PRIMITIVE INVARIANTS AND CONJUGATE CLASSES OF
FUNDAMENTAL REPRESENTATIONS OF A COMPACT
SIMPLY CONNECTED LIE GROUP

Shoérd Araki

Let G be a compact, connected, and simply connected Lie group. The rational
cohomology algebra of G can be expressed as an exterior algebra

H*(G; Q) = AQ(Xl » 7T xﬁ)s

where deg x;=2m; -1 (1 <i< ¢) and- £ = rank G. The integers mj are called the
primitive invariants of G.

Among the complex representations of G there are ¢ fundamental ones,
p1, ***, Py that are irreducible, map a fixed maximal torus T of G onto diagonal
matrices, and have highest weights w;, **-, wy satisfying the relations

2{w;, aj>/<aj: aj> =0; (A<Liji<o)

for a simple system of roots {a;, **, @y} of G with respect to T. The set

{p 1s "5 P ﬂ} is closed under conjugation up to equivalence; that is, the conjugate
representation p; of p; is equivalent to some pj, so that it can be decomposed into
conjugate classes. Each class consists of one self-conjugate representation or two -
mutually conjugate representations.

In this note we give a general proof of the following theorem.

THEOREM. The number of even primitive invariants of G is equal to the num-
ber of conjugate classes of fundamental vepreseniations.

(Professor Armand Borel has pointed out to the author that this theorem can be
proved by a method that does not involve KO theory, but still uses Atiyah’s result

[1])

The theorem partially illustrates the phenomenon that the number of even primi-
tive invariants is generally larger than the number of odd primitive invariants.
(From this point of view, the case G = SU(2n + 1) looks rather exceptional.) When
no simple factor of G has outer automorphisms, then every p; is self-conjugate,
hence every m; is even.

1. Our basic tool is the rational KO-cohomology, that is, a cohomology theory
assigning to each space X (finite CW-complex) the groups KO}X)R Q (i € Z),
which we denote by KO [2]. Let

g: KOX(X) — K{X) and p: K{(X) — KOXX) (i€ Z)
denote natural transformations induced by complexification and real restriction of

vector bundles respectively [2], [3]. Let g be the generator of K-2(a point) given
by the reduced Hopf bundle, let A and p be the generators of KO-%(a point) and

Received January 5, 1966 and December 6, 1966.
Work supported in part by NSF grant GP-4069.

29



30 SHORO ARAKI

KO 8(a point) such that p(g?) =X and e(i) = g* [3]. Then A% = 4y, and the multipli-
cation (tensor product) with g gives the Bott periodicity isomorphism 8 of KO.

Put A' = A/2 € KO %(a point) ® Q. Now we easily see that multiplication with A’
gives a periodicity isomorphism

B:KO(X)®Q ~ KO HX)®RQ (i€ 2)

of period 4, which we may call the Bott periodicity isomorphism of KOg. Since

A =p, B is compatible with 8 in the sense that B'2 is the isomorphism induced by
B. Identifying KO(X) ® Q with KOI-4(X)(® Q by B', we obtain a multiplicative Z4-
graded cohomology theory, which we denote by KOb; that is,

3
KOL(X) = 2 KO'X)® Q.
i=0

Put
chp = chog: KO — H*(; Q).

Since ch and ¢ are additive and multiplicative natural transformations, chr also
has this property. We can also define chg on KOg by putting chyr = chy (9) 1n.
Then
chr(A') = ch(g?) = 1 € H(a point; Z).
Hence, for any x € KOI(X)® Q,
ChR(X) = ChR(ﬁ'(X));

this means that chyp induces an additive and multiplicative natural transformation

chr: KOn — H*(; Q),

which we also denote by the same symbol. Since KOg(a point) is isomorphic to Q
and chp(1) = 1, we have an isomorphism

chr: KOp(a point) ~ H*(a point; Q).

Thus, by a general argument using spectral sequences [2], [4, Anhang, pp. A1-Al14],
we see that

(1) chyr: KOK(X) ~ H*(X; Q)
for each finite CW-complex X. Moreover, observing that

chr(KO'(X)) © 22 H**Hi(X; Q)

n

and giving H*(X; Q) a Z4-grading by Z)n H4+i(X: Q) (-3 < i < 0), we see that the
above isomorphism (1) is degree-preserving.

The relation (1) and the multiplicativity of chy imply the Kiinneth isomorphism
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KO'Q(X) X KOK(Y) ~ KOG(X X Y)
for any finite CW-complexes X and Y.

2. Now we consider the case where X is a compact simply connected Lie group
G. By the isomorphism (1), KOH(G) is an exterior algebra over Q of dimension ot
Since (1) is degree-preserving, it induces a degree-preserving isomorphism of
modules of indecomposable elements (that is, reduced cohomologies modulo the sub-
groups of decomposable elements), and each one of these groups is degreewise iso-
morphic to a subgroup generated by a set of generators of the exterior algebra.
Hence we see that the following statement holds.

(2) In any set of genevators of the extevior algebra KOK(G), the numbeyr of gen-
evators of degree -1 (or -3) is equal to the number of even (or odd) primitive in-
varviants of G.

Let a: G — U(n) be a complex representation of G. The representation «, fol-
lowed by the inclusion U(n) C U, gives an element t (@) € [G, U] =K-1(G). Atiyah
[1] proved that

ch(t (py) - t(pg))[G] = 1.
In particular,

(3) ch(e(p;) - t(py)) # 0.

By reindexing, we may assume that p,, ---, pg are self-conjugate and
{Pstis Psimr+it 1 <i<m and m = (£ - s)/2) form conjugate classes. Then s + m
is the number of conjugate classes of fundamental representations. Let

v;i = p(L(p;)) € KO™H(G) (1<i<s+m),

Yeimti = P&~ t(pgyy) € KO3(@G) (1 <i<m).

Then
chr(yi) = 2-ch(e(pi)) 1<i<s),
ChR(Ys+i) = Ch(" (ps+i) + (ps+m+i)) (1 S i S m)’
ChR(ys+m+i) = ch(t (ps+i) -t (ps+m+i)) 1 S i S m).
Hence

chp(yy *=-yg) = £257™ - ch(t(p,) *** t(py)).
Thus, by (3) and (1),
yi--yg #0
in KOQ(G), which implies that y1, **+, yy generate an exterior subalgebra of dimen-

sion 2* since the y; have odd degrees. Finally, by the dimensionality argument, we
obtain the relation

(4) KO(G) = Aq(y1, 5 vo),

where the right-hand member has exactly s+ m generators y; (1 <iLs+ m) of
degree -1.
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The proposition (2) and the relation (4) prove the theorem.

3. Our theorem implies the following two corollaries.

COROLLARY 1. The primitive invariants of G ave all even if and only if every
Jundamental vepresentation is self-conjugate.

For a homogeneous space G/K of compact groups, it is well known [5] that the
Euler characteristic x(G/K) is not zero if and only if rank G = rank K. Hence, for a
symmetric pair (G, K) of a compact semisimple group G, x(G/K) # 0 if and only if
the involution o of the pair is an inner automorphism of G, which is equivalent to
saying that p; oo ~ p; for all fundamental representations p; of the universal cover-
ing group G of G. When the dual noncompact group of (G, K) is a Chevalley group,
that is, when its Lie algebra is the normal form of the complexification, then
pioo ~ p; for all p;, since both ¢ and the conjugation transform every weight to its
negative, for a suitable T. Thus we obtain from Corollary 1 a general proof of a re-
mark of Ono {6]. (The author is indebted to Professor Hans Samelson, who pointed
out Ono’s remark to him.)

COROLLARY 2. Let (G, K) be a symmetric paiv of a compact, semisimple Lie
group G such that its dual noncompact group is a Chevalley group. Thern xX(G/K) #0
if and only if the primitive invariants of G are all even.
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