EXCEPTIONAL LIE GROUPS AND STEENROD SQUARES

Emery Thomas

1. The mod 2 cohomology algebras of the exceptional Lie groups have been
determined by Borel [3], Araki [1], and Araki and Shikata [2]. These algebras are
as follows (x; indicates a generator of degree i):

H*(G,) = Zz[x3]/(X§)®A2(X5),

HX(F,) = Z,[x;]/ (3 ® A,(xy, %15, X33),

H*(Eg) = Z,[x3]/ (x3) @ Ayxs, X9, X315, X17, X23),

H*(E,) = Z,[x5, X5, %o/ (x3, x5, Xg) & Ay(xy5, X175 X3, Xp9),

H*(Eg) = Z,[x5, X5, Xq, X151/ (x3°, 8, x§, x79) @ A (%17, X33, Xz7, X9)-

The behaviour of the Steenrod squares in these algebras has also been largely deter-
mined [3], [2]. Generators can be chosen so that

Sa?x, = x, in G,, Fy, E, E,, Eg,
Sq8x15=x23 in ¥y, E,, E,, Eg,
Sq4x5=x9, Sc18x9=x17 in Eg, E., Eg,

Sq‘lx23 =Xy in E;, Eg,

Sa%x,7 = %54 in Eg.

The one result missing (for E¢, E7, Eg) is the value of Sq2x15. Knowledge of this
value can be used in the calculation of the Atiyah-Hirzebruch K-groups for E¢, E 7,
and E8 .

We shall prove the following proposition.
THEOREM 1. Inthe mod 2 cohomology algebras of E¢, E, and Eg, there
exists a genevator X 152 of degree 15, such that

2 _
Sq"X;5=Xy7-

Let X denote a connected H-space with integral homology of finite type such
that H*(X) (mod 2 coefficients) is a Z,-module of finite rank. Our proof will use
the projective plane of X, P, X as defined in [6] and [5]. Set

A=H¥X), C=H*{P,X).
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For any graded algebra B over Z, such that By = Z, , we denote by B the ideal of
elements of positive degree. As shown in [5; Section 3], there is an exact triangle
of modules,

Y Ei®:,

AN
C
where Y has degree zero, A has degree 2, and t has degree -1. The map ¥ is

the (reduc_(_a_d) diagonal map induced by the group multiplication X X X — X. Thus a
class u € H*(X) is primitive if and only if ¥(u) = 0. Consequently,

Image Lt = Kernel ¢ = P,

where P is the subspace of A spanned by the primitive classes. Both homomorph-
isms A and t commute with the Steenrod squares, since L is defined in terms of
the suspension isomorphism and A is the composition of two Mayer-Vietoris co-
boundaries. The ring structure in C is related to A as follows: Given u;, u; € C,
set x;=tu; € A (i=1, 2). Then

Finally, t annihilates all decomposable elements in C. For the details of these

statements see [5].

Denote by P~ the subspace of A spanned by the primitive classes of odd dimen-
sion. Let U be any nonzero subspace of P~, and let Ut be a complementary sum-
mand to U in P. Since the elements of U are all indecomposable (they are odd-
dimensional primitive classes), there exists a summand Q in A that is complemen-
tary to U and contains the ideal D generated by the decomposable elements. Thus,

P=U@®@UY, A=U@®Q, DcAQ.
Consequently, we may write
AQA = (UQU@®R,

where R=(UQ® Q ® (Q® U) @ (Q® Q). Choose a summand V' in C such that
t: vt = U, and set ' '

S=AxR)+ V"t in C.
Choose classes {u;} in C so that the classes {tu;} form a basis for U. The fol-

lowing result is stated in [5; Section 5].
THEOREM 2. H*(P,X)=(B/B-B-B)@® S, where B =® Z, [u;].

1
We sketch a proof of this in Section 2.
The proof of Theorem 1 will be by contradiction. We pose the alternatives as
follows:

(1.2) Let X=Ey, E;, or Eg, and set A = H*(X). Then either
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(i) quA15 cD,,, or

(ii) theve exists an indecomposable element xy5 € Ay Such that
Sq°x)5 = X17,

where X7 = Sq® Sq? sq? X3.

Let y be any choice of indecomposable element in Aj5; then we can write
2 4
Sq%y = ax;; + bx3x5x9 + CX3Xg,

where a, b, c € Z. (If X =Eg or E7, we take ¢ = 0, since x%: 0.) If a=50 or
b = ¢ = 0, the result is proved. Suppose that a# 0, ¢ # 0, and set y' =y + x3. Then

Sqly' = lxl-, + bX3 X5 Xg ;
moreover y' is still indecomposable. Now
P(x3X5%9) = X3 ® X5 Xg + X5Xg R x5 + x5 Q X3 Xg
+X3Xg ® x5 + X9 @ X3X5 + x3x5®x9.

If one writes out all the terms that can appear in ¥(y') and then applies qu to
these terms, one finds that it is not possible to obtain the terms

x9®x3x5+x3x5®x9.

Thus b = 0, and we take x;5=y' to complete the proof.
Proof of Theorem 1. In Theorem 2 we take X = E4, E;, or Eg and set

A = H*(X). To prove the theorem it suffices, by (1.2), to show that the assumption
Sq? A;5 € Dy7 leads to a contradiction. Define U to be the subspace of P~ spanned
by xj7 (= Sq8 Sq%4 Sq2 x3). As has been remarked, the complementary summand Q
can be chosen to contain D; since A;, = D;¢, D contains Sq1 A, and also, by
hypothesis, Sq® A;5. Thus,

Sq!QcQ, 8¢*QcQqQ,
and so by Cartan’s product formula,

Sg!RcR, S¢g°RcR.
Since Vi, = V3, = 0, and since A commutes with Sqi, it follows that

Sql(s)cs, Sq2(S)cs.

We now obtain our contradiction. Let u be a class in H*(P,X) such that tu =x;7.
By Theorem 2, u? # 0 and u? ¢ S. But by the Adem relations,

u? = Sq!8u = sq! (Sqlésql)u + Sq? Sql(’u,
and so

w? € sq* (8) + S42(8),
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which is a contradiction. Hence by (1.2), Sq? X15 = X7 -

Remavrk. The argument given here is very similar to the argument used in prov-
ing Theorem 2.1 of [7]. The reason Theorem 1 does not follow directly from the re-
sults obtained in [7] is that the mod 2 cohomology of E¢, E7, and Eg is not
primitively generated.

2. Proof of Theorem 2., We follow the proof given by W. Browder, which uses
the Bockstein spectral sequence [4]. Let {Eq(r), d,.} (@> 0, r> 1) denote the
Bockstein spectral sequence in homology for the H-space X. In particular

Eq(1) = Ho(X).
LEMMA 1. Let u and v be odd-dimensional primitive classes in H, (X). Then
(1) d.(w) =d,.(v) =0 for all r> 1,
(2) w2 =0, urv+v-u=0.

Suppose either that d;(u) # 0, or that d;(u) = 0 for 1 < i< r and that d,.(u) # 0.
Set x = d_(u). Then x is a nonzero even- d1mens1onal primitive class in E_(r) such
that x € Image d,.. Thus by Theorem 6.1 of [4] x has infinite 1mp11cat10ns (as
there defined), which is impossible since H,(X) has finite rank. Therefore
d_(u) =d_(v) = 0. Now the classes u” and u-v + v-u are primitive, since u and v
are primitive. Each d, is a derivation, and therefore by (1),

dr(uz) =0 and dr(u-v+ veu)=0 forall r> 1.
Thus u? and u-v + v-u represent even-dimensional primitive classes in E_(w);
hence by Corollary 4.14 of [4] they must be zero.
Using the same notation as in Section 1, we prove the following.
LEMMA 2. Set
Ea u; + 22 b, U U+ Ecﬂuﬂ,
i i<k
where a;, bjk, Cyp €2Z,. If x €8, then all the coefficients a;, bjk, cy are zero.

By definition, if x € S there exist classes y € R, z € V' such that x = A(y) + z.
Now tA(y) =0 by exactness, and L(u uy) = L(uZ) = 0, since t annihilates decompos-
able elements. Therefore

Z_)ail,ui= Lz .
1

But tz € UY, Z;a,tu; € U and U* N U = 0, which shows that

tz =0, EaiLui=O.

i

By hypothesis the classes {Lu } form a basis for U, and therefore a; = 0 for each
i. Also, t on V' is an 1somorph1sm which means that z = 0. Thus,

X = 2 kauJ up+ Z)cﬂuﬂ = AMy).
i<k
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Set tu; = v; and let {¥;} be a set of homology classes dual to {v; }. That is, let
<Vi, {'_]> = bij’

where < ,> denotes the Kronecker index. Since A = U@ Q, we may choose the
classes {v;} so that

<Q, v;> =0 for all i,

and hence, <R, v; ® v;> = 0 for all i, j. Define

W = Z) b.}ij®Vk+ ECQVQ@VQ
i<k [

in U® U. By (1.1),

Aw) = 2 kau

u, + Ecﬂuﬂ,
i<k

J

and therefore Mw - y) = 0. Thus by exactness there exists a class f € A such that
Y(f) = w - y. Notice that

<w, '\7‘] ® Gk> = bjk7 <w, Gk® ‘-’J> =0 (j < k),
<W, G£®‘7£> = C,Q'

Thus, if we set

then
and similarly,
<f, h> = Cg -

Since D C Q and <Q, v;> = 0, each class v; is primitive, and so by Lemma 1,
g = h = 0, which shows that each b =cg = 0.

The proof of Theorem 2 now follows from Lemma 2 exactly as given in Section 4
of [5]. We leave the details to the reader.
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