders?

2. What orders occur for linear manifolds in the Hardy space H! of the unit
circle? (This is the dual of a quotient space of the space of continuous functions on
the circle; see [2, p. 137].)
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