UNIFORM DISTRIBUTION RELATIVE TO A FIXED SEQUENCE
H. Davenport and W. J. LeVeque

1. INTRODUCTION

In the usual theory of the distribution modulo 1 of an increasing sequence
s1, S2, **- of real numbers, one considers the positions of the successive terms of
the sequence in the unit intervals (n, n + 1) into which they fall. These positions
are specified by the fractional parts of sy, s;, --~. The definition of uniform distri-
bution modulo 1, in terms of these fractional parts, is well known. In an earlier
paper [1], one of us considered a generalization of this concept, in which the unit in-
tervals are replaced by the intervals (z,, z,+;) between the successive numbers of
a fixed sequence 0< z; < z, < -+, where z, — « with n. The fractional part of a
positive real number t, relative to the sequence A = {zn}, is defined by

(1) o =TTl gor <<y
A Zy - Zp_1 n-12> n°
A sequence sj, sy, *-- is said to be uniformly distributed modulo A if the proportion

of sy, -, sy for which <s, >, < a has the limit ¢ as N — «, for each a such
that 0 < a < 1.

It is reasonable to impose some condition on the sequence A, and we shall sup-
pose that z, - z,,_; is either monotonic increasing or monotonic decreasing. In the
increasing case, it was proved in [1] that the sequence sy = kx is uniformly distrib-
uted modulo A for each x> 0 provided that z,/z, _; — 1 as n — «, and that this
supplementary condition is necessary. The decreasing case is more difficult; it was
proved that the sequence sy = kx is uniformly distributed modulo A for almost all
x> 0 (in the sense of Lebesgue measure) provided that z_ -z, ; = 0(zr'11). But this
was a severe restriction on the z,.

The main object of the present note is to prove this “almost all” result in the
decreasing case without imposing any additional condition on the z,. Although the
case si = kx is the one we have principally in mind, the method yields a more gen-
eral result with little extra effort. We prove the following result. [The words “in-
creasing” and “decreasing” are used in the wide sense henceforth. ]

THEOREM. Suppose that z, - z,_j decreases as n incrveases, and that z, — .
Let a;, a,, *-+ be any sequence of positive real numbers such that

(2) a4 - 3, > Ca/k (C>0).

Then the sequence sy = ay X 1S uniformly distvibuted modulo A = {zn} Sfor almost
all x> 0. In particularv, this holds for sy = kx ov, more genevally, for sy = k¥ x
Jor any fixed y > 0.

We may remark that the condition (2) is also satisfied if a;,; - a; increases
with k.

The proof of the theorem makes use of the condition, given in the preceding note,
for a sequence s;(x) to be uniformly distributed (mod 1) for almost all x in an
interval (o, B).
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2. LEMMA
Let Y(x) be a real function, defined for x> 0 and satisfying the conditions
Y'x) >0, Y"(x)>0.
Suppose thal
B>a>0, p>qg>0, m>0.
Then

B p
jae(mw(pm - (x| S — P,

where e(8) denotes e2Ti0,
Proof. Write

¥(x) = Y(px) - Y(gx).

Denoting the integral in question by J, we see that

8
e de(m¥(x))
27imd = a__—_‘lf'(x)
e(m¥(@) e(m¥(@) (P 1
= =7 B Y@ - S e(m\P(x))d(\I’,(x)) .
Thus
2”m|J|<w'(B> \If'<a) S ldX\If'(X) dx.

We have assumed tacitly that ¥'(x) > 0; in fact

¥'(x) = p'(px) - q'(gx) > (p - P¥'(gx) > 0.
Putting F(x) = 1/¥'(x) for brevity, we may write
B
F@) - F@) = | F@ax,
o

whence

277m|J[§ 2F(a) + Sﬁ {F'(x) + |F'(x)|} dx.
a

Now
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P - - 2@ Pwiex) - e’y o a?vt(ax)
(T'(x))? (pY'(px) - q¥'(@x)2 ~ (p - Q) (@'(gx))?

Hence
2.,,n
(p - a) W'(ax))
for the left hand side is 0 if F'(x) < 0. Hence

9° 2q2' B ll/"(qx)
2 J < =
mm|J| < @) (o - q)? ‘S‘a (W (gx))?
2 29
SH-Ed  pl v’

whence the result follows.

3. PROOF OF THE THEOREM

Let the function ¢(t) be defined by

t-z
(3) o (t) =n+2——_—;—”l— for z,,_; <t<z,.

n n-1

Then the fractional part of ¢(t) in the ordinary sense is the same as the fractional
part of t(mod A), and therefore a sequence sy is uniformly distributed (mod 2) if
and only if the sequence ¢(s,) is uniformly distributed (mod 1); see [1; Section 1].

Let

N
S(N, x) = 2 e(mo¢(ay x)),
k=

1
Ny=1

where m is a positive integer, and let

Imhjﬂmmum,
(8

where 8> a > 0. It follows from the result of the preceding note that the sequence
a; x is uniformly distributed (mod A) for almost all x in (o, B) provided that

I(N) converges.

(4) 27
N=1

Z|

This is to hold for each integer m > 0.

Now
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B -« 1
(5) I(N) = = 2 2R,
N N2 ycien U
where
B
(6) Tin= fa e(me(a; %) - m(ay ))dx.

The function ¢(t), defined in (3), is continuous, and is linear in each of the inter-
vals z, ; < t< z,, its derivative in this interval being (z, - z,_;) -1 We write

6(t) =2z, -z, forz, ,<t<z,,

and recall that 8(t) decreases as t increases. Thus ¢'(t) = 1/6(t) increases, except
that it is undefined at the isolated points t = z,,.

We can obviously approximate ¢(t) arbitrarily closely by a twice differentiable
function ¥(t) which satisfies the inequality ¥ "(t) > 0, and we can also make ' (t)
approximate ¢'(t) arbitrarily closely, except in arbitrarily small intervals around
the points z,. Hence the result of the lemma is applicable to the integral J ik in
(6) with p = a; and q = ay. Thus

aJ- _ ajé(aka)

J. < = .
| ’kl — mm(aj - ax)?¢'(ax @) mm(a; - ag)?

(We have tacitly supposed that a, @ is not one of the points z,, but there is plainly
no loss of generality in this.) We also have the trivial estimate le,kl <B-a,

Returning to (5) and (6), we see that in order to prove the convergence of the
series (4), it suffices to prove the convergence of

%—L 2 min(——aj——— 1).

b
N=1 N7 i< (aj - aw)?

Changing the order of summation, we deduce that it suffices to prove the conver-
gence of

= Z)l i _aj___,l .
S K< jz min ((33 _ ak)z )

For this we must use the hypothesis (2). If j = k + £, we see that
aj - ap = (Ag41 - 1) + ot + @y - Ay p)
(7) >Cay (ke oot (w0 - 1))
> Cla, (k+ 2)° L.

Hence

Ce
ajz(k+ﬂ+1) Ak



UNIFORM DISTRIBUTION RELATIVE TO A FIXED SEQUENCE 319
and, since the function x/(x - @) decreases for x> o, this implies that

aj (CL+k+ )k + £)
2 S—- 22 :
(2; - ax) C% 0% ay

2
« G 7
02 ax

Hence

2
S <KL EZ———l——zmin(gk—Zﬁ-, 1)
kﬂ(k“l‘ﬁ) £ ap

<< 1 k+ 2)
k¢ @+ 02 al/?

1 1
<<§ 1/2 %fz(ﬁ + k)
logk
<2 =S
k kaII( 2
Now the hypothesis (2) implies that a;, >> k% for some 6 > 0; for we know that
Ay~ A, >> a,

by (7), whence 2y > a (1 + 6;)Y, which gives the result. Hence the series is

majorized by

logk

g; k1+5;2. ’

and so converges. This completes the proof.
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