CERTAIN MANIFOLDS WITH BOUNDARY THAT ARE PRODUCTS

P. H. Doyle

There exists a 3-manifold M^3 with boundary, whose interior is topologically E^3 and whose boundary is topologically E^2 , while M^3 is not topologically $E^2 \times [0, 1)$. Infinitely many such 3-manifolds exist, as was shown in [1] and [16]. We shall show that this situation is unique to dimension 3.

It is well to point out that the following can be obtained by using the results of Homma [14]. This is the approach taken by Cantrell in [6]. The respective methods of this paper and [6] have been combined to study the local embedding of n-manifolds with boundary in n-manifolds [11].

THEOREM 1. Let M^n be an n-manifold with boundary such that Int $M^n = E^n$ and Bd $M^n = E^{n-1}$. Then, if $n \neq 3$, $M^n = E^{n-1} \times [0, 1)$.

In the statement of the main result, Int and Bd denote the interior and boundary of M^n , respectively. Since the result is trivial for n = 1 or 2, we shall assume that n > 4. One obtains as corollaries the following.

COROLLARY 1. If $A \subset E^n$ (n \neq 3) is an arc that is locally tame except perhaps at an endpoint p, then A is tame.

Proof. We note that by [14], A - p is a monotone union of tame arcs. Thus one can evidently swell A - p up into a set K such that $K \cup p$ is an n-cell whose boundary is locally bicollared except at p, while A can be moved by a homeomorphism h of E^n onto E^n so that $h(A) \subset Bd(K \cup p)$. Then if S^n is the one-point compactification of E^n , $\overline{S^n} - \overline{K} - p$ is a manifold with boundary of the type described in Theorem 1. Therefore $\overline{S^n} - \overline{K}$ is a closed n-cell and K is a flat n-cell. Since by [15] each arc on Bd K is tame, A is tame.

COROLLARY 2. Let D^n be a compact n-manifold with boundary, and let Int $D^n = E^n$. If Bd $D^n = E^{n-1} \cup R$ is a standard decomposition of Bd D^n [9], then D^n/R is I^n , the n-cell.

The proof of Theorem 1 will entail several lemmas.

LEMMA 1. In E^n let $\left\{D_i\right\}$ be a sequence of disjoint (n-1)-cells converging to a point p. If for each pair of indices j and k, D_j and D_k can be carried to flat polyhedra by a homeomorphism of E^n on E^n , then there exists a homeomorphism h of E^n on E^n such that $\left\{h(D_i)\right\}$ is a sequence of polyhedral flat (n-1)-cells.

Proof. Since at each point of an (n-1)-sphere in E^n one can pierce the sphere by an arc that is locally polyhedral except at the point [18, pp. 66-67], there exists an arc J having p and q as endpoints; J pierces each D_i at a single point q_i , and J is locally polyhedral except at p and $\{q_i\}$. By [7], J is a tame arc for $n \geq 4$. We assume without loss of generality that as J is traversed from q to p, the points $q_1, q_2, \cdots, q_i, \cdots$ have the same order on J as they have in their original order in $\{D_i\}$.

The tameness of J ensures the existence of a sequence of bicollared (n - 1)-spheres $\left\{S_i^{"}\right\}$ such that $S_{i+1}^{"}\subset \operatorname{Int}S_i^{"}$, $A_i^{"}=\overline{\operatorname{Int}S_i^{"}}$ - $\operatorname{Int}S_{i+1}^{"}$ is a closed annulus

Received March 15, 1963.

containing q_i in its interior, and \bigcup_1^∞ Int $S_i'' = p$. Since the disks D_i are flat, we may assume that $D_i \subset \text{Int } A_i''$ for each i. By [10], each S_i'' may be replaced by a tame (n-1)-sphere S_i' so that $\{D_i\}$, $\{S_i'\}$, $\{A_i'\}$ are related in the same way as $\{D_i\}$, $\{S_i''\}$, $\{A_i''\}$ above, and so that $D_i \cup Bd A_i'$ is tame. For if S is any bicollared (n-1)-sphere in E^n and if U is an open annular neighborhood of S in E^n , then given any bicollared (n-1)-sphere S' in E^n ($S' \cap U = \square$), there exists in U a bicollared (n-1)-sphere S'' such that $S' \cup S''$ bounds a closed annulus in E^n and there exists a homotopy j_t in U of the identity map $j: S \to S$ such that $j_1(S) = S''$. (This change would not be necessary if the Annulus Conjecture were proved [5].)

In the interior of each $A_i^!$, place D_i on a bicollared (n - 1)-sphere S_i such that $\overline{S_i}$ - $\overline{D_i}$ is an (n - 1)-cell, while S_i bounds a closed annulus in $A_i^!$ along with each component of Bd $A_i^!$. The sequence $\{S_i\}$ may now be carried by a homeomorphism h of E^n onto E^n so that $h(S_i)$ is the boundary of an n-simplex and $h(D_i)$ is a face of this simplex. This completes the proof of Lemma 1.

In the preceding proof a fact of interest appears in connection with piercing properties of spheres. If S^{n-1} is a sphere in E^n and if $n \neq 3$, then S^{n-1} is pierced at each point by a tame arc [7]. The corresponding problem for E^3 is discussed in such papers as [2], [8], [12].

LEMMA 2. Let $C^n \subset E^n$ be an n-cell such that $Bd\ C^n$ is locally bicollared except at a point p. Then there exists a sequence of disjoint flat (n-1)-cells $\{D_i^!\}$ such that

- (i) Int $D_i^! \cap C^n$ is an (n-1)-cell D_i and $\overline{D_i^! D_i}$ is a closed annulus,
- (ii) D_i is a flat spanning cell of Bd C^n that separates C^n into two components C_i and C_{ip} such that p lies in C_{ip} while \overline{C}_i and \overline{C}_{ip} are n-cells meeting in D_i ,
 - (iii) $D_i' \cup \overline{C_i}$ and $D_i' \cup \overline{C}_{i+1}$ are tame sets,
 - (iv) $\overline{C}_{i+1} \supset \overline{C}_i$, and
 - (v) $\{D_i^!\}$ converges to p.

Proof. The local bicollaredness of Bd C^n - p implies by [4] that in each open U containing C^n - p there exists a topological $E^{n-1} \times (0, 1)$, K, that lies in U - C^n and is the interior of a collar on Bd C^n - p in E^n - C^n . There exists a homeomorphism k from a standard simplex σ^n with a topological $E^{n-1} \times [0, 1)$ attached to its boundary less a point onto $C^n \cup K$, and such that $k(\sigma^n) = C^n$. The disks $\{D_i^i\}$ meeting conditions (i) to (v) are the images under k of such disks in the standard model.

LEMMA 3. Under the hypothesis of Lemma 2 there exists a homeomorphism h of E^n onto E^n such that $\left\{h(D_i^!)\right\},$ $\left\{h(D_i)\right\}$ are sequences of polyhedral flat (n - 1)-cells.

Proof. This follows from Lemma 1.

LEMMA 4. Let M^n be an n-manifold with boundary such that Int $M^n = E^n$ and Bd $M^n = E^{n-1}$. If N^n is a copy of $E^{n-1} \times [0, 1)$ and Q^n is the n-manifold obtained by sewing N^n and M^n together along their boundaries by homeomorphism, then $Q^n = E^n$.

Proof. If M^n is any n-manifold with boundary, and if an open collar is attached to its boundary, the resulting manifold is homeomorphic to Int M^n .

Lemma 4 ensures that if $M^n \neq E^{n-1} \times [0, 1)$, then there exists a wild n-cell C^n in E^n , and $Bd \ C^n$ is locally bicollared except at a point p. Further, if

 $C^n \subset E^n \subset S^n$, then M^n can be embedded in S^n , as the set S^n - (Int $C^n \cup p$). The problem of showing that $M^n = E^{n-1} \times [0, 1)$ is then equivalent to showing that the cell C^n of Lemma 2 must be tame. In the following, C^n refers to the cell of Lemma 2, where the cells $D_i^!$ and D_i are polyhedral by virtue of Lemma 3.

LEMMA 5. Let A be an arc in C^n , with endpoint p, such that $A - p \subset Int \ C^n$ and $A \cap D_i$ is a point d_i for each i and such that A pierces each D_i and A is locally polyhedral except at p. If B is an arc in $(E^n - C^n) \cup p$ with p as endpoint, and if B is locally polyhedral except at p, then the arc $J = A \cup B$ is a tame arc, and for each fixed i, $J \cup D_i^l$ and $J \cup D_i$ are tame.

Proof. That J is tame follows from [7]. Similarly, $J \cup D_i^!$ and $J \cup D_i$ are tame, since J can be thrown onto a polygon, by a homeomorphism on E^n , without moving $D_i^!$.

LEMMA 6. Under the hypothesis of Lemma 5, let U be an open n-cell neighborhood of the point p. If D_i^l lies in U as well as \overline{C}_{ip} (the closure of the component of C^n - D_i containing p), then there exists a bicollared (n - 1)-sphere S such that

- (i) p lies in Int S,
- (ii) $S \subset U$,
- (iii) $D'_i \subset S$, and
- (iv) $S \cap (C^n \cup B) = D_i \cup s$, where s is a point of B.

Proof. Since $D_i' \cup J$ is tame, there exists a bicollared sphere S' meeting the conditions (i), (ii), and (iii), while $S' \cap B$ is a point and $S' \cap \overline{C_i} = D_i$. It may happen, however, that S' meets a finite number of the tame n-cells in C^n that are cut off on C^n by successive pairs of (n-1)-cells D_j and D_{j+1} . Since D_j is flat for each j, we can certainly assume that $S' \cap D_j = \square$ if $i \neq j$.

If F_j is the closed n-cell in C^n lying between D_j and D_{j+1} , suppose $S' \cap F_j \neq \square$. Corresponding to any open set V containing both $D_j \cup D_{j+1}$ and $A \cap F_j$, there exists a homeomorphism g of E^n onto E^n that maps F_j into V and reduces to the identity on $D_j \cup D_{j+1}$, outside of V, and outside of an arbitrarily preassigned neighborhood of F_j .

One can construct g by taking sub-disks D_j^u and D_{j+1}^u of D_j^l and D_{j+1}^l in V and shrinking F_j , a tame cell, into the neighborhood V of $A \cap F_j$ and $D_j^u \cup D_{j+1}^u$. Thus, g can be selected so that $S' \cap g(F_j) = \square$. Applying the same argument a finite number of times, we obtain a homeomorphism h that reduces to the identity, outside of U and on J, with $h(C^n) \cap S' = D_i$. Evidently the set $h^{-1}(S') = S$ meets the conditions described in the lemma.

We can now give the proof of Theorem 1. Let $\{U_j\}$ be the symmetrical n-balls with p as center and 1/j as radius. In each U_j there exists, by Lemma 6, a bicollared (n-1)-sphere S_j such that S_j contains some (n-1)-cell D_i^l , which we denote by P_j , such that p lies in the interior of S_j and $S_j \cap J$ is a pair of points one of which is $P_j \cap A$, one of the d_i in Lemma 5. This is because J as well as each $J \cup D_i^l$ is tame. We next observe that without loss of generality one may assume that $S_k \cap S_m = \square$ if $k \neq m$, and from Lemma 6 it follows that

$$S_j \cap C^n = P_j \cap C^n$$

for each j.

Now let E^n be compactified by a single point so that $C^n \subset S^n$. If D is any compact set in S^n - (Int $C^n \cup p$) = M^n , then D lies in a closed n-cell L in M^n . We note that L can be so chosen that Bd L consists of S_j - $(P_j \cap C^n)$ together with a component of Bd C^n - P_j , for some j. Since this (n-1)-sphere is locally bicollared by construction, it is tame. Thus by the characterization in [10], $M^n = E^{n-1} \times [0, 1)$. For completeness we state this characterization as follows: Let M^n be an n-manifold with boundary such that $M^n = \bigcup_{i=1}^{\infty} C_i^n$, where $C_i^n \subset C_{i+1}^n$, C_i^n is a closed n-cell for each i, Bd $M^n \cap C_i^n$ is an (n-1)-disk D_i^{n-1} , Int $D_{i+1}^{n-1} \supset D_i^{n-1}$, and $(C_i^n - D_i^{n-1}) \subset \text{Int } C_{l+i}$. Then $M^n = E^{n-1} \times [0, 1)$.

The fact that an n-manifold with boundary M^n , with Int $M^n = E^n$, and with Bd $M^n = E^{n-1}$ is topologically unique for $n \neq 3$ does not entail that

$$M^n = E^{n-1} \times [0, 1)$$

is a unique factorization in general even into manifolds with boundary. For any 4-simplex σ^4 in E^4 , let us construct a manifold $M^4 = \operatorname{Int} \sigma^4 \cup K^3$, where K^3 is an open contractible 3-manifold in Bd σ^4 . Then $M^5 = M^4 \times E^1$ is a 5-manifold with boundary, and Int $M^5 = E^5$ while Bd $M^5 = E^4$ by [17].

There is an interesting consequence of Theorem 1 in connection with the property of local peripheral unknottedness for arcs (L. P. U.) [13]. An arc $A \subset E^n$ is L. P. U. at an interior point x if each neighborhood U of x contains an n-cell C such that x lies in Int C and $C \cap A$ is an arc with endpoints only on Bd C. It follows from Theorem 1 that C can always be selected a tame n-cell, when $n \neq 3$. The same is true if x is an end point.

The following corollary to Theorem 1 might be obtainable independently. Let X be a topological space such that $X = P^n \cup R$, where P^n is an open set in X which is topologically E^n .

COROLLARY 3. If the suspension Y of X is S^{n+1} , then R is a cellular subset of Y.

Proof. The set Y - X is a pair of disjoint open (n+1)-cells. Let M_1 and M_2 be the closures of these cells in Y - R. Each M_i is a manifold with boundary. Since Int $M_i = E^{n+1}$ and Bd $M_i = P^n$, we see that $M_i = E^n \times [0, 1)$ (for $n \neq 2$) and Y - R = E^{n+1} . Thus R is point-like in Y. For n = 2, X is the 2-sphere, and the result follows.

REFERENCES

- 1. B. J. Ball, *Penetration indices and applications*, Topology of 3-manifolds and related topics, 37-39; Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 2. R. H. Bing, Each disk in each 3-manifold is pierced by a tame arc, Amer. Math. Soc. Notices 6 (1959), 510, Abstract 559-114.
- 3. M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814.
- 4. ———, Locally flat embeddings of topological manifolds, Topology of 3-manifolds and related topics, 83-91; Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 5. M. Brown and H. Gluck, Stable structures on manifolds, Bull. Amer. Math. Soc. 69 (1963), 51-58.

- 6. J. C. Cantrell, Almost locally flat embeddings of Sⁿ⁻¹ in Sⁿ, Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 7. J. C. Cantrell and C. H. Edwards, Almost locally polyhedral curves in Eⁿ (to appear).
- 8. P. H. Doyle and J. G. Hocking, A note on piercing a disk, Proc. Amer. Math. Soc. 10 (1959), 633-636.
- 9. ——, A decomposition theorem for n-dimensional manifolds, Proc. Amer. Math. Soc. 13 (1962), 469-471.
- 10. ——, Some properties of manifolds with boundary (to appear).
- 11. C. H. Edwards, Flat n-cells in Sⁿ (to appear).
- 12. D. Gillman, *Tame subsets of 2-spheres in* E³, Topology of 3-manifolds and related topics, 26-28; Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 13. O. G. Harrold, Combinatorial structures, local unknottedness and local peripherial unknottedness, Topology of 3-manifolds and related topics, 71-83; Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 14. T. Homma, On the embeddings of polyhedra in manifolds, Yokohama Math. J. 10 (1962), 5-10.
- 15. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 16. K. W. Kwun and F. Raymond, Manifolds which are joins (to appear).
- 17. D. R. McMillan, Summary of results on contractible open manifolds, Topology of 3-manifolds and related topics, 100-102; Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 18. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloquium Publications 32 (1949).

Virginia Polytechnic Institute