COMPLETE SYSTEMS IN L, AND A THEOREM OF RENYI

Richard F. Gundy

In [4] Rényi refers to a question and a conjecture of H. Steinhaus about families
S = {f(x)}..; of stochastically independent, bounded Borel functions defined on the

unit interval. From such a family S, we may form the family S* of all finite prod-
ucts of powers of elements of S:

N
* = {11 Mk . .
S fnk ; Ny, my, N arbitrary integers ¢ .
k=1

What arve necessary and sufficient conditions on the family S in ovder that the family
S* be complete in L2(0, 1), in the sense that the only functions orthogonal to every
member of S* vanish almost evevywheve ? Steinhaus conjectured that if no noncon-
stant function, stochastically independent of every member of S, can be defined on
the unit interval I, then s* is complete. Systems for which no nonconstant indepen-
dent functions exist are said to be safurated with vespect to independence. This
property is easily seen to be necessary for completeness of S*, and the conjectured
sufficiency is supported by familiar examples. One of these is the system of Rade-
macher functions; here S* is the system of Walsh functions, known to be complete.
Another example is the system

S = {fl(X) =1, fz(X) =x}, s* = {x";n=0,1, -},

which is again known to be complete.

Rényi [4] considers a more general problem, in which the members of S are not
necessarily stochastically independent. In this setting, he shows that saturation with
respect to independence is not sufficient for completeness of S*. In fact, if S con-
sists of the single function

x if 0<x< 1/2,
f(x) =
1 if 1/2<x<1,

then S* is saturated with respect to independence, yet any L2 —function vanishing on
[0, 1/2) and odd about 3/4 on [1/2, 1] is orthogonal to S*. However, Rényi gives
the following sufficient condition for completeness of S* [4].

THEOREM (Rényi). If S = {f, }:;1 is a family of bounded Bovel functions on
the unit intevval 1, and if 1 contains a set M of ‘Lebesgue measuve 1 such that for

each paiv x, y with x € M, y € M, and x +#y the inequality f (x) # £, (y) holds for
some n, then the covvesponding family S* is complete.

This theorem may be applied to prove completeness for many classical systems
of orthogonal functions, including the Walsh and trigonometrical systems.
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In the first part of this paper we consider the general problem proposed by
Rényi, and we give a necessary and sufficient condition for completeness of S*.
From this, it follows that Rényi’s condition is necessary as well as sufficient for
completeness.

At the conclusion of his paper, Rényi remarks that although the original Steinhaus
question has a negative answer, it would be of interest to find necessary and sufficient
conditions for completeness of S* when S is an infinite family of independent func-
tions. This problem is considered in the second section of this paper, under the ad-
ditional hypothesis that S is a family of independent binomial functions, a specializa-
tion suggested by the Rademacher system. We show that a system S of independent
binomial variables whose distributions are given by a sequence

{pn}:;;l where 0<p, < 1/2

may be constructed so that S* is complete if and only if Zpp = .

It is still conceivable that saturation with respect to independence is sufficient
for completeness of S*, if S is suitably restricted. An appropriate restriction seems
difficult to formulate, even when S consists of independent binomial functions. In
fact, we give an example of a family S with the following properties: a) S is a se-
quence of independent symmetric binomial functions; b) S is saturated with respect
to independence; c) S* is incomplete.

In the third section, families of functions that are saturated with respect to inde-
pendence are character1zed in terms of the associated family of cond1t1ona1 proba-
bility distributions.

1. A NECESSARY AND SUFFICIENT CONDITION
FOR COMPLETENESS

If S={f }7 is a sequence of functions, we denote by o(S) the smallest o-field
with respect to which all members of S are measurable, and we say that o(S) is
genevated by S. Two o -fields will be called equwalent if they are identical up to
sets of measure zero. For any f € L (0 1) and any o -field o¢(S), we denote by
E(f " o(S)) the conditional expectation of f relative to o(S).

In the following, the underlying space will be the unit interval I with Lebesgue
measure on the o-field 8 of Borel sets. (This restriction is a matter of conven-
ience, not entirely necessary for the validity of the results.) I A is a Borel set,
then !Al will denote the Lebesgue measure A.

We say that a set A is an afom in a o-field o(S) if A € o(S), ]A] > 0, and
|E| =0 or |E| = |A| whenever E € o(S) and E C A.

THEOREM 1. If S is a family of bounded Borel measurable Sfunctions, then a
necessary and sufficient condition that S* be complete in L (0 1) is that o(S) be
equivalent to the Borel sets of (0, 1).

Necessity. If o(S) is not equivalent to the Borel sets, then there exists a Borel
function f(x) € L2(0, 1) such that

f(x) - E(f || o(S))(x) # 0

on a set of positive measure. Since o(S) = o(S*)
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E(f | 0(S)) = E(f || o(s*))
almost everywhere, so that
h(x) = f(x) - E(f " o(S*)(x) # 0
0;1 a set of positive measure. The function h(x) is orthogonal to every member of
S”.

Sufficiency. It will be shown that there exists an L -norm approximation to an
arbitrary function g(x) € L (0 1) by a finite linear combination of elements from S*,
Let o(Syy) be the o-field generated by Sy = {f }1 . The hypothesis of the theorem

guarantees that E(g ” o(S)) = g almost everywhere. The martingale convergence
theorem then implies that

S le - Eg || o5 )P dx < & for N > Ng.

We shall show that the function E(g H 0(Syy)) can be approximated arbitrarily closely
in the LZ-norm by a finite linear combination of elements from S*. If we combine
this fact with the above inequality, the proof is complete. The approximation problem
for a general LZ-function of the form E(g || o(Sy)) may be reduced by a familiar
argument to finding approximations for characteristic functions of sets of the form

M -
n -1 {f > ak} Since lf I < C(N) almost everywhere for n=1, 2, --- ) N, it is

possible to find an L2 -norm approximation for each function |fn(x)[ by a polynomial
in f (x). It follows from this that the following functions have polynomial approxima-
tions in the L%-norm.

+
(@) £, = (£ ]| +£)/2,
. +
(b) min(f,, 1) = (£ +1 - |[£] - 1])/2,
(c) the characteristic function x(f, > 0)(x) of the set

{x: £ (x) > 0} = lim min(k-min(f:;, 1), 1).

k— oo

Since the above statements hold as well for f (x) - a, it follows that the characteris-
tic function of {f > a} has a polynomial approx1mat1on. If we choose the degree of
approximation appropriately, we can multiply the polynomials for {f > an }

forming a linear combination of elements of S*, to give an apprommatlon for the
characterlstlc function of the set ﬂk 1 {f > ak} As pointed out above, a familar

argument leads from this to an approx1mat10n of simple functions, and ultimately to
an approximation of the general LZ-function. This completes the proof of Theorem 1,

Rényi’s sufficient condition for completeness of S*, quoted above, is also neces-
sary; the proof of this follows from Theorem 1.

. COROLLARY. Rényi's condition is necessavy and sufficient for completeness of
S*.
Suppose S* is complete. Then it follows from Theorem 1 that o(S) is equivalent

to B. If o(Sy) is the o -field generated by {f (x)}N and e is the identity e(x) = x,
then
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lim E(e | o(Sy)) = lim hy(f,, -, fy) = e

N — co N—o

on a set M of measure 1, where each hy is an appropriately chosen Borel function
on EN, If x, y € M and x #y, it follows that

hy(£y (x), ===, In(x)) # hy(E;(y), -, In())

for some N. This implies f,(x) # f_(y) for some n (1 <n < N), so that Rényi’s con-
dition is in fact necessary as well as sufficient for completeness of S*.

2. INDEPENDENT BINOMIAL FUNCTIONS

Returning to the original problem of Steinhaus, suppose that S = {f,}] isa
system of nonconstant independent functions. Necessary and sufficient conditions
for completeness of S* that utilize the independence hypothesis in an essential way
seem difficult to obtain. The following considerations may point out the nature of the
difficulty. Suppose S is a family of independent binomial functions defined on the
unit interval; that is, let each f, take on only two values, say +1, with probabilities
p, and q, (p, <4q,, P, + d, = 1), so that the class of all such systems contains the
system of Rademacher functions as a member.

Denote by {8, pn}io the class of all binomial systems having the associated se-
quence {p,} of probabilities. For example, the Rademacher system belongs to the
class {S, p, =1/2}.

THEOREM 2. Each class {S, p,} of independent binomial systems contains a
member S such that S* is complete if and only if T p, = .

Proof. We shall show that there exists a member S € {S, pn} with the property
that o(S) is equivalent to the Borel sets if and only if Zp, = ©. The proof will then
be completed by an appeal to Theorem 1.

We form the sum g(x) = Zp-1 (1 - £5(x))/2%, which converges for all x € I, since
the functions f,(x) assume only the two values +1. Then o(g) is a subfield of o(S),
and we claim that o(g) is nonatomic if and only if = p, = «. In fact, by a theorem of
Lévy [3, pp. 16-17], the distribution function of g is continuous if and only if
Zp, = «©. In other words, o(g) is nonatomic if and only if Zp, = «. Now, if o(g) is
nonatomic, then o(S) is also nonatomic, so that Zp, = « implies o(S) is nonatomic.
On the other hand, if ¢(S) is nonatomic, it is easily seen that o(g) is equivalent to
o(S), so that Zp, = «. In summary, o(S) is nonatomic if and only if Zp, = <.

By the isomorphism theorem for measure spaces [2, p. 171], there exists a
measure-preserving tranformation 7 that carries (I, 0(S)) onto the Lebesgue
measure space (I, B) if and only if o(S) is nonatomic, that is, if and only if
Zp, = . In other words, some member S belonging to {S, pn} has the property
that o(S) is equivalent to B if and only if Zp, = . An appeal to Theorem 1 com-
pletes the proof of Theorem 2.

Example., Theorem 2 does not guarantee that every member S belonging to the
class {S, pn} has the property that S* is complete. In fact, it is possible for S to
be saturated with respect to independence and S* to be incomplete. Consider the
following example. The function
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x if 0<x<1/2,
i(x) =
1+ sin 2n(x - 1/2) if 1/2<x<1

generates a proper nonatomic sub-o -field of Borel sets composed of all Borel sets
of [0, 1/2] and all Borel sets symmetric about 3/4 in (1/ 2501]. This o -field is
equivalent to the o-field generated by the system S = {f,}, , where

sgn sin 27 2" x if 0<x<1/2,

fa(x) =
sgn sin 27 27 (x - 1/2) if 1/2<x<1.

It is easy to verify that the members of the family S are independent, identically
distributed binomial variables with p, = 1/2. If we assume that the generated o -
field is not saturated with respect to independence, then there exists a Borel set A
(0 < |A] < 1) independent of o(S). The set C = A N [0, 1/2) belongs to o(S), and its
measure is |A|/ 2. But C = AN C, which implies that

lcl = lanc| = |a]-|c| = |al*/2 < |al/2 = |c],

or |C| < |C|, which is a contradiction. Consequently, ¢(S) is saturated with re-
spect to independence. On the other hand, S* is not complete, since any function

vanishing on [0, 1/2) and anti-symmetric about 3/4 on [1/2, 1] is orthogonal to

every member of S.

3. CONDITIONAL DISTRIBUTIONS AND SATURATION WITH
RESPECT TO INDEPENDENCE

In this section, it will be more convenient to discuss systems of functions, or
more generally, sub-o -fields, that are not saturated with respect to independence.
Such sub-o -fields will be said to admit an independent function. H a function f is
independent of a subfield o, then there exists a nontrivial set A that is independent
of o. Consequently, it is possible to say that ¢ is saturated with respect to inde-
pendence if and only if ¢ does not admit an independent set.

Since the underlying space is assumed to be the Borel field of the unit interval,
to each subfield o there corresponds a family of conditional probability measures
on the Borel sets, which we denote by P,(- || o) for every x (0<x<1). If ¢ ad-
mits a nontrivial mdependent Borel set A there exists a 8 (0 < 6 < 1) such that
P (A " o) = 6 for almost every x in [0, 1] The existence of such a value 0,
simultaneously in the range of almost every conditional probability measure
P.(- | o), is then a necessary condition for ¢ to admit an independent set. It is
possible to show that this condition is also sufficient. In fact, the existence of an
independent Borel set for ¢ can be guaranteed under a seemingly weaker condition.

THEOREM 3. Let Py (- || o) (0<x< 1) be afamily of conditional probability
measures velative to an arbitrary subfzeld 0. Suppose that theve exists a set M
(|M| 1) and a closed mte'rval 0< 0 <6 L0, <1 such that for every finite set
of points x; € M (i =1, ---, N) there exzst Borel sets {A(x; )}N , and a value

0 = 0(x,, ---,xN) (elgege ) such that P, (A lo)=0 foreachi=1, 2, -, N.

Then o admits a nontrivial independent Borel set; ﬂzat is, theve exists a Borel set A
such that P_(A " o) = 6 almost everywhere for some 0.
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Conversely, the condition is necessary for ¢ to admil a nontrvivial independent
set,

Proof. The necessity of the condition is clear. Now suppose that the hypothesis
of Theorem 3 holds for some interval [6;, 6,] and some set M with |M| =1. We
make use of a theorem of Buch [1] to the effect that the range of every finite measure
is a compact set. Denote by R, the intersection of the range of P,(- ]I o ) with the
closed interval [61, 6’2]. The condition of Theorem 3 states that the family of com-
pact sets R, has the finite-intersection property, when x ranges over M. It fol-

lows that nx R, # §; in other words, there exists a value 8 (6; < 6 < 6;,) such
that to every x € M, there corresponds a set A, with the property P,(A, | o) = 6.

o0

An independent set can be approximated in the following manner. Let = {A(n)} 1
be the collection of all finite unions of intervals with rational endpoints, and let
{sk};o be a sequence of positive real numbers tending to zero. For each g, we
construct a collection of sets B(n, k) as follows:

B(n, k) = {x: |P . (Am)+A_|o)] <.},

where + denotes symmetric difference, B(n, k) N B(m, k) = § when n # m, and

U:=1 B(n, k) = M. Now define the set A(gy) = U:=1 (B(n, k) N A(n)). Then A(ey)
is approximately independent:

0-|U| - < |A(g )N U| = S P (A(e,) || o)ax= 2 S P_(A(n) | o)dx
U n=1

(1) B(n,k) NU
<0-|U] +g

for each set U € o.

Furthermore, the sequence of sets {A(s;k)};o converges to a Borel set A, since
the corresponding sequence of characteristic functions is a Cauchy sequence in the
L!-norm. That is,

|Aey) +ACe;)| = 27 S P (A, +A_ | o)dx
™ B(n,j) NB(m,k)

<X iAo e, Fa, ] o)lax
M B(n,5) NB(m,k)

(2)

< sk+zj = o(1).

Inequalities (1) and (2) imply that the limiting set A is independent of the subfield o,
and the proof is complete.

Lévy [3] observed that a sufficient condition for the existence of a function inde-
pendent of ¢ is that the conditional distribution function F,(y) = Px([o, yl|| o) be
continuous for almost every x. A generalization of this follows from Theorem 3.

COROLLARY. Let P (-] 0)=p(x)Cyl(- | o)+ a(x)D,(- | o) e the decomposi-
tion of P, (- || o) into continuous and discvete components. If the discrete component
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D,(- || o) with weight q(x) is such that ess sup q(x) < 1, then o admits an independ-
0<x<1
ent set.

Proof. Since q(x)+ p(x) = 1, the condition guarantees that p(x) > ¢ > 0 for al-
most every x; that is, the range of almost every P,(- " o) contains the value 6, so
that by Theorem 3 an independent set exists.
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