EXCEPTIONAL LIE GROUPS AND STEENROD SQUARES ## **Emery Thomas** 1. The mod 2 cohomology algebras of the exceptional Lie groups have been determined by Borel [3], Araki [1], and Araki and Shikata [2]. These algebras are as follows (x_i indicates a generator of degree i): $$\begin{split} &H^*(G_2) = Z_2[x_3]/(x_3^4) \otimes \Lambda_2(x_5)\,, \\ &H^*(F_4) = Z_2[x_3]/(x_3^4) \otimes \Lambda_2(x_4, x_{15}, x_{23})\,, \\ &H^*(E_6) = Z_2[x_3]/(x_3^4) \otimes \Lambda_2(x_5, x_9, x_{15}, x_{17}, x_{23})\,, \\ &H^*(E_7) = Z_2[x_3, x_5, x_9]/(x_3^4, x_5^4, x_9^4) \otimes \Lambda_2(x_{15}, x_{17}, x_{23}, x_{27})\,, \\ &H^*(E_8) = Z_2[x_3, x_5, x_9, x_{15}]/(x_3^{16}, x_5^8, x_9^4, x_{15}^4) \otimes \Lambda_2(x_{17}, x_{23}, x_{27}, x_{29})\,. \end{split}$$ The behaviour of the Steenrod squares in these algebras has also been largely determined [3], [2]. Generators can be chosen so that The one result missing (for E_6 , E_7 , E_8) is the value of Sq^2x_{15} . Knowledge of this value can be used in the calculation of the Atiyah-Hirzebruch K-groups for E_6 , E_7 , and E_8 . We shall prove the following proposition. THEOREM 1. In the mod 2 cohomology algebras of E $_6$, E $_7$, and E $_8$, there exists a generator x $_{15}$, of degree 15, such that $$Sq^2x_{15} = x_{17}$$. Let X denote a connected H-space with integral homology of finite type such that $H^*(X)$ (mod 2 coefficients) is a Z_2 -module of finite rank. Our proof will use the projective plane of X, P_2 X as defined in [6] and [5]. Set $$A = H^*(X), C = H^*(P_2 X).$$ Received December 21, 1963. Supported in part by the Air Force Office of Scientific Research. For any graded algebra B over Z_2 such that $B_0 = Z_2$, we denote by \overline{B} the ideal of elements of positive degree. As shown in [5; Section 3], there is an exact triangle of modules, $$\overline{A} \stackrel{\psi}{\to} \overline{A} \otimes \overline{A} ,$$ $$\iota \stackrel{\wedge}{\to} \iota$$ $$\overline{C}$$ where ψ has degree zero, λ has degree 2, and ι has degree -1. The map ψ is the (reduced) diagonal map induced by the group multiplication $X \times X \to X$. Thus a class $u \in \overline{H}^*(X)$ is primitive if and only if $\psi(u) = 0$. Consequently, Image $$\iota$$ = Kernel ψ = P, where P is the subspace of \overline{A} spanned by the primitive classes. Both homomorphisms λ and ι commute with the Steenrod squares, since ι is defined in terms of the suspension isomorphism and λ is the composition of two Mayer-Vietoris coboundaries. The ring structure in C is related to λ as follows: Given u_1 , $u_2 \in \overline{C}$, set $x_i = \iota u_i \in \overline{A}$ (i = 1, 2). Then $$(1.1) u_1 \cup u_2 = \lambda(x_1 \bigotimes x_2).$$ Finally, ι annihilates all decomposable elements in C. For the details of these statements see [5]. Denote by P^- the subspace of \overline{A} spanned by the primitive classes of odd dimension. Let U be any nonzero subspace of P^- , and let U^+ be a complementary summand to U in P. Since the elements of U are all indecomposable (they are odd-dimensional primitive classes), there exists a summand Q in \overline{A} that is complementary to U and contains the ideal D generated by the decomposable elements. Thus, $$P = U \oplus U^+, \quad \overline{A} = U \oplus Q, \quad D \subset Q.$$ Consequently, we may write $$\overline{A} \otimes \overline{A} = (U \otimes U) \oplus R$$, where $R = (U \otimes Q) \oplus (Q \otimes U) \oplus (Q \otimes Q)$. Choose a summand V^+ in \overline{C} such that $\iota \colon V^+ \approx U^+$, and set $$S = \lambda(R) + V^{+}$$ in \overline{C} . Choose classes $\{u_i\}$ in \overline{C} so that the classes $\{\,\iota u_i\}$ form a basis for U. The following result is stated in [5; Section 5]. THEOREM 2. $$H^*(P_2 X) = (B / \overline{B} \cdot \overline{B} \cdot \overline{B}) \oplus S$$, where $B = \bigotimes_i Z_2[u_i]$. We sketch a proof of this in Section 2. The proof of Theorem 1 will be by contradiction. We pose the alternatives as follows: (1.2) Let $$X = E_6$$, E_7 , or E_8 , and set $A = H^*(X)$. Then either - (i) $Sq^2 A_{15} \subset D_{17}$, or - (ii) there exists an indecomposable element $x_{15} \in A_{15}$ such that $$Sq^2x_{15} = x_{17}$$, where $x_{17} = Sq^8 Sq^4 Sq^2 x_3$. Let y be any choice of indecomposable element in A₁₅; then we can write $$Sq^2y = ax_{17} + bx_3x_5x_9 + cx_3^4x_5$$ where a, b, $c \in \mathbb{Z}_2$. (If $X = E_6$ or E_7 , we take c = 0, since $x_3^4 = 0$.) If a = 0 or b = c = 0, the result is proved. Suppose that $a \neq 0$, $c \neq 0$, and set $y' = y + x_3^5$. Then $$Sq^2y' = x_{17} + bx_3x_5x_9;$$ moreover y' is still indecomposable. Now $$\psi(x_3 x_5 x_9) = x_3 \otimes x_5 x_9 + x_5 x_9 \otimes x_3 + x_5 \otimes x_3 x_9 + x_3 x_9 \otimes x_5 + x_9 \otimes x_3 x_5 + x_3 x_5 \otimes x_9.$$ If one writes out all the terms that can appear in $\psi(y')$ and then applies Sq^2 to these terms, one finds that it is not possible to obtain the terms $$x_0 \otimes x_3 x_5 + x_3 x_5 \otimes x_0$$. Thus b = 0, and we take $x_{15} = y'$ to complete the proof. Proof of Theorem 1. In Theorem 2 we take $X=E_6$, E_7 , or E_8 and set $A=H^*(X)$. To prove the theorem it suffices, by (1.2), to show that the assumption $\operatorname{Sq}^2 A_{15} \subset \operatorname{D}_{17}$ leads to a contradiction. Define U to be the subspace of P spanned by x_{17} (= $\operatorname{Sq}^8 \operatorname{Sq}^4 \operatorname{Sq}^2 x_3$). As has been remarked, the complementary summand Q can be chosen to contain D; since $A_{16}=\operatorname{D}_{16}$, D contains $\operatorname{Sq}^1 A_{16}$ and also, by hypothesis, $\operatorname{Sq}^2 A_{15}$. Thus, $$\operatorname{Sq}^1 Q \subset Q$$, $\operatorname{Sq}^2 Q \subset Q$, and so by Cartan's product formula, $$\operatorname{Sq}^1 R \subset R$$, $\operatorname{Sq}^2 R \subset R$. Since $V_{34}^+ = V_{35}^+ = 0$, and since λ commutes with Sqⁱ, it follows that $$\operatorname{Sq}^1(S)\subset S$$, $\operatorname{Sq}^2(S)\subset S$. We now obtain our contradiction. Let u be a class in $H^*(P_2X)$ such that $\iota u = x_{17}$. By Theorem 2, $u^2 \neq 0$ and $u^2 \notin S$. But by the Adem relations, $$u^2 = Sq^{18} u = Sq^1 (Sq^{16}Sq^1)u + Sq^2 Sq^{16} u$$, and so $$u^2 \in Sq^1(S) + Sq^2(S)$$, which is a contradiction. Hence by (1.2), $Sq^2 x_{15} = x_{17}$. *Remark.* The argument given here is very similar to the argument used in proving Theorem 2.1 of [7]. The reason Theorem 1 does not follow directly from the results obtained in [7] is that the mod 2 cohomology of E_6 , E_7 , and E_8 is not primitively generated. 2. Proof of Theorem 2. We follow the proof given by W. Browder, which uses the Bockstein spectral sequence [4]. Let $\{E_q(r), d_r\}$ $(q \ge 0, r \ge 1)$ denote the Bockstein spectral sequence in homology for the H-space X. In particular $E_q(1) = H_q(X)$. LEMMA 1. Let u and v be odd-dimensional primitive classes in $H_*(X)$. Then - (1) $d_r(u) = d_r(v) = 0$ for all $r \ge 1$, - (2) $u^2 = 0$, $u \cdot v + v \cdot u = 0$. Suppose either that $d_1(u) \neq 0$, or that $d_i(u) = 0$ for $1 \leq i < r$ and that $d_r(u) \neq 0$. Set $x = d_r(u)$. Then x is a nonzero even-dimensional primitive class in $E_*(r)$ such that $x \in Image \ d_r$. Thus by Theorem 6.1 of [4], x has infinite implications (as there defined), which is impossible since $H_*(X)$ has finite rank. Therefore $d_r(u) = d_r(v) = 0$. Now the classes u^2 and $u \cdot v + v \cdot u$ are primitive, since u and v are primitive. Each d_r is a derivation, and therefore by (1), $$d_r(u^2) = 0$$ and $d_r(u \cdot v + v \cdot u) = 0$ for all $r \ge 1$. Thus u^2 and $u \cdot v + v \cdot u$ represent even-dimensional primitive classes in $E_*(\infty)$; hence by Corollary 4.14 of [4] they must be zero. Using the same notation as in Section 1, we prove the following. LEMMA 2. Set $$x = \sum_{i} a_{i} u_{i} + \sum_{j \leq k} b_{jk} u_{j} u_{k} + \sum_{\ell} c_{\ell} u_{\ell}^{2},$$ where a_i , b_{ik} , $c_{\ell} \in Z_2$. If $x \in S$, then all the coefficients a_i , b_{ik} , c_{ℓ} are zero. By definition, if $x \in S$ there exist classes $y \in R$, $z \in V^+$ such that $x = \lambda(y) + z$. Now $\iota\lambda(y) = 0$ by exactness, and $\iota(u_ju_k) = \iota(u_\ell^2) = 0$, since ι annihilates decomposable elements. Therefore $$\sum_{i} a_{i} \iota u_{i} = \iota z.$$ But $\iota z \in U^+$, $\Sigma_i a_i \iota u_i \in U$ and $U^+ \cap U = 0$, which shows that $$\iota z = 0$$, $\sum_{i} a_{i} \iota u_{i} = 0$. By hypothesis the classes $\{\iota u_i\}$ form a basis for U, and therefore $a_i=0$ for each i. Also, ι on V^+ is an isomorphism, which means that z=0. Thus, $$x = \sum_{i \le k} b_{jk} u_j u_k + \sum_{\ell} c_{\ell} u_{\ell}^2 = \lambda(y).$$ Set $\iota u_i = v_i$ and let $\{\bar{v}_i\}$ be a set of homology classes dual to $\{v_i\}$. That is, let $$< v_i, \bar{v}_j > = \delta_{ij},$$ where < ,> denotes the Kronecker index. Since $\overline{A} = U \oplus Q$, we may choose the classes $\{\overline{v}_i\}$ so that $$\langle Q, \bar{v}_i \rangle = 0$$ for all i, and hence, $\langle R, \bar{v}_i \otimes v_j \rangle = 0$ for all i, j. Define $$\mathbf{w} = \sum_{\mathbf{j} \leq \mathbf{k}} \mathbf{b}_{\mathbf{j}\mathbf{k}} \mathbf{v}_{\mathbf{j}} \otimes \mathbf{v}_{\mathbf{k}} + \sum_{\ell} \mathbf{c}_{\ell} \mathbf{v}_{\ell} \otimes \mathbf{v}_{\ell}$$ in $U \otimes U$. By (1.1), $$\lambda(\mathbf{w}) = \sum_{\mathbf{j} \leq \mathbf{k}} \mathbf{b}_{\mathbf{j}\mathbf{k}} \mathbf{u}_{\mathbf{j}} \mathbf{u}_{\mathbf{k}} + \sum_{\ell} \mathbf{c}_{\ell} \mathbf{u}_{\ell}^{2},$$ and therefore $\lambda(w-y)=0$. Thus by exactness there exists a class $f\in\overline{A}$ such that $\psi(f)=w-y$. Notice that $$<$$ w, $\bar{v}_j \otimes \bar{v}_k > = b_{jk}$, $<$ w, $\bar{v}_k \otimes \bar{v}_j > = 0$ (j < k), $<$ w, $\bar{v}_{\ell} \otimes \bar{v}_{\ell} > = c_{\ell}$. Thus, if we set $$\bar{\mathbf{g}} = \bar{\mathbf{v}}_{\mathbf{j}} \cdot \bar{\mathbf{v}}_{\mathbf{k}} + \bar{\mathbf{v}}_{\mathbf{k}} \cdot \bar{\mathbf{v}}_{\mathbf{j}}, \ \bar{\mathbf{h}} = \bar{\mathbf{v}}_{\ell}^{2},$$ then $$<\mathbf{f},\;\mathbf{g}> \;=\; <\psi(\mathbf{f}),\; \bar{\mathbf{v}}_{\mathbf{j}}\otimes \bar{\mathbf{v}}_{\mathbf{k}}+\bar{\mathbf{v}}_{\mathbf{k}}\otimes \bar{\mathbf{v}}_{\mathbf{j}}> \;=\; <\mathbf{w}\;-\;\mathbf{y},\; \bar{\mathbf{v}}_{\mathbf{j}}\otimes \bar{\mathbf{v}}_{\mathbf{k}}+\bar{\mathbf{v}}_{\mathbf{k}}\otimes \bar{\mathbf{v}}_{\mathbf{j}}> \;=\; \mathbf{b}_{\mathbf{j}\mathbf{k}};$$ and similarly, $$\langle f, \bar{h} \rangle = c_{\ell}$$. Since $D \subset Q$ and $\langle Q, \bar{v}_i \rangle = 0$, each class \bar{v}_i is primitive, and so by Lemma 1, $\bar{g} = \bar{h} = 0$, which shows that each $b_{ik} = c_{\ell} = 0$. The proof of Theorem 2 now follows from Lemma 2 exactly as given in Section 4 of [5]. We leave the details to the reader. ## REFERENCES - 1. S. Araki, Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 , J. Math. Osaka City Univ. 12 (1961), 43-65. - 2. S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad. 37 (1961), 619-622. - 3. A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342. - 4. W. Browder, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 24-51. - 5. W. Browder and E. Thomas, On the projective plane of an H-space, Illinois J. Math. 7 (1963), 492-502. - 6. J. Stasheff, On homotopy abelian H-spaces, Proc. Cambridge Philos. Soc. 57 (1961), 734-745. - 7. E. Thomas, Steenrod squares and H-spaces, Ann. of Math. (2) 77 (1963), 306-317. The University of California at Berkeley