CONNEXION PRESERVING, CONFORMAL, AND
PARALLEL MAPS

N. Hicks

This paper is a small collection of loosely related results in differential geome-
try. The methods are perhaps more interesting than the results for they illustrate
the power and elegance of completely invariant methods in differential geometry.

Preliminavies. Let M and M' be C® Riemannian manifolds (where we denote
the metric tensor by <X, Y>), and let f: M — M' be a C* map. If there exists a
C* real-valued function ¥ on M such that for any m in M, then

<f,X, £, Y>=Fm<X, Y>

for all X, Y in M, ; and if F> 0 on M, then f is conformal. The map f, is the
differential of f, and f, has no kernel if f is conformal. We call the map F the
scale function; notice ¥ > 0. If F is a constant function, then we say f is khomo-
thetic. If F =1, we say f is an isomelry, and if f is both an isometry and a diffeo-
morphism, we say M is isomelric to M"'.

A connexion D on M will be a C* covariant differentiation operator assigning
to C* fields X and Y (with common domain A) a C® field Dx Y (on A) such that

D(x+z)Y =Dx Y+ D, Y,
Dy(Z +Y) =Dy Z + Dy Y,
D, Y =Dy, Y,

Dy fY = (XY + D, Y,

where Z is a C* field on A and f is a C* real valued function on A. The fovsion
tensor T(X, Y) and curvature tensor R(X, Y) of a connexion are defined by

T(X, Y)=Dyx Y - Dy X - [X, Y]
RX, Y) = Dy Dy - Dy Dy - D[X,Y]'

We will use the fact that on a Riemannian manifold there exists a unique (Rieman-
nian) connexion D with zero torsion which satisfies the property

X<Y,Z>=<DxY,Z>+<Y,DyZ>,

where Y and Z are vector fields in a neighborhood of the base point of the vector
X. If M and M' are C* manifolds with connexions D and D', respectively, then
a map f: M — M is connexion preserving if i, DxY =D £.X f, Y for all vectors X

and vector fields Y. (Note D 'f*X f, Y is well defined since f,Y is a well-defined
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field on some curve with tangent f X.) If f is a diffeomorphism of M onto M' and
D' is a connexion on M', then there is a unique (induced) connexion D on M for
which f is connexion preservmg, that is, letting

-1
DxY =1,  (Dg xf, V),

one trivially checks that this D satisfies the above properties defining a connexion.

THEOREM 1. Let M and M' be n-dimensional C* Riemannian manifolds with
M connected, and let £ be a C*° conformal map of M into M' with scale function F.
Then f is (Riemannian) connexion preserving if and only if { is homothetic.

Proof. Suppose that f is connexion preserving, and let us denote both connexions
by D (dropping the prime from D'). Take any m in M and any X in M. Let Y
be a unit vector field on a connected neighborhood U of m. Then

£, X<L,Y, £, ¥>=2<Dg x1, ¥, £, ¥>=2<1,Dx¥, £,¥>

2F(m)<DxY, Y> = F(m)X<Y,Y>=0.
Hence <f Y, { Y>=F<Y, Y>=F is a constant function on U. Then since F is
C® and M is connected, it follows that F is constant on M.

Conversely, let F be constant on M. We know {_ is non-singular; hence, for any
m in M, we may choose neighborhoods U of m and V of f(m) such that f is a
dlffeomorphlsm from U onto V. We apply the remark precedmg the theorem and
let D be the connexion induced by f on U. Then we show D is the Riemannian con-
nexion on U; and consequently, D = D on U, and f is connexion preserving.

Let Y and Z be fields on U and take X in M,,. Then
X<Y, Z>=(1/F){ X<f Y, £,Z2>
= (I/F)<Dg x£, Y, 1, 2>+ <L, Y, D 1 £,2>)
= (1/F(<f,Dyx Y, 1, 2>+ <f Y, f*5XZ>)
=<DyxY,Z>+<Y,DyxZ>.
Also,
DyZ-D,¥ =11 (D yi,Z-D 25,0 = 1,7 [£,Y, £,2] =Y, Z].

Thus D is metric preserving and has zero torsion, so it is the Riemannian con-
nexion on U. Q. E. D,

In order to extend the above theorem to connexion-preserving immersions, we
make a few remarks on submanifolds and induced connexions. Let k< n. A k-
dimensional C* manifold M is a submanifold of an n- dimensional C°° manifold
M, if for - every point p in_M there exists a coordinate system Xy, ***, X, of M with
domam U such that p in U and the set

U=[m in T: X (m) = *=- = X (m) = 0]

is a coordinate neighborhood of p in M for the functions X1, ***, Xk restricted to U.
Thus the inclusion map of M into M is C™. If M is Riemannian with Riemannian
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connexion D, M inherits the metric tensor and thus is a Riemannian manifold with
Riemannian connexion D. These connexions are related by the Gauss equation

Dy Y =Dy Y+ V(X, Y),

where X and Y are fields on M and the right side is the unique decomposition of

Dx Y into a vector Dx Y tangent to M and a vector V(X, Y) normal to M (for de-
tails see [2]). We call V(X, Y) the second fundamental form tensor. It is a sym-
metric 2-covariant vector-valued tensor. If V=0 on M, we say M is flat in M.

This is a generalization of the fact that, if M is a closed flat (n - 1)-dimensional

submanifold of R® (real Euclidian n-space), then M is a hyperplane.

A C® map f: M — M is called an immevrsion if f, is non-singular at all points
of M. An immersion is called an imbedding if f is univalent. It is easy to show that
if f: M — M is an imbedding, then the image set M' = f(M) is a submanifold of M.
By restricting an immersion to a local neighborhood it becomes an imbedding of this
neighborhood; hence we say an immersion is flat if all these local imbeddings are
flat. We may extend the remarks above concerning the Gauss equation and the
second fundamental form tensor to an immersed submanifold; that is, to the image
set of an immersion. Henceforth all manifolds and mappings mentioned will be C*

THEOREM 1'. Let M and 1\_/I__be Riemannian manifolds with M connected. Let
f be a conformal map of M into M with scale function ¥. Then £ is (Riemannian)
connexion presevving if and only if F is constant and £(M) is flat.

Proof. Since f, is non-singular, the dimension of M is less than or equal to the
dimension of M and f is an immersion of M into M.

Suppose that { is connexion preserving, so {, Dx Y = ﬁf x 1, Y is tangent to

M'= f(M). Hence V(f, X, f,Y) =0, and so V=0 on M', since f, is an isomorphism
onto the tangent space to M' Hence Df xi,Y=D £, Xf Y, where D' is the Rieman-

nian connexion on the flat immersed submamfold M'. Thus f is a conformal con-
nexion-preserving map of M into M', and we may apply Theorem 1 to obtain the con-
clusion that F is constant on M.

Conversely, if F is constant, then Theorem 1 implies that f is connexion pre-
serving from M to M'. Then M' flat implies that V = 0, so { is connexion preserv-
ing from M into M. Q. E. D.

Covollary. Let M be a complete, connected, (n - 1)-dimensional Riemannian
manifold. Let f: M — R™ be a conformal map. The map f is connexion preserving
if and only if the scale function is constant and £f(M) is a hyperplane of R™.

We next consider the notion of ¢parallel” submanifolds of R®, An (n - 1)-
dimensional submanifold M of R" is said to be framed in R™ if one has chosen a
C*™ unit normal vector field N on M. This can always be done locally but is only
possible globally if M is orientable. Let M be framed in R", let ey, ---, e, be the
usual global orthonormal parallel base vectors on R", and let N = =} a;e; define
C* functions a; on M. For r # 0, let M, = [p + rN: p in M]; that is, if
p = (pi, ***, Py is in M, then

f(p) =p+ rN = (p; + ra;(p), ***, pp+ ray(p)).

The map { is called the natural map of M into M,., and if f is univalent, then M,
is an (n - 1)-dimensional submanifold oriented in R™, which we call a pavrallel sub-
manifold of M.
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In what follows we at times equate two vectors in tangent spaces of R™ at differ-
ent points,and in that case we mean the vectors have equal components with respect
to the base e, +--, e,.

Recall that, if M is an (n - 1)-dimensional submanifold framed in R™ by N,
then we can define a linear transformation L on each tangent space of M by
L(X) = Dx N, where D is the Riemannian connexion on R". In the above notation,
LX) = '2111 (Xaj;)e; at m, and the mapping m into L at m is C*. The vector LX
is tangent to M since

2<Dy N, N> = X<N, N> =0
for <N, N> =1 on M. The algebraic invariants of L define the curvature (det L),
mean curvature (trace L), principal curvatures (eigenvalues of L), and principal di-
rections (eigenvectors of L). All the above exist since L is self-adjoint; that is,

<LX, Y> =<X, LY> = I(X, Y),

the second fundamental form of M relative to N. This follows from the fact that
V(X, Y) = -<LX, Y>N and V is symmetric; for

<V(X, Y), N>=<DxY+DxY, N>

<Dx Y, N>=X<Y, N> - <Y, DyN> = -<Y, LX>

I

(see [2] for details). An umbilic on M is a point where LX = kX for all X; that is,
L is a multiple of the identity map. We define the third fundamental form,
(X, Y) = <LX, LY> = <L%? X, Y>, etc.

THEOREM 2. (Part of this theorem is well known.) Lef M be an (n - 1)-
dimensional submanifold framed in R™ jfor which theve exists a parallel submani-
Jold M, (r # 0), and let f: M — M, be the natural map. Then

[ X=X+rLX, L .f X=1LX,

and f preservves principal divections of curvatuve, umbilics, and the thivd funda-
mental form. Thus,

<f X, £, Y>=ILX,Y) +2rl(X, Y) + r?II(X, Y),

wheve 1, 11, and 111 are the fivst, second, and thivd fundamental forms on M. If k
is a principal curvature of M at m in divection X, then k/(1 + rk) is the corrve-
sponding principal curvaturve of M, at f(m) in direction f, X.

Proof. To compute f, X, we take a curve of(t) = (by(t), ---, bu(t)) with
X = =7(db;/dt)(0)e;, and then compute the tangent to f oo at t = 0. Let
N(o(t)) = Z a;(t)e;; then
f oo(t) = (---, b(t) + raj(b), ---),
and its tangent at t = 0 is indeed X + rL(X). Also,

N(o(t)) = 27a;(t)e; = N(f o o(t))
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from the definition of {; that is, we use the parallel translate of N to frame M,.
Thus

LX = Dx N = 2J(da;/dt)(0)e; = Dy xN = L, £, X.
This shows that
L. (f, X, £, ¥) = <L, f X, L.f Y>=<LX, LY> = III(X, Y).

Now let X be a unit vector at m in M with LX = kX, so that L_(f X) = LX = kX
and f, X = (1 + rk)X. We show 1+ rk+# 0, since 1 +rk=0 1mp11es that f,X=0,
L.(f, X) = kX =0; and thus, k=0 so 1= 0 Consequently, L.(f,X) = (k/l + rk)f X,
showing that f preserves directions of curvature and umbilics. Finally, one can
verify the expression for <f X, f Y> by direct computation using f X = X + rLX.
Q. E. D.

Corvollary. In the hypothesis of the above theovem, let n = 3; and let the total
curvature and mean curvaturve of M (and M,) be denoted by K (and K,.) and H (and
H.). Then,

K.=K/(1+rH+12K) and H,=(H+ 2rK)/(1+ rH+ r*K).

We next give a classical result (Theorem 3) and two analogous theorems (4 and
5). In all these theorems we will assume as a standard hypotheszs M is a com-
plete connected 2-dimensional submanifold framed in R3 for which there exists a
parallel submanifold M, (r # 0), and f: M — M, is the natural map.

We will continually make use of the classical theorem: A complete connected
surface (2-dimensional submanifoid) of umbilics in R3 is a sphere or a plane. Let
us denote by U the set of umbilics in a surface M, and let U€ be the set of non-
umbilics. Since L is continuous, we know U is closed and U€ is open. The follow-
ing theorem is standard, but we reprove it since its proof is a model for the
following theorems.

THEOREM 3. With the standard hypothesis, if £ is conformal, then M is a
spheve, plane, or has constant mean curvature H = -2/r with no umbilics.

Proof. Since f is conformal,
<EX, £,Y>=F<X,Y>=<X+2rLX+ r*L?*X, Y>;
hence,
r’L%+2rL+ (1 - F)I=0,

where I is the identity map. But L2 - HL + KI = 0 is the characteristic equation
for L; hence

(H+ 2/r)L = [K - (1 - F)/r?]I.

If H(m) + 2/r # 0, then m is umbilic. For non-umbilical p in U€, H(p) = -2/r and
K{p) =1 - F(p)/r Suppose that p; is a sequence in Uc© and p; — m where m is
in U. By continuity, H(m) = -2/r and K(m) = (1 - F(m))/r2%. But also, K(m) = 1/r?
since k; = -1/r; and thus F(m) = 0, which is 1mp0551b1e since f conformal. Thus
U® is closed and open. Hence M= U or M= U° , and the only possibilities give the
conclusion of the theorem. Q. E. D,
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THEOREM 4. With the standavd hypothesis,if f is connexion preserving, then
M is a spheve, a plane, orv a vight civcular cylinder.

Proof. Let X and Y be local vector fields on M. Since { is connexion pre-
serving,

£,Dy Y=Dy Y+ rLDy Y =D o £, ¥ =Dy o (Y+rLY).
Thus,

Let m be a non-umbilic point with k; < k, in the connected neighborhood A of m.
Let X and Y be the orthonormal fields on A with LX=k; X, LY =k, Y.

We compute Dx Y and Dy X. Since
0=X<Y, ¥Y>=2<Dy Y, Y>,
we know Dx Y = aX, and similarly Dy X = bY. We show that a = (Yk;)/(k, - k;) and
b = (Xk,)/(k; - kp). This follows since DxY - Dy X = [X, Y], and the Codazzi-
Mainardi equation implies that Dy LY - Dy LX = L([X, Y]). Thus
(Xk,)Y + k, Dy Y - (Yk;)X - k; Dy X = ak; X - bk, Y,

and hence (Xk;) - k; b = - bk, gives b, while k,a - (Yk;) = ak; gives a.
Applying (1) to X and Y yields .

kyaX + (Xk,)Y + kpaX + rk;(Xk,)Y + rky kyaX - k;aX = 0.
Thus (Xk,)(1 + rk;) = 0 and k,a(l + rk;) = 0. Therefore,
(2) (Xk,)(1 + rk,) =0
(3) k,(Yk;)(1 + rk;) = 0.
Similarly, applying (1) to Y and X yields
4) (Yk,)(1 + rk,) =0
(5) k;(Xk,)(1 + rk,) = 0.
Applying (1) to X and X and using Dy X = -aY yields
(6) (Xk)1 +1rk;) =0
() (Yk,)(2k; + rk5 - kp) = 0.
Similarly, applying (1) to Y and Y yields
(8) (Yk,)(1 + rky) = 0

(9) (Xk,)(2k, + rk5 - k;) = 0.
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From the proof of Theorem 2 we know that 1 + rk; # 0 (that is, f, is always non-
singular); thus (2), (4), (6) and (8) imply that Xk; = Xk, = Yk; = Yk, =0 on A, and
hence k; is constanton A. Thus a=0 and b=0; so DyY=0, Dy X=0, Dy X =0,
Dy Y =0 and [X, Y] =0. The last condition implies that there exists a coordinate
system in a neighborhood B of m with B C A, whose coordinate fields are X and Y;
that is, B is then isometric to a piece of the plane. Hence k; and k, are constant
on B, and k; k, = K=0. Since K> 0 at an umbilic, K> 0 on all of M. Next we
claim the set Ut where K> 0 is an open and closed set of umbilics. It is clear
that this set is open and a set of umbilics, since K = 0 at a non-umbilic. Therefore
if K(m) > 0, m has a neighborhood of umbilics; then K is constant on this neighbor-
hood and thus constant on the boundary of this neighborhood, which also consists of
umbilics. Thus U" is closed. Hence either M = U with K> 0 constant so M is a
sphere, or K=0 on M.

If K=0 on M, then H =0 at umbilical points, and H # 0 is constant on a neigh-
borhood of a non-umbilical point. Thus the set of non-umbilics is open and closed,
which implies that either M is umbilical and K =0 so M is a plane, or M is non-
umbilical with K =0 and H constant so M is a right circular cylinder. Q. E. D.

THEOR;EM 5. With the standard hypothesis, if £ presevves the second funda-
mental form, then M is a plane.

Proof. Inasmuch as <LX, Y> = <L, £,X, £,¥>=<LX, Y + rLY>, rL% =0,
or L% = 0. Thus, if X is a unit vector w1th LX kX, then L2X=k%X =0 and
k=0. Hence L= 0 or DxN =0 for all X, and thus N is a constant vector on M
so M is a plane. Q. E. D.

The following theorem should be well known.

THEOREM 6. Let M be a complete connected 2-dimensional surface framed in
R3 with I, II, and III denoting its fivst, second, and thivd fundamental forms, ve-
spectively. If I =11 or if 1 =111, then M is a spheve of radius 1, and conversely. If
II = OI, thern M is a spheve of vadius 1, a plane, ov a vight civcular cylinder of
radius 1.

Proof. If I =11, then L is the identity map, k; are both equal to 1, and all pomts

are umbilical; so M is a sphere of radius 1 (and conversely) If I= III then L2

the identity map. Let X be a unit vector with LX = kX, then L%X = k2 X X so
k;=1 or - 1. Since L is continuous, k; must be constant; and s1nce a surface of
constant negative curvature cannot be 1mbedded isometrically in R3 , the k; must
have the same sign and M is a unit sphere. If II = III, then L% = L, and it follows
that k; = 0 or 1. Thus if both k; =1, M is a unit Sphere If both k =0, Misa
plane. Finally, if k; = 0 and kz =1, then M is a right circular cylinder. Q. E. D.

We last prove a well-known theorem since its proof fits the general pattern.

THEOREM 7. Let M be a complete connected suvface framed in R3, and sup-
pose its Gauss map f is conformal. Then M is a spheve ov a minimal suvface with
strictly negative cuvvature and no umbilics. If, in addition, the Gauss map is con-
nexion preserving, then M is a sphere.

Proof. Since <f,X, f,¥Y>=<LX, LY> = F<X, Y>,
L°X=FX, L2 -HL+KI=0,
and consequently, HL = (K + F)I. If H(m) # 0, then m is umbilic and K(m) > 0

since k =!= 0. If m is umbilic and H(m) = 0, then K(m) = -F(m) < 0; but
K(m) = > 0 at all umbilics. Thus the umb1hca1 set is exactly the set of m
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where H(m) # 0, and hence this set is open and closed. If M is completely umbili-
cal, then M is a sphere (since F > 0 eliminates the plane). If M has no umbilics,
then H=0 and K= - F< 0 on M. If f is connexion preserving, then F is constant
and only the sphere case is possible. Q. E. D.
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