UNKNOTTING POLYHEDRAL HOMOLOGY MANIFOLDS
C. H. Edwards, Jr.

1. INTRODUCTION

Gugenheim [1] showed in 1953 that an n-dimensional polyhedron unknots piece-
wise linearly in Euclidean k-space Ek if k > 2n + 2. For piecewise linear mani-
folds, this result can be improved upon by one dimension—Zeeman’s unknotting
theorem [11, Theorem 24] includes the fact that every connected, closed, piecewise
linear n-manifold (n > 2) unknots piecewise linearly in E22t1  ag well as the fact
that every l-connected, closed, piecewise linear n-manifold (n > 3) unknots in E2™
The principal object of the present paper is to establish results of this sort for a
larger class of polyhedra that includes all polyhedral homology manifolds, and hence
all triangulated, closed, topological manifolds.

We say that the polyhedron X strongly unknots in EX if, given two imbeddings f
and g of X into EX which agree on a subpolyhedron Y of X, there exists an am-
bient isotopy of EK which transforms f into g, while leaving pointwise-fixed the
image of Y. We prove that an n-dimensional polyhedron X (n > 2) strongly unknots
in E2n+l if HR(X - p) = 0 for each point p € X (Theorem 3). It follows that every
compact, connected polyhedral homology n-manifold (n > 2) strongly unknots in
E2ntl | This result is then used to prove that if M is either a connected, orientable
polyhedral homology n-manifold (n # 2) with H; (M) = 0, or a compact triangulated
topological n-manifold (n # 2) with nonempty boundary, then M unknots in E2n
(Theorem 5 and Corollary 5, respectively).

The proofs of these results make use of Zeeman’s unknotting theorem, and they
hinge upon the following question. If the n-dimensional polyhedron X collapses to
the subpolyhedron Y, and Y unknots in Ek, is it true that X also unknots in EX? It
is always true if k > 2n (Lemma 2), but it is generally false if k < 2n. However, in
the critical case k = 2n, it is true provided that X satisfies a certain local unknotting
condition (Theorem 4). The proof of Theorem 4 is based on the work of Lickorish [3]
on the piecewise linear unknotting of cones.

2. DEFINITIONS AND BASIC FACTS

The subset X of a Euclidean space E™ is called a polyhedron if there exists a
finite simplicial complex K in E® such that |K| = X. The complex K is then called
a triangulation of X. The map f of the polyhedron X into a Euclidean space is
piecewise linear if the triangulation K can be chosen so that f is linear on each
simplex of K.

A piecewise linear set is a subset Y of a Euclidean space such that each point
of Y has a neighborhood (in Y) whose closure is a polyhedron. A map of the piece-
wise linear set Y into a Euclidean space is piecewise linear if its restriction to
each subpolyhedron of Y is piecewise linear. Throughout this paper, we shall work
within the category of piecewise linear sets and maps.
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An isotopy of Y is a level-preserving homeomorphism H of Y X I (I is the unit
interval [0, 1]) onto itself such that, if Hi: Y — Y is defined for t € I by
H(y, t) = (H(y), t), then Hy is the identity map. We shall also refer to the family H;
of homeomorphisms of Y as an isotopy. Two imbeddings f and g of X into Y are
ambient isotopic if there exists an isotopy H of Y such that H,f = g. The poly-
hedron X is said to unknof in E™ if any two imbeddings of X into E® are ambient
isotopic.

For convenience, all manifolds will be compact and without boundary, unless
otherwise specified. A piecewise linear n-manifold is then a polyhedron having a
triangulation in which the link of every vertex is homeomorphic to the boundary of
an n-simplex. A triangulated n-manifold is a polyhedron that is a topological n-
manifold. The polyhedron X is a polyhedral homology n-manifold provided for each
point p € X the integral homology group H;(X, X - p) is trivial for i < n and infinite
cyclic for i = n. Using exactness and excision, we can easily see that this is equiva-
lent to the condition that the link of any vertex of any triangulation of X have the
homology groups of the (n - 1)~sphere S"-1. The polyhedron Y is an n-dimen-
sional pseudomanifold [6] if for each triangulation K of Y

(a) every simplex of K is a face of some n-simplex of K,
(b) each (n - 1)-simplex of K is a face of exactly two n-simplexes of K, and

(c) for any two n-simplexes A and B of K, there exists a (finite) sequence
A=Ay, Ay, ---, A. =B of n-simplexes of K such that A; and A;_; intersect in a

common (n - 1)-face (i=1, -+, r).
Finally, we call the polyhedron X a manifold with singulay boundary if there

exist a connected, piecewise linear manifold M with nonempty boundary, and a
piecewise linear map h of M onto X such that the singular set

Sh) = C1{x € M: h~lh(x) # x}

of h is contained in the boundary oM of M. Among these various types of mani-
folds, we have the following relations.

(1) If X is a triangulated n-manifold, then X is a polyhedral homology n-mani-
fold [6, p. 237].

(2) Every connected polyhedral homology manifold is a pseudomanifold [6, p.
238].

(3) Every pseudomanifold is a manifold with singular boundary (Lemma 1 be-
low).

However, the converses of these statements are all false.

We denote the conre with vertex a and base X by aX, or (to avoid confusion) by
a*xX,

We recall Whitehead’s definition [8] of collapsing. If L is a subcomplex of the
finite simplicial complex K, there is an elementary simplicial collapse from K to
L if K - L consists of two simplexes A and B with A = aB, where a is a vertex of
A. Then |K| = |L| UA and |L| N A =ax3B. The complex K collapses simplici-
ally to L if there exists a (finite) sequence of elementary simplicial collapses going
from K to L.

LEMMA 1. If the polyhedvon X is either an n-dimensional pseudomanifold oy
an n-manifold with singulay boundary, then theve exists a map h of an n-ball onto X
such that S(h) C 9B.
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Proof. We prove this simultaneously for the two cases, by a well-known kind of
argument which we outline for completeness.

If X is an n-manifold with singular boundary, the following argument shows that
X satisfies condition (c) of the definition of an n-dimensional pseudomanifold. Let
g: M — X be a map of the piecewise linear n-manifold M onto X such that
S(g) € oM, and let K be a triangulation of X such that h is simplicial with respect
to K and some triangulation of M. The fact that S(g) € oM implies that the inverse
image of each n-simplex of K is an n-simplex of M. For any two n-simplexes A
and B of X, the fact that M is an n-pseudomanifold implies the existence of a se-
quence g-1(A)=Cy, C;, **-, C, = g~1(B) of n-simplexes of M such that each
C; N C;_; is a common (n - 1)-face of C; and C;_;. Clearly,

A = g(co), g(Cl), '"a g(Cr) =B

is the desired sequence of n-simplexes of K.

From this it follows easily that if L is an n-dimensional proper subcomplex of
K, then L contains an (n - 1)-simplex that does not lie in g(dM), in the case where
X is an n-manifold with singular boundary, and is a face of exactly one n-simplex of
L (here we use condition (b) in the definition of a pseudomanifold).

If A is an n-simplex of K, we can now use the above fact to collapse away the
n-simplexes of K - {A} one by one, never removing an (n - 1)-simplex of g(aM),
until no n-simplexes remain. Thus we can collapse X - Int A to an (n - 1)-dimen-
sional subpolyhedron which, in case X is an n-manifold with singular boundary,
contains g(oM). Since the union of two piecewise linear n-balls that intersect in an
(n - 1)-ball common to their boundaries is a piecewise linear n-ball [11, Chapter 3],
this clearly implies the desired result.

The Penrose-Whitehead-Zeeman imbedding theorem [4] includes the fact that
every piecewise linear n-manifold can be imbedded in E2», Before proceeding to
consider unknotting problems, we note that this is also true for an n-manifold with
singular boundary.

THEOREM 1. Every n-wmanifold with singular boundavy can be piecewise line-
arly imbedded in E21,

Proof. This is obvious if n = 1. We defer the case n = 2, and suppose first that
n > 3. Let X be the n-manifold with singular boundary, and f: M — X a map of a
piecewise linear manifold with nonempty boundary onto X such that S(f) C 3M.

If Y = £(dM), then by general position there is a map g: X — E2? such that g |Y
is an imbedding and S(g) is a finite subset of X - Y. We can now eliminate S(g) by
the technique used in the proof of the Penrose-Whitehead-Zeeman theorem.

Let C be a polygonal arc in X - Y that contains S(g). Let D be a simplicial
cone over g(C) from a vertex in general position with respect to the vertices of
g(X). Then D N g(X) = g(C), because dim D=2 and n > 3.

Choose triangulations of X and of E2" with respect to which g is simplicial. If
A and B are the simplicial neighborhoods of C and D, respectively, in the second
barycentric subdivisions of these triangulations, then, using Whitehead’s regular
neighborhood theorem [11, Theorem 8], we see that

(1) A is an n-ball and B is a 2n-ball,
(2) g(dA) C 9B and g(Int A) C Int B,
(3) g-1(B) = A, and
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(4) g ! CI{(X - A) is an imbedding.

We can therefore easily alter g inside A so as to obtain an imbedding of X in
E%" (see [9, p. 67]).

In the case n = 2, we use the fact that there is a map f: A — X of a 2-simplex
onto S such that S(f) c A (by Lemma 1). As above, let g: X — E4 C S¢ be a piece-
wise linear map such that g | Y is an imbedding (Y =£f(3A)) and S(g) is a finite sub-
setof X -Y.

Let K and L be triangulations of X and S%, respectively, with respect to which
g is simplicial. If R is the simplicial neighborhood of g(Y) in the second barycen-
tric subdivision of L, then R is a 4-ball with 1-dimensional handles, since g(Y) is
a l-dimensional polyhedron. Since 1-dimensional polyhedra unknot in s4 , it follows,
by the regular neighborhood theorem, that N = S% - Int R is a 4-ball with 2-dimen-
sional handles. That is, N is the union of a 4-ball By and a collection B, ---, By
of mutually disjoint 4-balls such that By N B; is a solid torus T; that is unknotted
in both 9By and 8B; (i =1, -+, k).

Now it is easily verified that g(X) N 9N is a simple closed polygon J. Since
g(S(g)) c Int N, J' = g-1(J) is a simple closed polygon in X - Y and bounds a disk D'
in X - Y such that S(g) C Int D'.

There obviously exists an isotopy H; of N such that H;(J) intersects none of the
mutually disjoint solid tori

8B1 - Int Tl s "0y aBk - Int Tk

in dN. Since H;(J) then bounds a disk in the 4-ball By C N, it follows that J bounds
a disk D in N. We now redefine g so as to map D' homeomorphically onto D,
leaving g unchanged on X - Int D'; thus we obtain an imbedding of X into E4.

3. UNKNOTTING IN E2ntl

Price [5] has shown that the n-dimensional polyhedron X unknots in E2ntl if
the integral cohomology group H™(X) is zero. In Theorem 2 we give a generalization
of this, making use of Zeeman’s unknotting theorem and Lemma 2 below. We then
apply Theorem 2 to the problem of unknotting n-manifolds in E2n+l

We mentioned simplicial collapsing in Section 2. In the piecewise linear cate-
gory, there is an elementary collapse from the polyhedron X to the subpolyhedron
Y if X=Y UA, where A isa k-ball (k>0) and YN A isa (k - 1)-ball B C 9A.
X collapses to Y is there is a finite sequence of elementary collapses going from
X to Y.

LEMMA 2. Let X be an n-dimensional polyhedvon and Y a subpolyhedron of X.
If X collapses to Y and Y unknots in E2ntl , then X unknots in E2ntl

Proof. By induction on the number of elementary collapses from X to Y, we
may assume that X =Y U A, where A isa k-ball (k<n)and YNA=Bisa
(k - 1)-ball contained in 9A.

If £ and g are two imbeddings of X into E22*l  we may assume that
f|Y =g|Y, since Y unknots in E2nt+l . By general position we may also assume
that f(A) N g(A) = g(B), so that f(A) U g(A) is a k-ball,



UNKNOTTING POLYHEDRAL HOMOLOGY MANIFOLDS 85

Let A be a (k - 1)-simplex in a k-plane Ek c E2ntl and denote by Ek-! the
subspace of EX determined by A. Let p and q be points in the two components of
EX - Ek-1, We want to define a homeomorphism

he E2n+1 — E2n+1

such that h(f(A) U g(A)) is the suspension S(A) = pA U q4, with
hf(A) = pA,  hg(A) = q4, hg(B) =

If k =1, this is an elementary matter. If n > 2, the codimension of the ball

f(A) U g(A) is at least 3, so that Zeeman’s theorem on the unknotting of combinatorial
balls [10] (or Theorem (4) of Lickorish [3]) gives a homeomorphism

h': E2ntl , E2ntl gych that h'(f(A) U g(A)) = S(A). Using the facts that

CI(Ek - S(A)) is homeomorphic to Sk-1 x [0, 1} and that any homeomorphism on the
boundary of a ball extends to the interior of the ball, we can define a homeomorphism
h": Ek - Ek such that

h"h'f(A) = pA, h"h'g(A) = qA, h"h'g(B) =

From h' and h" we obtain the desired homeomorphism h: E2ntl _, gp2ntl

If v is a point in general position in E22t1 - EK  then the (k + 1)-ball
C = v*S(A) intersects hg(Y - B) in a finite set of points. It follows that if the point
v' on the line segment from v to the barycenter of A is sufficiently close to A,
then the (k + 1)-ball C' = v*S(A) does not intersect hg(Y - B). It is then an ele-
mentary (but tedious) matter to define an isotopy H; of E2n*l such that
H{ | hg(Y) = 1 for each t € I, and such that

Hi hf = hg: X — E#»*1,

H{ sweeps pA across C to qA, leaving hg(Y) fixed.

If H =h-1H/h for each t € I, then H, is the desired isotopy of E2*1 such that
H, |g(Y)=1 and H f=g: X — E2ntl

THEOREM 2. Let X be an n-dimensional polyhedron (n> 2). If a trviangulation
of X contains an n-simplex A such that H*(X - Int A) = 0, then X unknots in E2ntl

Proof. Let A;, ---, A be the n-simplexes of the given triangulation of X, as-
suming that H*(X - Int A; ) = 0. Denote by X, the (n - 1)-skeleton of X, and let

Xi=X0UA1U"‘UA1 (i.:l, "',k).

Since X, ; = X - Int A, , we see by exactness of the cohomology sequence of the pair
(Xy_1, X;_1) that H(X; 1) =0 (i=1, --+, k).

Since X unknots in E27tl (actually in E2") by Gugenheim’s theorem [1], we
assume inductively that X;_; unknots in E2ntl gt B; is an n-simplex in Int A;,
then Y; = X; - Int B; collapses to Xj._;; therefore Lemma 2 implies that Y; un-
knots in E2ntl  In order to show that X; unknots in E2n+1 it therefore suffices to
consider two imbeddings f and g of X; into E28+l guch that f|Y; =g|Y;.

We show first that E2ntl - g(Y,) is n-connected. That it is (n - 1)-connected
follows from general-position considerations (since the codimension of Y; is n+ 1,
any map of an n-complex into E22*! is homotopic to one that misses g(Y )). But
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H,(E27T1 - o(Y;)) ~ HY(Y;), by Alexander duality, and H™(Y;) = 0 because Y; de-
formation retracts to X;_;. It therefore follows from the Hurewicz isomorphism
theorem that 7 (E2nt+l - g(Y.)) = 0,

Since g(Y;) intersects f(B;) U g(B;) in g(dB;), it is clear that g(Y;) is link-
collapsible on f(B;) U g(B;). So let N be a regular neighborhood of g(Y )
mod £(B;) U g(B;) in gentl (see [2]). Then N is a piecewise linear (Zn + 1)-mani-
fold w1th boundary that collapses to g(Y;), such that g(Y; - 9B;) C Int N, and such
that

N N£(B;) = NN g(B;) = g(@B;) C oN.

If Q=E22t! _ Int N, it follows that Q is an n-connected, piecewise linear
(2n + 1)-manifold with boundary, and f | B; and g | B; are proper imbeddings of B;
into Q such that fl oB; =¢g I oB; . Therefore f | B; and g | B; are homotopic in Q
leaving 0B, fixed.

Since B; is 0-connected and Q is 1-connected, Zeeman’s unknotting theorem
[11, Theorem 24] now provides an isotopy H; of Q such that Hy | 2Q = 1 for each
t el and H f|B;, =g|B;. Extending H, by

H |E?»l . Q=1 foreachtel,

we then have the desired isotopy H, of E2ntl guch that H;f = g: X; — E2ntl,
Hence the proof of Theorem 2 is complete by induction on k.

COROLLARY 1. If n> 2, every n-manifold with singular boundary unknots in
EZntl

Proof. If X is an n-manifold with singular boundary, then by Lemma 1 there
exists a map f of an n-ball B onto X such that S(f) € 9B. Let A be an n-simplex
in Int B, in a triangulation with respect to which f is simplicial. If A = £(A), then
X - Int A collapses to the (n - 1)-dimensional polyhedron f(3B). Therefore
H™X - Int A) = 0, and Theorem 2 applies.

COROLLARY 2. If n > 2, every connected polyhedral homology n-manifold, and
hence every connected triangulated topological n-manifold, unknots in E2ntl,

This follows immediately from Corollary 1 and the results in Section 2.

COROLLARY 3. If X is an n-dimensional polyhedron such that H*(X) is a
finite cyclic group of prime order, then X unknots in E2ntl,

Proof. We may assume that n > 2, since every collapsible 1-dimensional poly-
hedron unknots in E3. By Theorem 2, it suffices to show that each triangulation K
of X contains a simplex A such that HX - Int A) = 0. We prove this by induction
on the number k of n-simplexes in K, assuming its truth for a complex containing
k - 1 n-simplexes.

Let A be any n-simplex of K. Then, by exactness of the cohomology sequence of
the pair (X, X - Int A), H(X - Int A) is either trivial or finite cyclic of prime order.
If H(X - Int A) # 0, then by induction the complex K' =K - {a} triangulating
X - Int A contains an n-simplex B such that

HX - Int A - Int B) = HYK' - B) =

Here H"(K' - B) denotes simplicial cohomology of the simplicial complex K' - B,
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We want to show that H?*(X - Int B) = H?(K - B) = 0. Consider the following por-
tion of the exact Mayer-Vietoris sequence of the simplicial triad (K; K - A, K - B):

— HYK) —» HK - A) @ H*(K - B) —» H}K' - B) = 0.

Since H™(K - A) # 0, this implies that H®(K - B) = 0, since the finite prime cyclic
group H?(K) cannot be mapped homomorphically onto the direct sum of two nontriv-
ial groups.

Question. Does Corollary 3 hold for an n-dimensional polyhedron X if H?(X) is
an arbitrary cyclic group? It is easy to construct examples for which our method of
proof fails. For instance, let X; consist of two n-balls B; and B, attached to
sn-1 py maps 9B; — S?-! and 8B, — Sn-! of degrees p and q, respectively, and
let X, consist of Srll'l \V 5121-1 (two (n - 1)-spheres with a single point in common)
together with two n-balls, one attached to Slf“l by a map of degree p, and the other
attached to S‘é"l by a map of degree q. If the two integers p and q are relatively
prime, then H*(X;) = Z and H®™(X;) = Zpq, while if A is any n-simplex of X;, then
H"(X; - Int A) is either Zj or Zg i=1,2).

In the next section, we need the following concept. We recall that the polyhedron
X strongly unknots in EK if for each subpolyhedron Y of X and each pair of im-
beddings f and g of X into Ek such that f | Y=g | Y, there exists an isotopy H; of
Ek such that H; | £(Y) is the identity for each t € I and H, f = g: X — Ek (that is,
the isotopy H; transforms the imbedding f into g, while leaving pointwise-fixed the
image of the subpolyhedron Y).

THEOREM 3. If X is an n-dimensional polyhedvon (n > 2) such that
H™(X - p) = 0 for every point p € X, then X strongly unknots in E2ntl

Proof. We observe first that if Z is a proper subpolyhedron of X and
p € X - Z, then the fact that H2(X - p) = 0 implies that H*(Z) = 0. This follows im-
mediately from the exact cohomology sequence of the pair (X - p, Z).

Let Y be a subpolyhedron of X, and let
f, g X — Eéntl

be two imbeddings of X such that f ] Y=g ! Y. Choose a triangulation K of X with
a subcomplex L that is a triangulation of Y.
Denote by A, --+, A) the simplexes of K -~ L, listed in increasing order of di-
mension (that is, i <j if dim A; < dim AJ-). If
X; =YUA U« UA; (=1, k),

then each X; is a subpolyhedron of X.
Suppose that we have inductively constructed an isotopy Hi of E2n+l such that
Hi|g(Y) =1 and Hf|X =¢gl|X,

for each t € I. Let B;,; be a simplex of the same dimension as A;;,, lying in
Int A;,;, and let

Yir1 = Xjr1 - Int Ajyg .
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Since Y;;; collapses to Xj, the proof of Lemma 2 provides an isotopy G%“ of
E®"D sych that Git!|g(X;) =1 for each t € I, and

Gittuif| vy =g vy

Since H™(Y;,;) = 0, the construction in the proof of Theorem 2 yields an isotopy
Fitl of E2ntl syuch that Fitl|g(Y;,,) =1 for each t € I and

i+1 it] i _
FitlGIT T H | Xy, = g | Xy -

If Hit! = Fit!GI*1 Hi for each t € I, it follows that Hi*! is an isotopy of E2nt]
such that

Ht lg(v) =1 and  H{TMM[Xg, =g Xy,

for each t € I. Hence, by induction on k, we obtain the desired isotopy H: of E2ntl
such that H; ] g(Y)=1 for each t € I and H; f = g: X — E2ntl this completes the
proof of Theorem 3.

Now let X be an n-manifold with singular boundary, and let h: B — X be a map
of an n-ball B onto X with S(h) € 8B. If p is a point of X, and Y is the comple-
ment of the open star of p in a triangulation of X, then H*(X - p) ~ H™(Y). Let
A C Int B be an n-ball such that Y € h(B - Int A). Since h(B - Int A) collapses to
h(3B) and H?(h(0B)) = 0, it follows from the exact cohomology sequence of the pair
(h(B - Int A), Y) that H™X - p) ~ H*(Y) = 0. Moreover, if Z is a subpolyhedron of
X, then it follows from the exact cohomology sequence of the pair (X - p, Z - p) that
H™(Z - p) = 0. Theorem 3 therefore implies the following generalization of Corol-
lary 1.

COROLLARY 4. Every subpolyhedron of an n-manifold with singular boundary
(n > 2), and hence every subpolyhedron of a connected polyhedral homology n-
manifold (n> 2), strongly unknots in E20tL

Considering the classical knots in E3, we see that the restriction n > 2 is nec-
essary in Theorems 2 and 3 and their corollaries.

4. UNKNOTTING IN E2n

We shall now consider the question as to when a polyhedral homology n-manifold
unknots in E2", For this we need a result for E2n along the lines of Lemma 2 for
E2ntl However, the straightforward analogue of Lemma 2 for imbeddings of an n-
dimensional polyhedron in E2" is false. For example, the cone on a disjoint pair of
(n - 1)-spheres is a collapsible n-dimensional polyhedron that knots in EZ2% for
n > 1 (see [5]). To eliminate this intrinsically local type of knotting, we must im-
pose an additional condition.

THEOREM 4. Let X be an n-dimensional polyhedvon (n # 2) that collapses to a
subpolyhedron Y such that Y unknots in E20, If every subpolyhedron of the link of
each vertex of each triangulation of X strongly unknots in S22~ then X unknots in
E2n,

This result is dimensionally the best possible, since the n-dimensional annulus
Sn-1 X I knots in E2-1 — it can be imbedded in E22-1 in such a way that its two

boundary (n - 1)-spheres are linked — whereas it collapses to the sphere Sr-1
which unknots in E2n-1 if n > 3 [10].
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Proof. Suppose first that n = 1. Since the link of each vertex of X unknots in
S!, and since no finite set containing three or more points unknots in S!, we see
that each component of X is either a point, an arc, or a simple closed polygon.
Since Y has the same types of components, the fact that Y unknots in E2 implies
that Y is a (finite) disjoint union of points and arcs (recall that S! knots in E2 by
the orientation phenomenon). The same is then true of X, so it follows by standard
topology of the plane that X unknots in E2. We may therefore assume that n > 3.

From the fact that X collapses to the subpolyhedron Y, it follows that X has a
triangulation K that collapses simplically to a subcomplex L which triangulates Y
[11, Theorem 4]. Thus there are subcomplexes

K=K03K1:)"':)KS=L
such that

IKi| = |Kip1| UA; and |Ky| NA; =a;%x9B;  (1=0,1, -, 5-1),

where A; is a k-simplex (1 <k <n) of K;j, a; is a vertex of A;, and B; is the
(k - 1)-face of A; opposite a;.

The link 1k (a;, K;) of a; in the subcomplex K; is a subpolyhedron of Ik (a;, K),
and therefore it strongly unknots in S2n-1 by hypothesis. In order to prove Theo-
rem 4 by induction on the number s of elementary simplicial collapses, it therefore
suffices to establish the following assertion.

ASSERTION. Let X be an n-dimensional polyhedvon (n > 3), Y a subpolyhe-
dvon, and (K, L) a triangulation of the paiv (X, Y). Suppose that

X=YUA and YNA=ax3B,

wheve A is a k-simplex of K, a is a vertex of A, and B is the (k - 1)-face of A
opposite a. If Y unknots in E®™ and 1k (a, K) strongly unknots in S2°-1 then X
unknots in E2n,

Since Y unknots in E2n, it suffices to consider two imbeddings f and g of X
into E2™ such that f l Y=g | Y. By general position we may assume that
f(A) N g(A) - f(ax0B) is a finite set of points. Hence there exists a regular neigh-
borhood A' of f(ax9B) in f(A) such that

A'Ng(A) = glaxoB) = fla*x9B).

Since n > 3 and k < n, the codimension 2n - k of the k-ball f(A) is at least three,
so that some homeomorphism of E2% onto itself carries f(A) onto a k-simplex [10].
It is therefore an elementary matter, similar to the construction of the isotopy in
the proof of Lemma 2, to define an isotopy F; of E2n syuch that Fy | g(Y) =1 for
each t € I, and F;(f(A)) = A'. We are therefore justified in assuming that

f(A) Nng(A) =f(ax9B) = g(a*3B).

Now let

C = g(st(a, K)) U£(A),

D = g(k (a, K)) U £(B).

Note that C is piecewise linearly a cone with base D. Since every cone is link-
collapsible on its base, and since
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Cl(g(X)-C)n C <D,

there exists a regular neighborhood N of C mod D U Cl(g(X) - C) in E2n [2, p.
722]. Being a regular neighborhood of a cone, N is of course a 2n-ball, and
DCo9N, C-DC IntN.

Let X' = lk(a, K) and Y' = Ik (a, L) = X' - Int B. Then the restrictions of f and
g to the cone aX' = st(a, K) are proper imbeddings of aX' in the ball N; that is,
£-1(3N) = g-1(3N) = X'. Moreover, f and g agree on the subcone aY' of aX', be-
cause Y NaX' =aY'.

Since X' strongly unknots in S2n-1 by hypothesis, we may now apply Lemma 3
below, which is based on Lickorish’s results [3] on the piecewise linear unknotting of
cones. We obtain an isotopy H; of the 2n-ball N such that H; | g(aY') =1 for all
tel and Hjf=g: aX' — N.

Since Y NN =aY', X - Y C aX', and H; | g(aY') = 1, Lemma 4 below allows us to
extend H; to an isotopy of E2" such that H; | g(Y)=1 and H;f = g: X — E2"; this
completes the proof of the assertion, and hence that of Theorem 4.

Tindell [7] has shown that every compact piecewise linear n-manifold (n # 2)
with nonempty boundary unknots in E2®, Before proving Lemmas 3 and 4, we note
that this holds for triangulated topological manifolds.

COROLLARY 5. If M is a compact triangulated topological n-manifold with
nonempty boundayvy, and n #* 2, then M unknots in E2n

Proof. Since each component of M is an arc if n = 1, we assume that n > 3.
Consider first the double 2M of M. It is a triangulated n-manifold without boundary,
and hence it is a polyhedral homology n-manifold. Hence the link of any vertex in
any triangulation of 2M is a connected polyhedral homology (n - 1)-manifold [6, p.
239]. It therefore follows from Corollary 4 that every subpolyhedron of the link of
any vertex of M strongly unknots in S27-!, Since aM # ¢, M collapses to an
(n - 1)-dimensional subpolyhedron, which unknots in E2? by Gugenheim [1]. Con-
sequently, Theorem 4 applies.

LEMMA 2. Let X be an (n - 1)-dimensional polyhedron that strongly unknots in
Sk-1 , wheve k - n > 3. Let Y be a subpolyhedron of X, and let £ and g be two
proper imbeddinigs of the cone aX into the k-ball B such that { | a¥Y=g | aY. Then
theve exists an isotopy H of B such that H, | g(aY) = 1 for each t € 1 and
H;f=g:a¥ — 3.

Proof. Let a be a homeomorphism of B onto the cone bSk-1 ona (k- 1)-
sphere with vertex b. If we could find an isotopy H, of bSk-! such that
H, |ag(a¥) =1 for each t € I, and such that

H, of = ag: aX — psk-1

then H, = a-1 H{ @ would be the desired isotopy of B. We may therefore assume that
B coincides with the cone bSk-1,

We first apply Theorem (1) of Lickorish [3]: any two proper imbeddings of a
cone into a ball (of codimension at least 3) that agree on the base of the cone are
equivalent via an isotopy of the ball which leaves fixed the boundary of the ball. We
thluskobtain a homeomorphism h: bSk-1 — pSk-1 such that hg(aY) = b* g(Y) and
h|Sk-1=1,

Since X strongly unknots in Sk-1 there exists an isotopy ¢, of SK-1 such that
¢, | €(¥) = 1 for each t € I, and such that
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¢, hf | X = hg | X: X — sk-1,

By conewise extension (joining ¢,: Sk-1 — Sk-1 with b — b), we obtain an isotopy &,
of bSk-! such that &,|b*g(Y) =1 for each t € I, and

& hf|X = hg|X: X — sk-1,
The two proper imbeddings ®; hf and hg of the cone aX into the ball bSk-1 agree,

both on the subcone aY (because hg(aY) = b*xg(Y)) and on the base X of aX.

Consequently, Theorem (2) of [3] yields an isotopy ¥, of bS¥-1 such that
¥t | hg(aY) = 1 for each t € I, and

¥, & hf = hg: aX — bSK-1,
Finally, we define the isotopy H, of B =bSk-1 by
H, =h'¥ &h (eachtel).
Then H; I g(aY) = 1, because &; [ hg(aY) = ¥, | hg(aY) =1 for each t € I, and
h;f=h"}(¥; & hf) =hlhg=¢g

on aX; this completes the proof of Lemma 3.

LEMMA 4. Let B be an n-ball in E™, and Y a polyhedron in E™ . If Hy is an
isotopy of B such that H,|Y N B =1 (that is, if Hy leaves Y N B fixed), then Hy
can be extended to an isotopy of ER that leaves Y fixed.

Proof. The plan of the proof is as follows. In E™ - Int B we shall construct a
“plister” such as would form on the surface 9B of the ball B if it were burned at
each point of 9B - Y, but at no point of Y N 2B, this blister being so thin that it in-
tersects Y only in points where its surface touches 9B N Y. The isotopy H; will
then be extended across the blister so that it is the identity on the outer surface of
the blister. H; can then be defined as the identity outside the ball B with its blister.

To construct the blister, we start with a collar
c:9dBXI — E” - Int B

for B in E™ such that c(b, 0) =b for each b € dB. The idea is to pinch each fiber
c(y X I) to the point y € 9B if y € Y, without pinching to a point any of the other
fibers of the collar.

We may assume that there exists a point p € B such that c{pXI)7 Y =¢ (by
shortening the fibers of c, if necessary). Let f be a piecewise linear nomeomor-
phism of 8B - p onto EP-!1  where E”-! denotes the hyperplane
Er-1 x 0 c Er-1 x El = E? | and let

F=£fx1:(@B-p)xI — E*-l x1 c E",

Define Z = Fc~1(Y). We shall first construct a blister on E*~1 in E*~! x I, and
then transfer this blister to the surface of the ball B by the map cF-1. We shall do
this by defining a piecewise linear function ¢: E*-! — I such that ¢~1(0) = Z n E»-!
and such that
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Z N {(x, s) e EA-! xI: s <¢(x)} = ZNE~-L,

To construct the fuaction ¢, we use the elementary fact that for each finite sim-
plicial complex L in E®, there exists a positive number &(L) such that, if g is a
map of |L| into E", linear on each simplex of L and moving no vertex of L. a dis-
tance greater than £(L), then g: |L| — E™ is an imbedding.

Now let K be a locally finite triangulation of E2-1 X I, which contains a subcom-
plex triangulating the polyhedron Z. Suppose that the simplicial neighborhood of
7 N En-1 in En-1  consisting of all simplexes of K in En-1 that intersect Z, is a
regular neighborhood N of Z N En-! in En-1 (take a second barycentric subdivi-
sion of K, if necessary). Then each simplex of N is either contained in Z N En-1
or 9N, or it is the join of a simplex in Z N Er-1 and a simplex in 3N.

Finally,let L be the subcomplex of K such that {L| =Z UN, let € > 0 be the
number £(L) referred to above, and assume that ¢ < 1. Since Z is compact and
does not intersect En-1 - Int N, we may suppose that ¢ is sufficiently small so that

Zn(E* -mtN)x[0, e]) = @.
For each vertex v of the subcomplex K' of K that spans E»-1 , define

0 ifve ZnEgEr]
¢(v) =

€ otherwise.

Extending ¢ linearly to the simplexes of K', we obtain a piecewise linear map
¢: En-1 — 1 with the desired properties; that is, it is clear that ¢-1(0) = Z n En-1
and it is easily verified that the “blister”

{(x, ) e En-l xI: s < ¢(x)}

intersects Z in Z N En-1
We now define y: 0B — I by

of(b) if b #p,

Y(b) =
€ if b=p.

Then ¥ is piecewise linear because ¢(EP-1 - N)=¢, If
A' = {(,s) e aBxT s <¥D)},

then A = c(A') is the desired blister on the ball B suchthat ANY=9BNY.
We define the isotopy G on 8B X I for each t € [0, 1] by

(b, s) if seft, 1],
Gt(b, s) =
(H,_.(b), s) if s € [0, t].

Let a: 3B X I — A' be a piecewise linear map such that a(b xI) = (b, 0) if
b € Y N 9B, and such that @ | b X I is a homeomorphism onto b x [0, ¥(b)] other-
wise.
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We can now extend the isotopy H; to the blister A by defining
Ht | A= CaGta—lC-l

for each t € I. Since G; ‘ ®BNY)XI=1{foreachtand ANY=0B NnY, the map-
ping H; l A is thereby well-defined. This extension is continuous and well-defined
on 0B, because the composition

Gt
0B - 2BX0 —- o9BX0 — 9B

is equal to H, | 8B for each t. Furthermore, each H; is the identity on the “outer
boundary”

c({(b, s) e 9BXI: s = ¥(b)})

of the blister A, because the composition

G
B —- 90BX1 —- 2BX1 — 9B

is the identity for each t € 1.

We can therefore extend H; to the remainder of E" by defining
H |E"-A-B=1

for each t € I. Since AN Y=9BNY and HtIBﬂY=1, we see that Ht|Y=1;
this completes the proof of Lemma 4.

We next apply Theorem 4 to obtain a result on the unknotting of polyhedral ho-
mology n-manifolds in E22, Zeeman’s unknotting theorem includes the fact that
every connected, simply connected, piecewise linear n-manifold (n > 3) unknots in
E2n | The following theorem is a generalization of this.

THEOREM 5. If M is a connected, orvientable polyhedral homology n-manifold
(n # 2) such that Hy (M) = 0, then M unknots in E2D

Since S2 knots in E%, the restriction n # 2 is necessary. The only connected,
polyhedral homology 1-manifold is the 1-sphere S!, which knots in E2 (the orienta-
tion phenomenon), but of course H;(S!) = Z. We therefore assume, in the following
proof, that n > 3.

Proof. By Lemma 1, there exists a map h of an n-ball A onto M such that
S(h) € 9A. Let B be an n-ball interior to A, and define

X = h(A - Int B), Y = h(A).

Then X collapses to Y, and Y unknots in E2n (by Gugenheim [1], since
dim Y=n - 1).

The link of each vertex of any triangulation of M is a connected polyhedral
homology (n - 1)-manifold [6, p. 239]. It therefore follows from Corollary 4 that
every subpolyhedron of the link of any vertex of any triangulation of M strongly un-
knots in S2n-1, We note here that the unknotting results in this paper, which are
stated for imbeddings in Euclidean spaces, hold also for imbeddings in spheres, be-
cause each of the isotopies that we construct is the identity outside a compact set.
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It now follows from Theorem 4 that X unknots in E2®. In order to show that M
unknots in Ezn, it therefore suffices to consider two imbeddings f and g of M into
E2n such that £| X =g |X.

First we deduce from the fact that M is orientable (meaning that H*(M) =~ Z)
with H (M) = 0 that H*-1(Y) = 0. Note that H*~1(M) ~ H;(M) = 0, by Poincaré
duality. Let us regard M as a CW-complex with a single n-cell, and with Y as its
(n - 1)-skeleton. Then the cellular cochain complex of M has the form

0-¢C0 5o sl S connyz Lo,

Since H™(M) = Z, we conclude that 6 = 0. It follows that H*"1(Y) ~ H™"1(M) = 0.

Since Y is (n - 1)-dimensional, E2™ - £(Y) is (n - 1)-connected, by general-
position arguments. Now Hp(E2™ - £(Y)) » H*~1(Y) = 0, by Alexander duality, and it
follows from the Hurewicz theorem that EZ22 - £(Y) is n-connected.

If R is a regular neighborhood of f(X) = g(X) modulo fh(B) U gh(B), and
Q = E2™ - Int R, it follows that Q is n-connected, because R collapses to £(Y).
Therefore the two proper imbeddings f | h(B) and g | h(B) of the n-ball h(B) into Q
are homotopic leaving the boundary fixed. Since n >3, Zeeman’s unknotting theorem
supplies an isotopy H; of Q such that H; | 0Q =1 for each t € I, and
H;f|h(B) =g |h(B). Defining H, | R =1 for each t € I, we then have an isotopy of
E2n guch that H, f = g: M — E21,

For a sample application of Theorem 5, let M3 be the Poincaré 3-manifold such
that H;(M3) = 0 but 7,(M?>) is the binary icosahedral group [6, p. 218]. Then M3 is
orientable, because 7 l(M3) is a finite group; therefore Theorem 5 shows that M3
unknots in E®. The suspension S(M3) is not a topological manifold, but it is an
orientable, simply connected polyhedral homology 4-manifold, and by Theorem 5 it
unknots in E8,

5. FINAL REMARKS

In the preceding sections, we have for convenience discussed unknotting of poly-
hedra only in Euclidean spaces. In this final section, we indicate the extent to which
the ambient manifold can be generalized in each of our results.

A polyhedron X is said to unknot in the piecewise linear manifold M if any two
homotopic imbeddings of X into M are ambient isotopic.

Lemma 2 holds, with E2ntl replaced by an arbitrary piecewise lineay (2n + 1)-
manifold without boundary. The reason for this is that in the inductive step of our
proof we work inside a (2n + 1)-ball, whether or not the ambient manifold is E2n+1,
Similarly, Theorem 4 holds with E2n yeplaced by an arbitrary piecewise linear 2n-
manifold, and the same is true of Corollary 5.

In our proofs of Theorems 2 and 3, we used Lemma 2, together with the fact that
if Y is an n-dimensional polyhedron in E22t! with H™(Y) = 0, then E27*l - Y is
n-connected. Consider now an n-dimensional polyhedron Y in a (2n + 1)-manifold
M. If M is n-connected, we easily deduce, using the Poincaré duality isomorphism

2ntl-i
(

H,(M, M -Y) ~ H Y),
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exactness, and the Hurewicz isomorphism theorem, that M - Y is n-connected.
Therefore Theorems?2 and 3, together with Covollavies 1 to 4, all hold with E2nt1
replaced by an n-connected piecewise linear (2n + 1)-manifold without boundary.

By a similar argument, we see that Theorem 5 holds with E2™ yveplaced by an

n-connected 2n-manifold. Of course, in view of the Poincaré conjecture for piece-
wise linear manifolds, we see that these extensions of Theorems 2, 3, and 5 are of
additional interest only if the ambient manifold is not compact.
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