ON RECURSIVE SETS AND REGRESSIVE ISOLS
Joseph Barback

1. INTRODUCTION

We shall assume that the reader is familiar with the concepts and main ~esults
of the papers listed as references. We let E denote the collection of all nonnegative
integers (numbers), A the collection of all isols, A* the collection of all isolic in-
tegers, and AR the collection of all regressive-isols. It is known that EC AR C A
and that each of the collections Ar - E and A - Ag has the cardinality of the con-
tinuum. In [7] and [8], A. Nerode associated with every recursive function f: E — E
a function D¢ A — A*) and with every recursive set of numbers « a set ap of
isols. Dy is an extension of f from E to A, and a Cap. In [9], Nerode proved the
following result: let f be a recursive and eventually combinatorial function; then
D¢(A) C ((E))A, and Dg(A) = (f(E))p if and only if there exists a number n such that
f(n), f(n + 1), --- is an arithmetic progression. This result motivated the problem
considered in this paper. For a recursive set @, we define ag = Ag N ap. We are
interested in comparing the two collections D¢(AR) and (f(E))g in the case where f
is an eventually increasing recursive function.

A function f: E — E is increasing if x <y implies {(x) < £(y), and eventually
increasing if there exists a number n such that the function g(x) = f(x +n) is in-
creasing. It was proved in [1] that if f is a recursive and eventually increasing
function, then Ds: AR — Ar . The main result of this paper states that if f is a
recursive and eventually increasing function, then Dy(Ag) = (£(E))R .

2. EXTENSIONS

Let o be a set of numbers. The characteristic function of a, denoted by cy, is
defined by

0 ifxea,
ce(x) =
1 ifxdo.
If o is a recursive set, then cy is a recursive function. Let C, denote the exten-
sion of ¢y to A. Then the extension of @ to A can be characterized (see [7, Theo-
rem 9.5] and [1, Section 5]) as the set
oy = {X| X e A and C(X) = 0}.

Combining this with the definition of a g, we see that

(*) ap = {X| X € AR and C,(X) = 0}.
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We state the next result without proof. It can be established by [1, Proposition 2]
and by methods of infinite series of isols.

PROPOSITION 1. Let f and g be eventually incrveasing vecursive functions, and
let fog denote the composition function £(g(x)). Then fog is also an eventually in-
creasing vecursive function, and

Dfog(T) = Df(Dg(T)) for T € Ag.

PROPOSITION 2. Let f and g be eventually increasing vecursive functions such
that f(E) C g(E). Then there exists an eventually increasing vecuysive function h
such that

f(t) = g(ht)) for te E.
Proof. For t € E, let the function h be defined by

h(t) = (ux)[g(x) = £(t)].

We readily see that h is a recursive function and satisfies the desired identity of
the proposition. Also, h is an eventually increasing function because each of the
functions f and g is eventually increasing.

THEOREM 1. Let f and g be eventually increasing recursive functions. Then
(a) f(E) < g(E) => Df(AR) < Dg(AR) )
(b) #(E) = g(E) = DgAR) = Dg(AR).

Proof. Because (a) implies (b), we only prove part (a). Assume the left-hand
side of (a). Then, by Proposition 2, there is an eventually increasing recursive
function h such that

f(t) = g(h(t)) for te E.
By Proposition 1, it follows from this identity that
(1) D((T) = Dg(Dy(T))  for T € AR.

In addition; because h is eventually increasing, we know that D,: Ag — Ar . Com-
bining this with (1), we see that

D¢(Ag) C Dy(Ag).

The next result is a special case of a well-known theorem of Nerode, and we
state it without proof.

LEMMA. Let f, g, h, and k be vecursive functions. If

(Vt € E)[f(t) = g(t) = h(t) = k(t)],
then
(VT € A)[Dg(T) = D,(T) => Dy(T) = Dy (T)].

Notation. Let f: E — E be a strictly increasing function. Then the function f is
defined by
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f(t) = (uy)[f(y) > t] for te E.

THEOREM 2. Let f be a strictly increasing vecursive function. Let o = {(E),
let cy be the characteristic function of o, andlet Cy, be the extension of cy to A.
Then « is a vecursive set, Cy 1S a vecursive function, and £ is an increasing recur-
sive function. In addition,

(a) D(Dg(T)) = T for T € Ag,
(b) Co(T) =0 <> D¢(DH(T))=T  for T e AR,
(c) T € (f(E))R <> Df(Df-(T)) =T for Te Ag.

Proof. Each of the three statements, o is a recursive set, ¢, is a recursive
function, and f is an increasing recursive function, is easily seen to be true. Also it
is readily proved that
(2) fof(t) =t forte E.

In addition,

te a © fof(t)=t forte E,
and therefore also
(3) cy(t)=0 <> fof(t)=t for te E.

The identity of (2) concerns only recursive functions, and therefore, by a well-known
theorem of Nerode, yields

(4) Df-of(T) =T for TeA.
If we restrict the identity of (4) to regressive isols, then, by Proposition 1, it follows
that

Di(Dg(T)) = T for T € Ag.
This proves part (a). Part (b) follows from (3), the lemma, and Proposition 1. Fi-
nally part (c) follows from (b) and the relation denoted by (*).

Remark. Part (a) of Theorem 2 was first proved by Sansone in [11].

3. THE PRINCIPAL THEOREM
PROPOSITION 3. Let f be a strictly increasing recursive function. Then
Df(AR) = (f(E))R .

Proof. Let T be a regressive isol. First assume that T € (f(E))gr . Then, by
Theorem 2(c),

(5) Dy(DHT)) = T.

Because f is an increasing recursive function and T is a regressive isol, we know
that D#(T) is also a regressive isol. Combining this with (5), we see that
T € Dg(AR). This proves that (f(E))r € Ds(AR).

To verify the inclusion in the other direction, let T € Dg(AR), and let
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(6) T = Dg(S), with Se Ag.

By Theorem 2(a), we then have the relation Df(D(S)) = S, and hence also the relation
(1) D¢(Df(D¢(S))) = Dg(S) = T.

Combining (6) and (7), we obtain

(8) D/(D{T)) = T.

Finally, in view of Theorem 2(c), it follows from (8) that T € (£(E)); . Therefore we
also have the inclusion Di(AR) C (f(E))g , and this completes the proof.

Combining Proposition 3 together with Theorem 2(c), one obtains the following
corollary, proved first by Sansone [11, Section II, Proposition 2]. It is readily seen
that the corollary and Theorem 2(c) together imply Proposition 3.

COROLLARY (Sansone). Let f be a strictly increasing vecursive function, Then
T € Df(AR) <> Df(Df(T)) =T for T € AgR.

THEOREM 3. Let f be an eventually increasing recursive function. Then
D¢(AR) = (£(E))R .
Proof. First assume that f(E) is finite. Then

(9) (f(E)r = (E).
In addition, f is an eventually constant function, and from this it follows that
(10) DiAR) = Di(E) = £(E).

Combining (9) and (10), we obtain the desired result.

Assume now that f(E) is an infinite set. Since f is an eventually increasing re-
cursive function, f(E) is an (infinite) recursive set. Let f* be the strictly increas-
ing recursive function that ranges over f(E). Then

(11) *(E) = £(E),
and therefore
(12) (F(E)g = (EHE)g -

By Theorem 1(b), we also obtain from (11) the identity
Finally, by Proposition 3 it follows that
(14) Dex(Ag) = (5(E))y .

Combining (12), (13), and (14), we see that D{AR) = (f(E))r, and this completes the
proof.

It can readily be shown that if « is a finite set, then ag = @, In addition, if «
is a recursive set and ar C E, then ¢ is finite and oy = @. This last property is
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obtainable from Proposition 3, and by noting that if f is a strictly increasing recur-
sive function, then D¢(AR) - E is not empty.

Let @ and B be recursive sets. By [7, Theorem 3.1 (3.4)], one sees that
(15) (Ol ﬂB)A=aAﬂBA.

In view of the definition of the extension to Ag of a recursive set, it follows from
(15) that

(16) (@ NB)g = ag N BR.

THEOREM 4. Letf and g be eveniually increasing vecursive functions such
that the intersection of theiv vanges is not empty. Let h be any eventually increas-
ing recursive function with

h(E) = £(E) N g(E).
Then
D, (Ag) = Dy(Ag) N D (AR).

Proof. Let o ={(E) and B8 = g(E), and use (16) and Theorem 3.

Concluding remark. We consider an application of Theorem 4 to a particular
arithmetic statement that is true in E, and was proved, in [9], to be false in A. It is
the statement

() if x is both a square and a cube, then x is a sixth power.

We want to show that (A) is a true statement in A . For this purpose, let the func-
tions f, g, and h be defined by

f(t)=t2, gt)=t3, ht)=t°.

Each of the functions f, g, and h is strictly increasing and recursive. Also, it is
readily seen that

(17) f(E) N g(E) = h(E).

In view of Theorem 4, it follows from (17) that

(18) D¢(Ag) N Dy(Ag) = Dy(AR).

Also, because

(19) D(T) = T, Dy(T) = T>, and Dy(T) = T¢, for T e Ag,

we know that if X € Ar and X is both a square (of some regressive isol) and a cube
(of some regressive isol) then

X € Df(Ag) and X € Dy(Ag).
In view of (18) and (19), this also means that

X € Dh(AR)!
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and therefore that X is the sixth power (of some regressive isol). It follows that
(A) denotes a true arithmetic statement in Ag.

Added April 18, 1967. Since this paper was submitted, Matthew Hassett has ob-
tained some other arithmetic statements that are true in E and Ay but not in A.
One particular example is the statement

28 = BC => @w)[B = 2V],

which had also been shown to be false in A, by Nerode [9].
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