TRANSITION GRAPHS AND THE STAR-HEIGHT
OF REGULAR EVENTS

L. C. Eggan
1. INTRODUCTION

Kleene [3] was the first to introduce the concept of regularity for expressions
and sets of words. Others, including Copi, Elgot, and Wright [2], Myhill [6], and
McNaughton and Yamada [5] have discussed this topic and its relation to finite
automata. (We refer the reader especially to [2] for a presentation of regularity
which is similar to ours.) We show that there exist regular sets of arbitrarily large
star-height. Our second main result yields as a corollary an analysis theorem for
finite automata which provides an upper bound for star-height of the behavior of the
automaton in terms of the “cycle complexity” of the automaton’s state graph. Our
first result is then used to show that in some sense this latter result is best pos-
sible.

In Section 2 we define our concepts, introduce some notation, and prove some
preliminary results. In Section 3, we show that for each positive integer n, there
exists a regular set of star-height n. In fact, we obtain certain sufficient conditions
for a regular set to have star-height greater than or equal to n. Some related re-
sults are also obtained. In Section 4, we show that for any directed graph of cycle
rank n, the set of paths between any two points is a regular set of star-height no
greater than n. We also show that equality is possible. In Section 5, we give a
reasonable definition of feedback for a finite automaton, and we relate it to star-
height.

2. PRELIMINARIES

In this section we give some definitions, introduce some notation and conven-
tions, and prove some preliminary results.

Let « be a finite set of objects, say « = {Ay, A,, -+, A }. Let «* be the free
semigroup with identity generated by «, where we write the operation multiplica~
tively and denote it by juxtaposition. We denote by A ™ the element AAA --- AA.

S
m times
Let 0 denote the identity element, so 6A; = A;0 = A; for all i=1, .-+, n. We shall
also call «* the set of words on the alphabet .« and hence call an element of &* a
word (on the alphabet ). ’

Let #=4U {A, ®}, where A and ® are distinct objects not in . Let ¢\/”
and “-” be associative binary operations and “*” a unary operation, and define
& = (%, Vv, *, ¥) to be the free algebra (cf. Birkhoff [1, p. vii]) generated by & with
operations V, -, and *. Thus ¥ C &, and 0, w € & implies ¢ V w, 0 - w, and
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o* € &. We call any element of & avegular expression (on &¥). As usual, we shall
write ow for o - w.

We next define the concept of regular set (or regular event). Define the mapping
H from & into the set of all subsets of «#* inductively as follows: (we read lo as
“the set denoted by o”)

@ |a;l={A} G=1, -, n), |a|=p, |©]|={6}. (@ denotes the empty set.)
(ii) For o, w € G,

lov w|= o] U |w],

low| = {xy; x € |o], y € o]},

lo*|=[e] ule| Ulos| U |ooo|u - .

Thus o * = [(A] V A, V ==« \V A )*|, which justifies our use of this notation. In
fact, if # is any set (finite or infinite) of words, by #* we shall mean the semigroup
with identity generated by £.

We define any subset of «* to be an evenf. We say that an event = is regular
in case there exists a regular expression ¢ € & such that |o|= 2. Thus the class of
regular events (or vegular sets) is the range of the function || just defined. It is
well known ([2, 3, 5]) that the class of regular events is a Boolean Algebra of sets.
(It is interesting to note that there is no known proof of this fact which does not use
the theory of finite automata. A proof using only the definition given above would be
interesting.)

Finally we define the concept of star-height. We define the function h: & — Z,
(where Z denotes the integers) inductively as follows:

(1) For se€ &, h(s) =0
(2) For o, w € &,
h(ow) = h(c VV «) = max {h(o), h(w)}
h(o*) = h(o) + 1.

For example:
h(A} (A, V A%*) =2,
* * *
h(A1 vV (A1 A2 AV A3) ) = 2.

We call h(o) the star-height of 0. If Z is a regular event, we define the star-
height of Z by

h (E) = min {h(o): lo| = E}

It is clear that for each integer n there exists a regular expression of star-height
n. Our first result is that for each integer n, there exists a regular event of star-
height n. We, in fact, show somewhat more; namely, that if a regular event Z con-
tains words of a certain type, then h(Z) > n.

We complete this section by describing these words and proving some prelimi-
nary lemmas. Let Aj, Ay, **-, A,, -+~ and B;, By, ---, B,, -+ be infinite sequences
of distinct letters. Let &, = {Aﬁ, 7, ={A,}; and for k> 2, let

P =PV T VIALTU By,
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where j =25 - 1 and where #B, is some finite set of B;’s. Let

{A j+10 Ty AZJ} U @'ks

where 'y is a finite set of Bys such that i N ¥y = P. & will denote a finite
alphabet, but we shall presume that ¥, € & whenever we speak of ¥,. Thus, al-
though & may become arbitrarily large, at any point in our discussion it will be
finite. All sets and expressions considered will be presumed to be regular subsets
of #* or regular expressions on &. Throughout the rest of this section and the
next section small Greek letters will denote regular expressions, capital Greek
letters the corresponding regular sets, lower case Roman letters will denote words,
and upper case Roman letters will denote letters of the alphabet &.

If Z c &%, let

20 = {ae.?*; for some x,y,xayez},

that is, = is the set of all subwords of words of =.

We define the properties &, (k= 1, 2, *+*) on the class of regular sets (relative
to &) as follows: Let £ be a regular set Z has property &; (relative to the let-
ter A,) in case for all integers n, there exists an integer m > n such that A €=,
Thus 2 has property ®; on the letter A; if Z contains arbitrarily long strings of
the letter A, as subwords. A word of the form A} for some m > n is called a 1-
wovd fov exponent n (on the set A,).

We proceed by induction. Suppose that u is a (k - 1)-word for exponent n on
.1 and w isa (k - 1)-word for exponent n on F _j; let j = 2K _ 1. Then any
word on the letters of ¥y, contammg as a subword a word of the form (xuywA;)™,
where m>n and x,y € Sﬁk, is a k-word for exponent n. (For example,

(BA] cDAS A,)°

is a 2-word for exponent 4.) We say that Z has property @, relative to & in
case:

(i) Z contains k-words for arbitrarily large exponent n on %i;
(ii) £ has property &, _; relative to each of the sets &, _; and 3 _;; and
(iii) for T € gk—l’ S € yk-l’ TS ﬁ Eo

This last condition is the crux of the construction and insures that no word beginning
with letters of ¥ _1 follows a word ending with letters from Jx_3. To say a set Q
has the property $y. relative to ;. means that the set 2, obtained from € by sub-
tracting 2k _ 1 from the subscript of each letter A, has the property &, relative to
& - Notice also that condition (ii) simply insures that condition (iii) holds with
k - 1 replaced by m, for each m =1, 2, ---, k - 1.

Thus, for example, Z has property ®, on &, if for all n there exist
k, £, m > n such that (AkAﬂ-A )™ € T and A, A, £ Z. We remark here that it is
clear that if 2 contains no k subword for exponent m, then =2 = {010, 0,,0, €=}
contains no k-subword for exponent 2m.

We next state two lemmas, the first of which follows from the fact that concaten-
ation distributes over union.
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LEMMA 1. If h(Z) = n, then theve exists a vegular expression o which denotes
2 such that

o=v \/’yz V oees \/'ym,
wheve each vy; is of the form

%k * %
(1) X1 Xp0p = Xy U Xgy1 5

where X; € F* and 0< h(ozj) <n -1, for each j.

LEMMA 2. If |y1 Viy, Vo V 'le has property &,, then for some j, ]yjl
lizai fb?'ope'rty & . If |xyaf .- x,atx 1| has property &, then so does some
art .
J

Proof, The first statement is clear. Let
v =x107 *» Xg@EXgy] -

If we suppose that |'y| has &y, then clearly each Ia}‘| satisfies (iii) of the definition
of @), and, in fact, (iii) of the definition of &,, for ¥, and &,,, for any

m=1, 2, ---, k - 1. Thus condition (ii) will be satisfied if condition (i) is satisfied.
Now each of the x;’s is a word and hence of finite length. Thus, since I-yl contains
arbitrarily long subwords of a certain type, that is Iy] contains k-subwords for
arbitrarily large n, at least one of the |a’i"| must also have this property. Such an
|a¥| will then have property &,.

DEFINITION. Let Py be the following proposition: If Q is a vegular event and
if Q@ satisfies ¥y, then h(Q) > k.

We shall show by induction in the next section that Py is true for all k. To
simplify this proof, we now prove a lemma.

LEMMA 3. Let k> 1 be an integer, and suppose that proposition Py is true. If
h(Z) < k - 1 and if Z* has property &, relative to S, then % contains a wovd on
the lettevs of .

Proof. Since Py is true and h(Z) < k - 1, £ cannot have property &,.. However,
Z* has property &3 so that the only way for = not to have property ®. is for there
to exist an integer N such that 2 contains no k-subword for exponent N. (Note that
all k-words are relative to &.) Recall that by a previous remark, =2 contains no
k-subword for exponent 2N. Suppose now that Z contains no word on &,. Then any
word of %, and hence 22, which contains the k-subword t, is of the form xty, where
at least one of x and y contains a letter not in & . If further, xty € £2 and t is
for exponent N, then both x and y contain a letter not in &% . This follows, since
xty must be of the form x't;t,y', where x't), t;y' € Z and x' and y' contain let-
ters not in #. Thus >3 also contains no k-subword for exponent 2N. By induction
we obtain that, for all n, Z™ contains no k-subword for exponent 2N so =* also has
this property. But this contradicts the fact that Z* has P .

3. REGULAR SETS OF STAR-HEIGHT n

In this section we prove the first theorem and give some examples.

THEOREM 1. P, is true for all positlive integers K.
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Proof. The proof is by induction. If Q satisfies ®;, then clearly @ is infinite.
Thus h() > 1, and this establishes P;.

Suppose then that Py is true. Let £ have property &y;; relative to ¥y, but
suppose that h(®2) < k. Since © also has property &), it follows that h(f2) = k. Let
w denote the set . By Lemma 1, we may assume that w = y; V -V ¥, Where
each y; has the form (1) of Lemma 1. By Lemma 2, some v;, say Y1, has ®,43.
Let v = x5 a”l‘ xsa”s‘xs_H, where each x; € ¥* and h(e;) <k - 1. By Lemma 2,
some af, say aX, has property ®.;;. Hence aX has property &, relative to ¥y
and also &, relative to . Thus by Lemma 3, since h(|a.|) < h(e,) <k -1, we
see that larl contains a word, say <&, on the letters of ¥y, and |a,.| also contains
a word, say b, on the letters of .. Then ba € Ia";[, so there exist T € 4 and
S € ¥, such that TS € Iai‘ | C Q. But this contradicts condition (iii) of property
®,.+1- Therefore h() > k + 1. This completes the proof of the theorem.

COROLLARY 1. For any positive integev k, theve exists a vegulayr set of stav-
height k.

Proof. Let B1 = Ay, let B = (AT AT A;), and let y; = A,, v, = (A AZAy). Then
define B and vy, inductively by

B = By_1 7k Ak )

and 7y, is obtained from B, by adding 2K _ 1 to each subscript. Thus y, is on the
1et|ter|s of . The sets |Bf§| clearly satisfy property &  and h(Bf{") =Kk, so
h(|{B*|) = k.

k

We would next like to note one obvious generalization of property &3 for which
Py is also true. We may replace the occurrence of the A: in the definition of a k-
word by a word, say by, on the letters of &, provided of course that condition (iii)
is not violated. Thus, for example, we could have the following 3-word for exponent 5

1 6 1 1
[(A7 BALY (A, A A, A (AL cAZA A A A A) % (A A A7 A, A5)]'0,

and a typical expression would be ((A} BAZb,)* (AXCA¥c,)*bs)*. Note that (iii) re-
quir(la{s the words b, and ¢, to contain the letters Aj and Azj: respectively, where
j=2% - 1.

We also feel that it is “clear” that, by an appropriate coding, one can obtain a
regular event of arbitrarily high star-height on the two letter alphabet {0, 1} . For
example, carry A, into 01" (zero followed by n ones). (Any word from the result-
ing event is uniquely deconcatenable into letters of this form 01™.) However, we
have been unable to devise a proof of this conjecture. In fact, even though
| (A* BC*D)*| has height two, it is certainly not clear that | (0* 10*1)*| has height
two (although R. McNaughton has informed me that he has a proof). It seems very
hard to be specific about which letters in a word of an event come from which letters
in an expression denoting that event.

Before proving the final corollary, we prove a lemma which may be of some
independent interest. Recall that regular events form a Boolean algebra. We use ~
and N to denote relative complement and intersection, respectively.

LEMMA 4. Let o and B be rvegulay expressions. Then
(2) |@ v BY*| ~ |aa*| = [(@*ga®)*|,

if and only if
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(3) | @*Ba*)*| N |aa*|=p.
Proof. That (2) = (3) is trivial. Suppose that (3) holds. Then clearly
l(@*Ba*)*| c [(@ V B)*| ~ |aa*].
Let the word a be in [(a V g)*| ~ |aa*|. Then a must be of the form a; ba,, where

a,,a, € [(@ VB)*| and b € |g|. But clearly such a word a,ba, € | (@* Ba*)*].

LEMMA 4a. If @ and B ave vegular expressions, if 0 £ |a l, and if no element
of |B| is a subword of a word of |aa*|, that is, if |B| n |aa®|= 0, then
[@V B)*| ~ |aa*| = (a*pa*)*|.

We shall call an application of a star to a regular expression o (or regular
event T) non-trivial in case for all positive integers n, Z™ # Z*, where = = |o|.
We now know by Corollary 1 that there are expressions for which the application of
a star is non-trivial. However, as the next corollary shows, an application of the
star may be non-trivial and yet not raise the star-height of the regular set.

COROLLARY 2. For every positive integev Kk, there exists a vegular event 2,
of star-height k for which the application of the stav is non-tvivial, but such that
¥ also has height K.

Proof, For k=1,1let =, = ATA,, in which case |[ZT|= [(A; V A)*A, V e].
For k> 1, let B, and 7y, be as in Corollary 1, and let j = 2k*1 - 1, Define

_ | a* 2 A%
Zhepy = Iﬁk+1| - ]Aj Aj E
and let

_ * * * *
Ty = BB Ay V ViV BV BB Vi Vi A

so that h(Zy ;1) > k + 1, by the theorem, and h(m ) = k. Now

j’

1By | = |31’:y1’:Aj| = |AJ.\/ BLBRA;V 'ykvl";AJ. \% BkB;kaltAjl = IAJ. v o

(simply replace Bf and yf by (® V BiB8Y) and (& V yi vy) and perform the multi-
plication). Thus, by applying Lemma 4a, we obtain the relation

>k
e |AjAj | = |(A;!‘ ka;‘)*l.
Hence,

Ziea1 = 1B I~ |A§A}<| = [(a]m AD* VA,

and h((AT m¢ AN* V A) =k + 1, so h(%41) = k+ 1. But T, = iy also has star-
height k'+ 1.

Note that the example Z; given in this corollary has the properties:

Jj i
an)1=ﬂ for i#j,
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and
for any regular event £, h(Q) < h(Z{) = Q* # Z§,

The first follows simply because every word in Z)Ji contains exactly j occurrences

of the letter A,. The second follows because Z{ satisfies ®; for the letters A
and A,, so that if h(2) = 0 and Q* = Z)’l", then £ must contain a word on the letter

A,, by Lemma 3, which is a contradiction.

The referee has kindly pointed out that for each k there are regular events I'y,
such that

(P1) TinTy=0 G+3),
and
(P2) for any regular event £, h(Q) < h(I‘:) => Q%% rr.

In particular, let ¢ and la | be of height k and such that |a*| is of height k + 1.
Let B be a letter not in any word of |a|. Finally, let T, = |a*B|, so

'y = |[(@*B)*|= |(@ v B)*B Vv o

has height no more than k + 1. Moreover, if 1'"1"( has height less than k + 1, say

P}t = l'yl, where h(y) < k, then the result y' of substituting ® for B in y is of
height no greater than k. But "y' ] = |oz* | , which is a contradiction. Thus

h(l";) =k + 1. Now I, satisfies (Pl) since every word in I‘{( has exactly j oc-
currences of the letter B. To show (P2), we prove its contrapositive. Suppose that
Q* =T}, For any w such that |w|=Q if w' is the result of substituting ® for B

in w, rw'| = Ia*l . Consequently every such w, and hence €2, must be of star height
no less than k + 1.

4. DIRECTED GRAPHS AND REGULAR EVENTS

In this section we relate the star-height of the set of paths between two points
of a directed graph to the cycle complexity of the graph, and we give some applica-
tions. We begin with some definitions.

A divected graph % is an ordered pair ¢ = (v, € where v, the points or ver-
tices of ‘9, is a set and €, the edges of ¥, is a subset of ¥ X ¥, the cartesian
product of ¥ with itself. Hence the statement (m, n) € € implies m, n € ¥, and
there is an edge from m to n in ¢. We shall henceforth use A, to denote the
edge from the point m to the point n rather than (m, n); and, in fact, capital Roman
letters will generally denote edges. We call m the initial point and n the terminal
point of the edge A,,,,. We shall call ¢ a finite digraph if 7 is finite.

A path (from m to n) is a sequence A A, .- Ay of edges, such that the ter-
minal point of A; is the initial point of A;,; (i=1, -+, k - 1), the initial point of
A, is m, and the terminal point of A, is n. The points m and n are the initial and
terminal points, respectively, of the path. Thus a path is simply a word of a special
type on the alphabet €.
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If 9=(v,¢€) andif m € 7, let £(m) be the set of edges which contain m as
either a terminal point or an initial point. Define

G ~(m)=(¥~{m}, € ~(m)),

so € ~ (m) is simply the graph obtained from ¥ by eliminating m and all edges
incident to m.

If = (v, £), then ¢ is a cycle, if, for any two points m, n € 7, there exists a
path from m to n. A cycle ¢ has vank 1 (or is a 1-cycle), in case there exists a
point m such that % ~ (m) does not contain a cycle, that is, if there is no point in
@ ~ (m) for which there is a path from this point to itself. By recursion, we say
that a cycle € has rank k (is a k-cycle) if it is not a cycle of rank less than Kk,
there exists a point m of € such that & ~ (m) contains a cycle of rank k - 1, and
all subcycles of € ~ (m) are of rank no greater than k - 1. If a dlgraph G has no
subcycles, it is of rank 0. If ¢ has subcycles, then the rank of 99 is the largest
rank of any subcycle of ¢. (This definition of cycle rank is somewhat stronger than
that originally considered and was suggested by J. Richard Biichi. I would also like
to thank Dr. Biichi and Dr. Jessee B. Wright for other stimulating conversations and
for interesting me in these problems.)

For ¢ = (7, €), a finite digraph, and m, n € 7/, the set of paths from m to n is
a subset of £€*. The fact that this set is regular follows from Kleene’s analysis
theorem [3] for finite automata. We give a new proof below which also yields an
upper bound for the star-height of the regular set in terms of the cycle rank of ¥.

THEOREM 2. If m and n ave points of a finite digraph € of cycle vank Kk, then
theve exists a rvegular expression of stav-height kK which denotes the set of paths
Srom m to n.

Proof. The proof is by induction on the cycle rank of the graph. If k = 0, then
there are no cycles, so there are only finitely many paths from m to n. Any finite
set of paths can be denoted by a regular expression of star-height zero.

Suppose that for any two points in any finite digraph of cycle rank t < k, that the
set of paths from one point to the other can be denoted by a regular expression of
star-height t. Let ¢ = (¥, €) be a finite digraph of cycle rank k + 1. For z not
equal to x or y, let @ (x, y, z) be a regular expression of minimal star-height which
denotes the set of paths from x to y in the graph ¢ ~ (z). (We know it exists by the
induction hypothesis if z is a distinguished point of ¥.) Let I'y, be the set of paths
from x to y in . (We shall use o xy as a regular expression of minimal star-
height which denotes this set, after we have proved that the set is regular for a
particular x and y.)

First suppose that ¢ is a cycle of rank k + 1. Let m be a point of ¥ with the
property that ¥ ~ (m) is a graph of cycle rank k. Let p;, pp, *--, Pg and
Qs dyy **5 A, be all the points of ¢ such that A(p;, m), A(m, qJ) € £&. (We shall
use .g(m n) “for A,,n, wherever necessary, and similarly for &/xy.) Then

s T *
I:V V A(m, qje(q;, p;, m)A(p;, m):l

i=1 j=1

r

mm -

Now by the induction hypothesis, each a(qj, p;, m) has star-height no greater than k
so that I' = has star-height no greater than k + 1.

Suppose now that n # m. Then
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nn =

a(n) n, m) V [: V VKa(n’ p]‘_’ m)A(p;L) m)ammA(m’ qJ)O‘ (qu n, m)} ‘
i=1 j=1

r

nm ~

S
V a(n’ pi, m)A(p1’ m)amm l
i=1

and

Ir
V o m Alm, qj)oz(qj, n, m) ‘,
=1

so each of these sets is regular and of star-height no greater than k + 1. Finally, if
also t # m, then

a(t, n, m) \/[

so h(I', ) =k + 1.

Secondly, suppose that ¢ is a digraph of rank k + 1. Then each subcycle of g
has rank no greater than k + 1. If n € ¥ and n is not in a cycle, then I', = 0.
If n is in a cycle, then I',,, is a regular set of star-height no greater than k + 1,
by the induction hypothesis or by the first part. f t, n € ¥, t # n, and they are in
the same cycle, then I', is again given by the first part.

Ty = V a(t, p;, m)A(p;, ma,,,, A(m, q;)a(q;, n, m)] l

u<”’

Hence we may assume that t and n are not in the same cycle. Let
€., €5, **’, €. be the set of cycles between t and n. Then any path from t to n
is of the form

xw,(py, q))w, == w (D, 4 )W, Y,

where x (respectively y) denotes a path through the cycle containing t (respec-
tively n) with initial point t (respectively terminal point n) and may be 6 if t
(respectively n) is not in a cycle; w; denotes a path from the cycle containing t

(or from t itself) to the i -th cycle, and w,; denotes a path from the i,-th cycle
to the cycle containing n (or to n itself); w; j denotes a path from the i;_;-th cycle
to the i -th cycle; and (p qj .) denotes a path through the 1 -th cycle. ’i‘hus any path
is an element of a set denoted by an expression of the form

(*) Bwy a(p;, a,)W, === w, 0a(p,, q,)W 7>

where B (respectively ¥) may be 8 if t (respectively n) is not in a cycle, or else
B=a (respectively v = apn) (for some p and q). Now there can only be a finite
number of paths between any two cycles so that I'y,, is a finite union of sets of the
form (*) and hence is of star-height no greater than k + 1. This completes the proof
of the theorem.

Our first application of this theorem yields a somewhat strengthened analysis
theorem.
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COROLLARY 1. (Analysis theorem for finite automata.) Let M be a finite
automaton with state graph, é. If 4 has cycle vank n, then there exists a vegular
expression of stav-height no greatev than n which denotes the behavior of M.

Pyroof. The behavior of M is the set of paths from the initial point sg of the
finite digraph ¥ to any of the finite set F of terminal points. Thus by Theorem 2,
the behavior of ¢ is a finite union of regular events of star-height no greater than
n.

Our second corollary is related to the theory of commutative machines (cf. [4]
for the definitions and known results in this area). If  is a set of words on the two
letter alphabet {A, B}, let c(R) be the set of all words which can be obtained from
words of € by permutting the letters of the word. For example,

c({AAB}) = { AAB, ABA, BAA}, c(|A*B|) = |A*BA*|,
c(]A* B*|) = |[(A Vv B)*|.

If @ is a regular expression, we shall also write c(a) for c(]a]).
COROLLARY 2. Lel k and n be non-negative integers. Then

h(c((A%)* (B)*)) < 1 + min {n, k} .

Movreover, h(c((AK)* (BK)*)) < k.
Proof. Since c((AK)* (B™)*) = c((B®)* (Ak)*), we may assume without loss of
generality that k < n. Consider the following set of lattice points in the plane:
v={(x7y); 0<x<k-1, 0<y<n-1}.

Construct a digraph % on this set of points by drawing an edge from each (x, y) to
(x,y+ 1) and (x+ 1, y), provided that (x,y+ 1) € ¥ and (x+ 1,y) € ¥. By drawing
an edge from (k - 1, y) to (0, y) for each y=0, 1, »--, n - 1 and by drawing an edge
from (x, n - 1) to (x, 0) for each x=0, *s-, k - 1. For k=2 and n = 3, this becomes

D\

0,0 >

Now label each horizontal edge with an A and each vertical edge with a B. Then it
is easy to see (see [4; p. 24]) that c((AKY*(B™*) is precisely the set of all paths from
(0, 0) to itself.

Now if we delete the points (O, n ~ 1), (1, n~ 1) «--, (k - 1, n - 1) from the di-
graph, we obtain a digraph of cycle rank 1 (it is a series of rank 1 cycles placed on
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top of each other). Thus the cycle rank of ¢ is no greater than k + 1. An applica-
tion of the theorem then gives the result.

If n = k, then by deleting the points (0, 0)(1, 1), ---, (k - 1, k - 1), we obtain a
digraph of rank 0. Hence Theorem 2 again yields the result.

As our final result we show that in some sense Theorem 2 is a best possible
result. We exhibit a regular event of star-height n which is the set of paths from a
point to itself in a digraph (in fact a cycle) of cycle rank n.

THEOREM 3. Given a positive integer k, there exists a finite digraph of cycle
vank K and a point in that graph such that the set of paths from that point to itself
has stav-height k.

Proof. Let Ry =1{Aj]lj=1,2, -, (3-2K-1 _2)} | Let 01 = A, 71 = A%,
0, = (AfA; AJA )* A%, and 7, = (AL A, Af Ag)* AL, By recursion, let

_ *
Opp1 = (O Ay 1 T Ay 0y,

where j=3-2X - 2 and 7, is obtained from o, by adding 3-2X-! - 2 to the sub-
script of each letter appearing in oy. By Theorem 1, h(|ok|) = k, since o) satisfies
&, (on a proper subset of Ry).

To see that o, denotes a set of paths as claimed, first note that o, denotes the
set of all paths from a point to itself in a complete digraph with two points. To be
specific, let P be the point such that A; is the edge from P to itself. Then o, de-
notes the set of paths from P to P in the following digraph:

Now o3 is built as follows: Take a copy of the above digraph with edges labeled by
letters obtained by adding 4 to each of the given letters and with distinguished point
P' corresponding to P. Then 7, denotes the set of paths from P' to itself. Draw
an edge from P to P!, and label it Ag. Then draw an edge from P' to P, and label
it A 4. The resulting digraph is such that the set of paths from P to P is now
|03| By deleting the points P and P', we obtain a digraph of rank 1, so the origi-
nal graph has rank 3. Similarly, from the graph for o, and 7, (the latter being
isomorphic to the former), by adding two edges (labeled with Aj_) and A , Where
j= 3.2k - 2), we obtain a digraph with the property that the set of paths from P to
P is denoted by 0y ,;. Again, by deleting the point P, we obtain a disconnected
graph of rank k (and deleting any other point gives a graph of rank at least k) so
that the rank of this graph is k + 1, as desired.

Note that we have proved that the set of paths from a point to itself in the com-
plete digraph on two points has star-height two. Although one can easily construct
a regular expression of star-height n which denotes the set of paths from a point to
itself in the complete digraph on n points, we have been unable to prove (for n > 3)
the eminently reasonable statement that this set actually has star-height n.



396 L. C. EGGAN
5. FEEDBACK NUMBER

There seems to be some interest in attempting to describe the complexity of a
finite automaton, or its behavior, by means of its cycle structure. For example,
some notion of feedback seems necessary in considering legical nets (cf. [2]). We
would like to make a definition of feedback number and indicate the proof of the
theorem which we feel makes this definition reasonable. This definition was sug-
gested to us by J. Richard Biichi.

DEFINITION. If Z is a vegular event, let the vank of =, rk(Z), be the minimum
of the set of cycle ranks (as defined in Section 4) of finite digvaphs G with the
property that theve exists a point sg in G and a set ¥ of points of G such that,
with the appropriate labeling (allowing the empty word 9), = is the set of paths from
Sg to the points of ¥. If M is a finite automaton with behavior Z, let the feedback
number of M, FN(M), equal rk(Z).

We then find the following theorem.

THEOREM 4. If M is a finite automaton with behavioy Z, then FN(IM) is
equal to the star-height of Z.

This theorem shows that the feedback gives a good measure of the complexity of
its behavior (presuming star-height is a good measure of complexity).

Proof. (Sketch) We must show that rk(Z) = h(Z). Since there is a digraph of
cycle complexity rk(Z) which realizes Z, by Theorem 2 we find that rk(Z) > h(Z).

To show that rk(Z) < h(Z), let 0 be a regular expression of minimal star-height
which denotes Z. It is easy to see that by taking the canonical way of building a di-
graph from a regular expression, using the null word 8, the only time the cycle rank
can be increased is when one encounters a star. Moreover, this can be accomplished
in such a way that the cycle rank is increased by at most one. This shows that
rk(Z) < h(Z) as desired.

6. CONCLUSION

We have shown the existence of regular events of arbitrarily large star-height;
in fact, we have given certain sufficient conditions which will insure that an event
has height greater than n. If the event is represented by means of a digraph, we
have shown how to put an upper bound on its star-height.

However, we have clearly left open the significant unsolved problem of deter-
mining the star height of a given regular event as presented by a given regular ex-
pression or digraph or by some other means. What would be most desirable is
some sort of “canonical form” regular expression for denoting regular events to
which any regular expression could mechanically be reduced. This canonical form
would give the star height of the event and also, hopefully, other information about
the structure of the event. However, any means of determining the star height of
the event from any expression or digraph denoting it would be a worthwhile innova-
tion.

Another interesting question, which is related to the one raised at the end of
Section 4, is the following extension of Theorem 2. For a digraph of cycle rank kK,
do there necessarily exist points m and n such that the set of paths from m to n
is an event of star height k?
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Finally, we would again like to draw the reader’s attention to the problem

(stated in the paragraph preceeding Lemma 4 in Section 3) of showing that there are
events of arbitrarily large star-height on the two-letter alphabet.

1.
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