ON RECURSIVE SETS AND REGRESSIVE ISOLS

Joseph Barback

1. INTRODUCTION

We shall assume that the reader is familiar with the concepts and main results of the papers listed as references. We let E denote the collection of all nonnegative integers (numbers), Λ the collection of all isols, Λ^* the collection of all isolic integers, and Λ_R the collection of all regressive isols. It is known that $E \subseteq \Lambda_R \subseteq \Lambda$ and that each of the collections Λ_R - E and Λ - Λ_R has the cardinality of the continuum. In [7] and [8], A. Nerode associated with every recursive function $f: E \to E$ a function $D_f: \Lambda \to \Lambda^*$, and with every recursive set of numbers α a set α_Λ of isols. D_f is an extension of f from E to Λ , and $\alpha \subseteq \alpha_\Lambda$. In [9], Nerode proved the following result: let f be a recursive and eventually combinatorial function; then $D_f(\Lambda) \subseteq (f(E))_\Lambda$, and $D_f(\Lambda) = (f(E))_\Lambda$ if and only if there exists a number f such that f(n), f(n+1), f is an arithmetic progression. This result motivated the problem considered in this paper. For a recursive set α , we define $\alpha_R = \Lambda_R \cap \alpha_\Lambda$. We are interested in comparing the two collections $D_f(\Lambda_R)$ and $f(E)_R$ in the case where f is an eventually increasing recursive function.

A function $f\colon E\to E$ is increasing if x< y implies $f(x)\le f(y)$, and eventually increasing if there exists a number n such that the function g(x)=f(x+n) is increasing. It was proved in [1] that if f is a recursive and eventually increasing function, then $D_f\colon \Lambda_R\to \Lambda_R$. The main result of this paper states that if f is a recursive and eventually increasing function, then $D_f(\Lambda_R)=(f(E))_R$.

2. EXTENSIONS

Let α be a set of numbers. The *characteristic* function of α , denoted by c_{α} , is defined by

$$c_{\alpha}(x) = \begin{cases} 0 & \text{if } x \in \alpha, \\ 1 & \text{if } x \notin \alpha. \end{cases}$$

If α is a recursive set, then c_{α} is a recursive function. Let C_{α} denote the extension of c_{α} to Λ . Then the extension of α to Λ can be characterized (see [7, Theorem 9.5] and [1, Section 5]) as the set

$$\alpha_{\Lambda} = \{X \mid X \in \Lambda \text{ and } C_{\Lambda}(X) = 0\}.$$

Combining this with the definition of α_R , we see that

(*)
$$\alpha_R = \{X \mid X \in \Lambda_R \text{ and } C_{\alpha}(X) = 0\}.$$

Received March 20, 1967.

Research on this paper was supported in part by a New York State Summer Research Fellowship. The author especially wants to thank F. Sansone for a very helpful suggestion.

We state the next result without proof. It can be established by [1, Proposition 2] and by methods of infinite series of isols.

PROPOSITION 1. Let f and g be eventually increasing recursive functions, and let f \circ g denote the composition function f(g(x)). Then f \circ g is also an eventually increasing recursive function, and

$$D_{fog}(T) = D_f(D_g(T))$$
 for $T \in \Lambda_R$.

PROPOSITION 2. Let f and g be eventually increasing recursive functions such that $f(E) \subseteq g(E)$. Then there exists an eventually increasing recursive function h such that

$$f(t) = g(h(t))$$
 for $t \in E$.

Proof. For $t \in E$, let the function h be defined by

$$h(t) = (\mu x)[g(x) = f(t)].$$

We readily see that h is a recursive function and satisfies the desired identity of the proposition. Also, h is an eventually increasing function because each of the functions f and g is eventually increasing.

THEOREM 1. Let f and g be eventually increasing recursive functions. Then

(a)
$$f(E) \subseteq g(E) \implies D_f(\Lambda_R) \subseteq D_g(\Lambda_R),$$

(b)
$$f(E) = g(E) \implies D_f(\Lambda_R) = D_g(\Lambda_R).$$

Proof. Because (a) implies (b), we only prove part (a). Assume the left-hand side of (a). Then, by Proposition 2, there is an eventually increasing recursive function h such that

$$f(t) = g(h(t))$$
 for $t \in E$.

By Proposition 1, it follows from this identity that

(1)
$$D_f(T) = D_g(D_h(T))$$
 for $T \in \Lambda_R$.

In addition, because h is eventually increasing, we know that D_h : $\Lambda_R \to \Lambda_R$. Combining this with (1), we see that

$$D_f(\Lambda_R) \subseteq D_g(\Lambda_R)$$
.

The next result is a special case of a well-known theorem of Nerode, and we state it without proof.

LEMMA. Let f, g, h, and k be recursive functions. If

$$(\forall t \in E)[f(t) = g(t) \implies h(t) = k(t)],$$

then

$$(\forall T \in \Lambda)[D_f(T) = D_g(T) \Rightarrow D_h(T) = D_k(T)].$$

Notation. Let $f: E \to E$ be a strictly increasing function. Then the function \overline{f} is defined by

$$\bar{f}(t) = (\mu y)[f(y) > t]$$
 for $t \in E$.

THEOREM 2. Let f be a strictly increasing recursive function. Let $\alpha = f(E)$, let c_{α} be the characteristic function of α , and let C_{α} be the extension of c_{α} to Λ . Then α is a recursive set, c_{α} is a recursive function, and \bar{f} is an increasing recursive function. In addition,

(a)
$$D_{\bar{f}}(D_f(T)) = T$$
 for $T \in \Lambda_R$,

(b)
$$C_{\alpha}(T) = 0 \iff D_f(D_{\bar{f}}(T)) = T \quad for \ T \in \Lambda_R$$
,

(c)
$$T \in (f(E))_R \iff D_f(D_{\bar{f}}(T)) = T \quad for \ T \in \Lambda_R$$
.

Proof. Each of the three statements, α is a recursive set, c_{α} is a recursive function, and \bar{f} is an increasing recursive function, is easily seen to be true. Also it is readily proved that

(2)
$$\bar{f} \circ f(t) = t \quad \text{for } t \in E$$
.

In addition,

$$t \in \alpha \iff f \circ \tilde{f}(t) = t \quad \text{for } t \in E$$
,

and therefore also

(3)
$$c_{\alpha}(t) = 0 \iff f \circ \bar{f}(t) = t \quad \text{for } t \in E.$$

The identity of (2) concerns only recursive functions, and therefore, by a well-known theorem of Nerode, yields

(4)
$$D_{\overline{fof}}(T) = T \quad \text{for } T \in \Lambda.$$

If we restrict the identity of (4) to regressive isols, then, by Proposition 1, it follows that

$$D_{\bar{f}}(D_{f}(T)) = T$$
 for $T \in \Lambda_{R}$.

This proves part (a). Part (b) follows from (3), the lemma, and Proposition 1. Finally part (c) follows from (b) and the relation denoted by (*).

Remark. Part (a) of Theorem 2 was first proved by Sansone in [11].

3. THE PRINCIPAL THEOREM

PROPOSITION 3. Let f be a strictly increasing recursive function. Then $D_f(\Lambda_R) = (f(E))_R$.

Proof. Let T be a regressive isol. First assume that $T \in (f(E))_R$. Then, by Theorem 2(c),

(5)
$$D_f(D_{\bar{f}}(\mathbf{T})) = \mathbf{T}.$$

Because \bar{f} is an increasing recursive function and T is a regressive isol, we know that $D_{\bar{f}}(T)$ is also a regressive isol. Combining this with (5), we see that $T \in D_f(\Lambda_R)$. This proves that $(f(E))_R \subseteq D_f(\Lambda_R)$.

To verify the inclusion in the other direction, let $T \in D_f(\Lambda_R)$, and let

(6)
$$T = D_f(S), \quad \text{with } S \in \Lambda_R.$$

By Theorem 2(a), we then have the relation $D_f(D_f(S)) = S$, and hence also the relation

(7)
$$D_f(D_f(S)) = D_f(S) = T$$
.

Combining (6) and (7), we obtain

(8)
$$D_f(D_{\bar{f}}(T)) = T.$$

Finally, in view of Theorem 2(c), it follows from (8) that $T \in (f(E))_R$. Therefore we also have the inclusion $D_f(\Lambda_R) \subseteq (f(E))_R$, and this completes the proof.

Combining Proposition 3 together with Theorem 2(c), one obtains the following corollary, proved first by Sansone [11, Section II, Proposition 2]. It is readily seen that the corollary and Theorem 2(c) together imply Proposition 3.

COROLLARY (Sansone). Let f be a strictly increasing recursive function. Then

$$T \in D_f(\Lambda_R) \iff D_f(D_f(T)) = T \quad for \ T \in \Lambda_R$$
.

THEOREM 3. Let f be an eventually increasing recursive function. Then $D_f(\Lambda_R) = (f(E))_R$.

Proof. First assume that f(E) is finite. Then

$$(f(E))_{R} = f(E).$$

In addition, f is an eventually constant function, and from this it follows that

(10)
$$D_f(\Lambda_E) = D_f(E) = f(E).$$

Combining (9) and (10), we obtain the desired result.

Assume now that f(E) is an infinite set. Since f is an eventually increasing recursive function, f(E) is an (infinite) recursive set. Let f^* be the strictly increasing recursive function that ranges over f(E). Then

$$f^*(E) = f(E),$$

and therefore

(12)
$$(f^*(E))_R = (f(E))_R$$
.

By Theorem 1(b), we also obtain from (11) the identity

$$D_{f*}(\Lambda_R) = D_f(\Lambda_R).$$

Finally, by Proposition 3 it follows that

$$D_{f*}(\Lambda_R) = (f^*(E))_R.$$

Combining (12), (13), and (14), we see that $D_f(\Lambda_R) = (f(E))_R$, and this completes the proof.

It can readily be shown that if α is a finite set, then $\alpha_R = \alpha$. In addition, if α is a recursive set and $\alpha_R \subseteq E$, then α is finite and $\alpha_R = \alpha$. This last property is

obtainable from Proposition 3, and by noting that if f is a strictly increasing recursive function, then $D_f(\Lambda_R)$ - E is not empty.

Let α and β be recursive sets. By [7, Theorem 3.1 (3.4)], one sees that

$$(\alpha \cap \beta)_{\Lambda} = \alpha_{\Lambda} \cap \beta_{\Lambda}.$$

In view of the definition of the extension to Λ_R of a recursive set, it follows from (15) that

$$(\alpha \cap \beta)_{R} = \alpha_{R} \cap \beta_{R}.$$

THEOREM 4. Let f and g be eventually increasing recursive functions such that the intersection of their ranges is not empty. Let h be any eventually increasing recursive function with

$$h(E) = f(E) \cap g(E).$$

Then

$$D_h(\Lambda_R) = D_f(\Lambda_R) \cap D_g(\Lambda_R)$$
.

Proof. Let $\alpha = f(E)$ and $\beta = g(E)$, and use (16) and Theorem 3.

Concluding remark. We consider an application of Theorem 4 to a particular arithmetic statement that is true in E, and was proved, in [9], to be false in Λ . It is the statement

(\triangle) if x is both a square and a cube, then x is a sixth power.

We want to show that (\triangle) is a true statement in Λ_R . For this purpose, let the functions f, g, and h be defined by

$$f(t) = t^2$$
, $g(t) = t^3$, $h(t) = t^6$.

Each of the functions f, g, and h is strictly increasing and recursive. Also, it is readily seen that

(17)
$$f(E) \cap g(E) = h(E).$$

In view of Theorem 4, it follows from (17) that

(18)
$$D_{f}(\Lambda_{R}) \cap D_{g}(\Lambda_{R}) = D_{h}(\Lambda_{R}).$$

Also, because

(19)
$$D_f(T) = T^2$$
, $D_g(T) = T^3$, and $D_h(T) = T^6$, for $T \in \Lambda_R$,

we know that if $X \in \Lambda_R$ and X is both a square (of some regressive isol) and a cube (of some regressive isol) then

$$x \in D_f(\Lambda_R)$$
 and $x \in D_g(\Lambda_R)$.

In view of (18) and (19), this also means that

$$X \in D_h(\Lambda_R)$$
,

and therefore that X is the sixth power (of some regressive isol). It follows that (\triangle) denotes a true arithmetic statement in Λ_R .

Added April 18, 1967. Since this paper was submitted, Matthew Hassett has obtained some other arithmetic statements that are true in E and Λ_R but not in Λ . One particular example is the statement

$$2^{A} = B^{C} \Rightarrow (\Xi W)[B = 2^{W}].$$

which had also been shown to be false in Λ , by Nerode [9].

REFERENCES

- 1. J. Barback, Recursive functions and regressive isols. Math. Scand. 15 (1964), 29-42.
- 2. J. C. E. Dekker, *Infinite series of isols*. Proc. Sympos. Pure Math. 5, pp. 77-96; Amer. Math. Soc., Providence, R.I., 1962.
- 3. ——, The minimum of two regressive isols. Math. Z. 83 (1964), 345-366.
- 4. J. C. E. Dekker and J. Myhill, Recursive equivalence types. Univ. California Publ. Math. (N.S.) 3 (1960), 67-213.
- 5. E. Ellentuck, Review of Extensions to isols, by A. Nerode (see [7]). Math. Reviews 24 (1962), #A1215.
- 6. J. Myhill, Recursive equivalence types and combinatorial functions. Proc. of the 1960 International Congress in Logic, Methodology and Philosophy of Science, Stanford, pp. 46-55; Stanford University Press, Stanford, Calif., 1962.
- 7. A. Nerode, Extensions to isols. Ann. of Math. (2) 73 (1961), 362-403.
- 8. ——, Extensions to isolic integers. Ann. of Math. (2) 75 (1962), 419-448.
- 9. ——, Non-linear combinatorial functions of isols. Math. Z. 86 (1964/65), 410-424.
- 10. F. J. Sansone, Combinatorial functions and regressive isols. Pacific J. Math. 13 (1963), 703-707.
- 11. ——, The summation of certain infinite series of isols. Doctoral Thesis, Rutgers-The State University, 1964.
- 12. ——, A mapping of regressive isols. Illinois J. Math. 9 (1965), 726-735.

State University of New York Buffalo, New York 14214 and State University of Arizona Tempe, Arizona 85281