UNIFORM DISTRIBUTION RELATIVE TO A FIXED SEQUENCE

H. Davenport and W. J. LeVeque

1. INTRODUCTION

In the usual theory of the distribution modulo 1 of an increasing sequence s_1, s_2, \cdots of real numbers, one considers the positions of the successive terms of the sequence in the unit intervals (n, n+1) into which they fall. These positions are specified by the fractional parts of s_1, s_2, \cdots . The definition of uniform distribution modulo 1, in terms of these fractional parts, is well known. In an earlier paper [1], one of us considered a generalization of this concept, in which the unit intervals are replaced by the intervals (z_n, z_{n+1}) between the successive numbers of a fixed sequence $0 < z_1 < z_2 < \cdots$, where $z_n \to \infty$ with n. The fractional part of a positive real number t, relative to the sequence $\triangle = \{z_n\}$, is defined by

(1)
$$\langle t \rangle_{\triangle} = \frac{t - z_{n-1}}{z_n - z_{n-1}} \text{ for } z_{n-1} \leq t < z_n.$$

A sequence s_1 , s_2 , \cdots is said to be *uniformly distributed modulo* \triangle if the proportion of s_1 , \cdots , s_N for which $< s_k >_{\triangle} < \alpha$ has the limit α as $N \to \infty$, for each α such that $0 < \alpha < 1$.

It is reasonable to impose some condition on the sequence Δ , and we shall suppose that z_n - z_{n-1} is either monotonic increasing or monotonic decreasing. In the increasing case, it was proved in [1] that the sequence $s_k = kx$ is uniformly distributed modulo Δ for each x>0 provided that $z_n/z_{n-1}\to 1$ as $n\to\infty$, and that this supplementary condition is necessary. The decreasing case is more difficult; it was proved that the sequence $s_k = kx$ is uniformly distributed modulo Δ for almost all x>0 (in the sense of Lebesgue measure) provided that $z_n-z_{n-1}=O(z_n^{-1})$. But this was a severe restriction on the z_n .

The main object of the present note is to prove this "almost all" result in the decreasing case without imposing any additional condition on the z_n . Although the case $s_k = kx$ is the one we have principally in mind, the method yields a more general result with little extra effort. We prove the following result. [The words "increasing" and "decreasing" are used in the wide sense henceforth.]

THEOREM. Suppose that z_n - z_{n-1} decreases as n increases, and that $z_n\to\infty$. Let a_1 , a_2 , \cdots be any sequence of positive real numbers such that

(2)
$$a_{k+1} - a_k \ge C a_k/k \quad (C>0) \mbox{.}$$

Then the sequence $s_k = a_k x$ is uniformly distributed modulo $\triangle = \{z_n\}$ for almost all x > 0. In particular, this holds for $s_k = kx$ or, more generally, for $s_k = k^\gamma x$ for any fixed $\gamma > 0$.

We may remark that the condition (2) is also satisfied if a_{k+1} - a_k increases with k.

The proof of the theorem makes use of the condition, given in the preceding note, for a sequence $s_k(x)$ to be uniformly distributed (mod 1) for almost all x in an interval (α, β) .

Received March 14, 1963.

The second author was partially supported by the National Science Foundation, grant GP-88. 315

2. LEMMA

Let $\psi(x)$ be a real function, defined for x>0 and satisfying the conditions

$$\psi^{\mathfrak{l}}(\mathrm{x}) > 0$$
 , $\psi^{\mathfrak{m}}(\mathrm{x}) \geq 0$.

Suppose that

$$\beta > \alpha > 0$$
, $p > q > 0$, $m > 0$.

Then

$$\left|\int_{\alpha}^{\beta} e(m\psi(px) - m\psi(qx))dx\right| \leq \frac{p}{\pi m(p-q)^2 \psi'(q\alpha)},$$

where $e(\theta)$ denotes $e^{2\pi i \theta}$.

Proof. Write

$$\Psi(x) = \psi(px) - \psi(qx).$$

Denoting the integral in question by J, we see that

$$\begin{split} 2\pi i m J &= \int_{\alpha}^{\beta} \frac{d\,e(m\Psi(x))}{\Psi^{\dagger}(x)} \\ &= \frac{e(m\Psi(\beta))}{\Psi^{\dagger}(\beta)} - \frac{e(m\Psi(\alpha))}{\Psi^{\dagger}(\alpha)} - \int_{\alpha}^{\beta} e(m\Psi(x)) d\left(\frac{1}{\Psi^{\dagger}(x)}\right) \;. \end{split}$$

Thus

$$2\pi \mathrm{m} \left| \mathrm{J} \right| \leq rac{1}{\Psi^{\mathsf{T}}(eta)} + rac{1}{\Psi^{\mathsf{T}}(lpha)} + \left| \int_{lpha}^{eta} \left| rac{\mathrm{d}}{\mathrm{d} \mathrm{x}} \, rac{1}{\Psi^{\mathsf{T}}(\mathrm{x})} \right| \mathrm{d} \mathrm{x} \, .$$

We have assumed tacitly that $\Psi'(x) > 0$; in fact

$$\Psi'(x) = p\psi'(px) - q\psi'(qx) > (p - q)\psi'(qx) > 0$$
.

Putting $F(x) = 1/\Psi'(x)$ for brevity, we may write

$$F(\beta) - F(\alpha) = \int_{\alpha}^{\beta} F'(x)dx,$$

whence

$$2\pi m \left| J \right| \leq 2F(\alpha) + \int_{\alpha}^{\beta} \left\{ \left. F^{\prime}(x) + \left| \left. F^{\prime}(x) \right| \right\} \right. dx \,.$$

Now

$$\mathbf{F}'(\mathbf{x}) = -\frac{\Psi''(\mathbf{x})}{(\Psi'(\mathbf{x}))^2} = -\frac{p^2 \psi''(p\mathbf{x}) - q^2 \psi''(q\mathbf{x})}{(p\psi'(p\mathbf{x}) - q\psi'(q\mathbf{x}))^2} \leq \frac{q^2 \psi''(q\mathbf{x})}{(p - q)^2 (\psi'(q\mathbf{x}))^2}.$$

Hence

$$F'(x) + |F'(x)| \le \frac{2q^2 \psi''(qx)}{(p-q)^2 (\psi'(qx))^2};$$

for the left hand side is 0 if F'(x) < 0. Hence

$$2\pi m \left| J \right| \leq \frac{2}{\Psi^{\text{!`}}(\alpha)} + \frac{2q^2}{(p-q)^2} \int_{\alpha}^{\beta} \frac{\psi^{\text{!`}}(qx)}{(\psi^{\text{!`}}(qx))^2} dx$$

$$\leq \frac{2}{(p-q)\psi'(q\alpha)} + \frac{2q}{(p-q)^2 \psi'(q\alpha)},$$

whence the result follows.

3. PROOF OF THE THEOREM

Let the function $\phi(t)$ be defined by

(3)
$$\phi(t) = n + \frac{t - z_{n-1}}{z_n - z_{n-1}} \quad \text{for } z_{n-1} \le t \le z_n.$$

Then the fractional part of $\phi(t)$ in the ordinary sense is the same as the fractional part of $t \pmod{\Delta}$, and therefore a sequence s_k is uniformly distributed $\pmod{\Delta}$ if and only if the sequence $\phi(s_k)$ is uniformly distributed $\pmod{1}$; see [1; Section 1].

Let

$$S(N, x) = \frac{1}{N} \sum_{k=1}^{N} e(m\phi(a_k x)),$$

where m is a positive integer, and let

$$I(N) = \int_{\alpha}^{\beta} |S(N, x)|^2 dx,$$

where $\beta > \alpha > 0$. It follows from the result of the preceding note that the sequence $a_k x$ is uniformly distributed (mod \triangle) for almost all x in (α, β) provided that

(4)
$$\sum_{N=1}^{\infty} \frac{1}{N} I(N) \text{ converges.}$$

This is to hold for each integer m > 0.

Now

H. DAVENPORT and W. J. LeVEQUE

(5)
$$I(N) = \frac{\beta - \alpha}{N} + \frac{1}{N^2} \sum_{k < j \le N} 2 \Re J_{j,k},$$

where

(6)
$$J_{j,k} = \int_{\alpha}^{\beta} e(m\phi(a_j x) - m\phi(a_k x)) dx.$$

The function $\phi(t)$, defined in (3), is continuous, and is linear in each of the intervals $z_{n-1} \leq t \leq z_n$, its derivative in this interval being $(z_n - z_{n-1})^{-1}$. We write

$$\delta(t) = \mathbf{z}_n - \mathbf{z}_{n-1} \quad \text{for } \mathbf{z}_{n-1} < t < \mathbf{z}_n \,,$$

and recall that $\delta(t)$ decreases as t increases. Thus $\phi'(t) = 1/\delta(t)$ increases, except that it is undefined at the isolated points $t = z_n$.

We can obviously approximate $\phi(t)$ arbitrarily closely by a twice differentiable function $\psi(t)$ which satisfies the inequality $\psi''(t) \geq 0$, and we can also make $\psi'(t)$ approximate $\phi'(t)$ arbitrarily closely, except in arbitrarily small intervals around the points z_n . Hence the result of the lemma is applicable to the integral $J_{j,k}$ in (6) with $p = a_j$ and $q = a_k$. Thus

$$\left|\mathbf{J}_{\mathbf{j},\mathbf{k}}\right| \leq \frac{\mathbf{a}_{\mathbf{j}}}{\pi \mathbf{m}(\mathbf{a}_{\mathbf{j}} - \mathbf{a}_{\mathbf{k}})^{2} \phi^{\dagger}(\mathbf{a}_{\mathbf{k}} \alpha)} = \frac{\mathbf{a}_{\mathbf{j}} \delta(\mathbf{a}_{\mathbf{k}} \alpha)}{\pi \mathbf{m}(\mathbf{a}_{\mathbf{j}} - \mathbf{a}_{\mathbf{k}})^{2}}.$$

(We have tacitly supposed that $a_k\alpha$ is not one of the points z_n , but there is plainly no loss of generality in this.) We also have the trivial estimate $\left|J_{j,k}\right| \leq \beta - \alpha$.

Returning to (5) and (6), we see that in order to prove the convergence of the series (4), it suffices to prove the convergence of

$$\sum_{N=1}^{\infty} \frac{1}{N^3} \sum_{k < j \leq N} \min \left(\frac{a_j}{(a_j - a_k)^2}, 1 \right).$$

Changing the order of summation, we deduce that it suffices to prove the convergence of

$$S = \sum_{k < i} \frac{1}{j^2} \min \left(\frac{a_j}{(a_i - a_k)^2}, 1 \right).$$

For this we must use the hypothesis (2). If $j = k + \ell$, we see that

(7)
$$a_{j} - a_{k} = (a_{k+1} - a_{k}) + \cdots + (a_{k+\ell} - a_{k+\ell-1})$$
$$\geq Ca_{k}(k^{-1} + \cdots + (k + \ell - 1)^{-1})$$
$$\geq C\ell a_{k}(k + \ell)^{-1}.$$

Hence

$$a_{j} \geq \left(\frac{C\ell}{k+\ell} + 1\right) a_{k}$$

and, since the function $x/(x-\alpha)^2$ decreases for $x>\alpha$, this implies that

$$\begin{split} \frac{a_j}{(a_j-a_k)^2} &\leq \, \frac{(C\ell+k+\ell)(k+\ell)}{C^2\,\ell^2\,a_k} \cdot \\ &\ll \frac{(k+\ell)^2}{\ell^2\,a_k} \,. \end{split}$$

Hence

$$\begin{split} & S << \sum_{k} \sum_{\ell} \frac{1}{(k+\ell)^2} \min \left(\frac{(k+\ell)^2}{\ell^2 a_k}, 1 \right) \\ & << \sum_{k} \sum_{\ell} \frac{1}{(k+\ell)^2} \frac{(k+\ell)}{\ell a_k^{1/2}} \\ & << \sum_{k} \frac{1}{a_k^{1/2}} \sum_{\ell} \frac{1}{\ell(\ell+k)} \\ & << \sum_{k} \frac{\log k}{k a_k^{1/2}}. \end{split}$$

Now the hypothesis (2) implies that $a_{\bf k}>>k^{\delta}$ for some $\delta>0;$ for we know that

$$a_{2k} - a_k >> a_k$$

by (7), whence $a_{2}{}_{\nu}>a_{1}(1+\delta_{1})^{\nu},$ which gives the result. Hence the series is majorized by

$$\sum_{k} \frac{\log k}{k^{1+\delta/2}},$$

and so converges. This completes the proof.

REFERENCE

1. W. J. LeVeque, On uniform distribution modulo a subdivision, Pacific J. Math. 3 (1953), 757-771.

Trinity College, Cambridge The University of Michigan