NORMS OF POWERS OF ABSOLUTELY CONVERGENT
FOURIER SERIES IN SEVERAL VARIABLES

G. W. Hedstrom

In this paper we establish an upper bound for H o || , where f is an absolutely
convergent Fourier series

£0) = Layel®?)
(8]

in k variables, with "f” = Z}a [aal; here we use the notation o = (a;, -+, ay)
for a k-tuple of integers, and we write 0 = (6, ---, 6,) and (o, 6) = Eaj 0;. We
also use
k
-0 - Bj
Dj = 5g; Df = IlIDjJ.

We introduce the partial ordering
B > B' if and only if B; > Bj for j=1, -, K.

Let 0=(0, **-, 0) and I=(1, ---, 1).

THEOREM. Let f be given by an absolutely convergent Fouriev sevies, and let
lf(@)l <1 forall 6. Suppose DPE (0 < B <) exists in the sense of Sobolev and
belongs to Li,. Then

I£2] < MaX2 (=1, 2, ).

Remarks, For k = 1, the theorem was proved by Kahane (see [4, page 103]) by
means of an inequality of F. Carlson [1]. We shall prove a generalization of Carl-
son’s inequality (Lemma 2).

Kahane [3] showed that for k = 1 the estimate is the best possible estimate. His
example is easily modified to show that

"fn” _>_ an/z (C > O, n= 1’ 23 '")

it £(6)=el?(®) and ¢ is real, ¢ € C2, and if for some 6 the matrix [D},D; ¢(6)]
does not have zero as an eigenvalue. It is sufficient to deal with the localized prob-
lem, and we may rotate the coordinates to diagonalize the second derivatives (see

[2]).

The proof is based on two lemmas. The first concerns polynomials in a complex
variable z = (z;, -+, zix). We use the notation dz = dz; **-dz, and d6 = df ---dfy.

LEMMA 1. Let by > 0 (o > 0). Suppose g(z) = 27 by 2% is a polynomial, Then
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Sol Sol g(z)dz < z'kaﬂ... SZﬂlg(eiB)IdG,

0 0

. . 6 -
wheve g(ele) = g(e1 L e, ele ky,
Proof, The lemma follows from the elementary identities

1 1 b
S ---S g(z)dz = E ____()l___
0 0 a>0 Ij(a;+1)
and
27 27 . i +esa 40 b
S S g(eif)e'¥1 © 1 (n - 0;)d0 = (2mi)k 2 —c
0 0 j a>0 Hj(ozj + 1)
LEMMA 2 (a genevalized Cavlson inequality). Let ay > 0 for a > 1, and let
21g>1@%TaZ <. Then

( 22 aa)zs ark 2o ( 22 az'eagl)l/z( 27 az(l“ﬁ)aé)
a>1 0<BLI "a>1 a>1

1/2

Proof. Let N be a positive integer, and let

fN(z) = 27 a, z% .
I<a < NI

Then, with the notation D, =~— and D = IID%3, we have the relation
J 3 J
J

2 1 1 I.2 1 1 B 1-8
i@ =\ -\ D ff(z)dz =2 2 e\ (DRLEN) (D, ) dz.
N0 =) v -2 B ey Ol

We now apply Lemma 1 and the Schwartz inequality to get the inequality

2 2 X .
fl\zT(I) S 2—(k_l) E S g eee S 4 IDEfN(ele)l ID];—BfN(ele)] ae
o<p<i

-(k-1) B, ,ib 1-8. , if
< 2 27 D" £ (e*”) D Fiyle'’) )
<2 2 P, 1P ne Ol

It follows from this and from Parseval’s theorem that
2 1/2 1/2
( 22 aa) < oar® 22 ( 27 azﬁaé) ( 2J az(I'B)ag‘Z)
I<a <NI 0<BLI ta>l a>1

If we let N tend to infinity, we obtain the desired inequality.
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Proof of the theovem. Let

F(6) = Dby el®? | Dipy| <=, F0) = LngeH 9,
Then it follows from L.emma 2 that
2 1/2 1/2
(2 Iml) <2 = (D o®pg2) (2 o2P) 53 |2 )
a>1 0<BLI "a>1 a>l
<o D B IpPEre)| . [D'PER0)|, < Mk,
> 5 5 =
0<BLI

Since we get similar inequalities when we sum over a; <0, a; > 1 G=2,3, - -, k),

and so forth, the theorem is proved.
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