PRIMITIVE INVARIANTS AND CONJUGATE CLASSES OF FUNDAMENTAL REPRESENTATIONS OF A COMPACT SIMPLY CONNECTED LIE GROUP

Shôrô Araki

Let G be a compact, connected, and simply connected Lie group. The rational cohomology algebra of G can be expressed as an exterior algebra

$$H^*(G; Q) = \Lambda_O(x_1, \dots, x_{\ell}),$$

where deg $x_i = 2m_i - 1$ $(1 \le i \le \ell)$ and $\ell = \text{rank G}$. The integers m_i are called the *primitive invariants* of G.

Among the complex representations of G there are ℓ fundamental ones, ρ_1 , ..., ρ_ℓ that are irreducible, map a fixed maximal torus T of G onto diagonal matrices, and have highest weights ω_1 , ..., ω_ℓ satisfying the relations

$$2\langle \omega_i, \alpha_j \rangle / \langle \alpha_j, \alpha_j \rangle = \delta_{ij} \quad (1 \leq i, j \leq \ell)$$

for a simple system of roots $\{\alpha_1, \cdots, \alpha_\ell\}$ of G with respect to T. The set $\{\rho_1, \cdots, \rho_\ell\}$ is closed under conjugation up to equivalence; that is, the conjugate representation $\bar{\rho}_i$ of ρ_i is equivalent to some ρ_j , so that it can be decomposed into conjugate classes. Each class consists of one self-conjugate representation or two mutually conjugate representations.

In this note we give a general proof of the following theorem.

THEOREM. The number of even primitive invariants of G is equal to the number of conjugate classes of fundamental representations.

(Professor Armand Borel has pointed out to the author that this theorem can be proved by a method that does not involve KO theory, but still uses Atiyah's result [1].)

The theorem partially illustrates the phenomenon that the number of even primitive invariants is generally larger than the number of odd primitive invariants. (From this point of view, the case G = SU(2n+1) looks rather exceptional.) When no simple factor of G has outer automorphisms, then every ρ_i is self-conjugate, hence every m_i is even.

1. Our basic tool is the rational KO-cohomology, that is, a cohomology theory assigning to each space X (finite CW-complex) the groups $KO^i(X) \otimes Q$ ($i \in Z$), which we denote by KO_Q [2]. Let

$$\epsilon \colon KO^{i}(X) \to K^{i}(X)$$
 and $\rho \colon K^{i}(X) \to KO^{i}(X)$ (i ϵ Z)

denote natural transformations induced by complexification and real restriction of vector bundles respectively [2], [3]. Let g be the generator of K^{-2} (a point) given by the reduced Hopf bundle, let λ and μ be the generators of KO^{-4} (a point) and

Received January 5, 1966 and December 6, 1966. Work supported in part by NSF grant GP-4069.

KO⁻⁸(a point) such that $\rho(g^2) = \lambda$ and $\epsilon(\mu) = g^4$ [3]. Then $\lambda^2 = 4\mu$, and the multiplication (tensor product) with μ gives the Bott periodicity isomorphism β of KO.

Put $\lambda' = \lambda/2 \in KO^{-4}$ (a point) $\bigotimes Q$. Now we easily see that multiplication with λ' gives a periodicity isomorphism

$$\beta'$$
: $KO^{i}(X) \otimes Q \simeq KO^{i-4}(X) \otimes Q$ (i $\in \mathbb{Z}$)

of period 4, which we may call the Bott periodicity isomorphism of KO_Q . Since $\lambda'^2 = \mu$, β' is compatible with β in the sense that β'^2 is the isomorphism induced by β . Identifying $KO^i(X) \bigotimes Q$ with $KO^{i-4}(X) \bigotimes Q$ by β' , we obtain a multiplicative Z_4 -graded cohomology theory, which we denote by KO_Q' ; that is,

$$KO_Q'(X) = \sum_{i=0}^3 KO^{-i}(X) \otimes Q.$$

Put

$$ch_R = ch \circ \epsilon$$
: KO \rightarrow H*(; Q).

Since ch and ϵ are additive and multiplicative natural transformations, ch_R also has this property. We can also define ch_R on KO_Q by putting $ch_R = ch_R \bigotimes 1_Q$. Then

$$\operatorname{ch}_{\mathbf{R}}(\lambda') = \operatorname{ch}(\mathbf{g}^2) = 1 \in \mathbf{H}^0(\text{a point}; \mathbf{Z}).$$

Hence, for any $x \in KO^{i}(X) \otimes Q$,

$$\operatorname{ch}_{R}(x) = \operatorname{ch}_{R}(\beta'(x));$$

this means that ch_R induces an additive and multiplicative natural transformation

$$ch_R: KO'_Q \rightarrow H^*(; Q),$$

which we also denote by the same symbol. Since $KO'_{\mathbb{Q}}(a \text{ point})$ is isomorphic to \mathbb{Q} and $ch_{\mathbb{R}}(1) = 1$, we have an isomorphism

$$ch_R$$
: KO'_Q (a point) $\sim H^*$ (a point; Q).

Thus, by a general argument using spectral sequences [2], [4, Anhang, pp. A1-A14], we see that

(1)
$$\operatorname{ch}_{R} : \operatorname{KO}_{Q}'(X) = \operatorname{H}^{*}(X; Q)$$

for each finite CW-complex X. Moreover, observing that

$$\operatorname{ch}_R(KO^i(X)) \subset \sum_n H^{4n+i}(X; Q)$$

and giving $H^*(X; Q)$ a Z_4 -grading by $\sum_n H^{4n+i}(X; Q)$ (-3 \leq i \leq 0), we see that the above isomorphism (1) is degree-preserving.

The relation (1) and the multiplicativity of ch_R imply the Künneth isomorphism

$$KO'_{\mathcal{O}}(X) \otimes KO'_{\mathcal{O}}(Y) \simeq KO'_{\mathcal{O}}(X \times Y)$$

for any finite CW-complexes X and Y.

- 2. Now we consider the case where X is a compact simply connected Lie group G. By the isomorphism (1), $KO_Q^i(G)$ is an exterior algebra over Q of dimension 2^ℓ . Since (1) is degree-preserving, it induces a degree-preserving isomorphism of modules of indecomposable elements (that is, reduced cohomologies modulo the subgroups of decomposable elements), and each one of these groups is degreewise isomorphic to a subgroup generated by a set of generators of the exterior algebra. Hence we see that the following statement holds.
- (2) In any set of generators of the exterior algebra $KO'_Q(G)$, the number of generators of degree -1 (or -3) is equal to the number of even (or odd) primitive invariants of G.

Let α : $G \to U(n)$ be a complex representation of G. The representation α , followed by the inclusion $U(n) \subset U$, gives an element $\iota(\alpha) \in [G, U] = K^{-1}(G)$. Atiyah [1] proved that

$$\operatorname{ch}(\iota(\rho_1)\cdots\iota(\rho_\ell))[G] = 1.$$

In particular,

(3)
$$\operatorname{ch}(\iota(\rho_1)\cdots\iota(\rho_{\ell})) \neq 0.$$

By reindexing, we may assume that ρ_1, \cdots, ρ_s are self-conjugate and $\{\rho_{s+i}, \rho_{s+m+i}\}$ $(1 \le i \le m \text{ and } m = (\ell - s)/2)$ form conjugate classes. Then s+m is the number of conjugate classes of fundamental representations. Let

$$y_i = \rho(\iota(\rho_i)) \in KO^{-1}(G) \qquad (1 \le i \le s + m),$$

$$y_{s+m+i} = \rho(g \cdot \iota(\rho_{s+i})) \in KO^{-3}(G) \qquad (1 \le i \le m).$$

Then

$$\begin{split} \mathrm{ch}_{R}(y_{i}) &= 2 \cdot \mathrm{ch}(\iota \, (\rho_{i})) & (1 \leq i \leq s), \\ \mathrm{ch}_{R}(y_{s+i}) &= \mathrm{ch}(\iota \, (\rho_{s+i}) + \iota \, (\rho_{s+m+i})) & (1 \leq i \leq m), \\ \mathrm{ch}_{R}(y_{s+m+i}) &= \mathrm{ch}(\iota \, (\rho_{s+i}) - \iota \, (\rho_{s+m+i})) & (1 \leq i \leq m). \end{split}$$

Hence

$$\operatorname{ch}_{R}(y_{1}\cdots y_{\ell}) = \pm 2^{s+m} \cdot \operatorname{ch}(\iota(\rho_{1})\cdots \iota(\rho_{\ell})).$$

Thus, by (3) and (1),

$$y_1 \cdots y_{\ell} \neq 0$$

in KO $_Q$ (G), which implies that y_1 , ..., y_{ℓ} generate an exterior subalgebra of dimension 2^{ℓ} since the y_i have odd degrees. Finally, by the dimensionality argument, we obtain the relation

(4)
$$KO_O^{\dagger}(G) = \Lambda_O(y_1, \dots, y_{\ell}),$$

where the right-hand member has exactly s+m generators y_i ($1 \le i \le s+m$) of degree -1.

The proposition (2) and the relation (4) prove the theorem.

3. Our theorem implies the following two corollaries.

COROLLARY 1. The primitive invariants of G are all even if and only if every fundamental representation is self-conjugate.

For a homogeneous space G/K of compact groups, it is well known [5] that the Euler characteristic $\chi(G/K)$ is not zero if and only if rank $G = \operatorname{rank} K$. Hence, for a symmetric pair (G,K) of a compact semisimple group G, $\chi(G/K) \neq 0$ if and only if the involution σ of the pair is an inner automorphism of G, which is equivalent to saying that $\rho_i \circ \sigma \sim \rho_i$ for all fundamental representations ρ_i of the universal covering group G of G. When the dual noncompact group of G, G is a Chevalley group, that is, when its Lie algebra is the normal form of the complexification, then $\rho_i \circ \sigma \sim \bar{\rho}_i$ for all ρ_i , since both σ and the conjugation transform every weight to its negative, for a suitable G. Thus we obtain from Corollary 1 a general proof of a remark of Ono [6]. (The author is indebted to Professor Hans Samelson, who pointed out Ono's remark to him.)

COROLLARY 2. Let (G, K) be a symmetric pair of a compact, semisimple Lie group G such that its dual noncompact group is a Chevalley group. Then $\chi(G/K) \neq 0$ if and only if the primitive invariants of G are all even.

REFERENCES

- 1. M. F. Atiyah, On the K-theory of compact Lie groups, Topology 4 (1965), 95-99.
- 2. M. F. Atiyah and F. Hirzebruch, *Vector bundles and homogeneous spaces*, Proc. Sympos. Pure Math., Vol. 3, Differential Geometry, 7-38, Amer. Math. Soc., 1961.
- 3. R. Bott, Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France 87 (1959), 293-310.
- 4. A. Dold, *Halbexakte Homotopiefunktoren*, Lecture Notes in Mathematics, 12, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- 5. H. Hopf and H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1941), 240-251.
- 6. T. Ono, The Gauss-Bonnet theorem and the Tamagawa number, Bull. Amer. Math. Soc. 71 (1965), 345-348.

Stanford University and Osaka City University