NUMERICAL RANGE AND SPECTRAL SETS

M. Schreiber

1. Spectral sets were introduced by Von Neumann [6, p. 429] in an attempt to ex-
tend spectral theory to non-normal operators. The point at issue was to get an in-
equality of the type ” £(T) || < ”f||°o, where T is an operator, f is a “suitable” func-
tion and the norm is the supremum norm taken over a “suitable” set. These sets
were the spectral sets. The inequality becomes trivial in the context of unitary
dilations [8], and a recent result, due independently to Berger [1], Foias [2], and
Lebow [4] displays an intimate connection between spectral sets and normal dilations.
Moreover a forth-coming result of Halmos shows a relation between the normal di-
lation and the numerical range of an operator. The main result of this note is in the
same spirit. We shall characterize (by means of normal dilations) those operators
the closure of whose numerical range is a spectral sef. We also discuss the equality
of the convex hull of the spectrum with the closure of the numerical range, in rela-
tion to the spectrality of the latter set. We conclude with a peculiar result about the
numerical range of certain operators.

I am indebted to P. R. Halmos for raising the subject, and to him, A. Brown, and
S. K. Berberian for many interesting conversations at Ann Arbor in the summer of
1962.

2. The numerical range W(T) of a bounded operator T on complex Hilbert
space H is {(Tx, x): |x| = 1}. The Toeplitz-Hausdorff theorem [11, p. 234] states
that W(T) is convex, and if T is normal, then W(T) is the closed convex hull
€o(T) of the spectrum o(T) of T [7] (throughout we shall use the bar symbol for
closure, 3 for boundary, and % for convex hull). This is true rather more gen-
erally, as a consequence of the Berger-Foias-Lebow result, which we state in a
slightly modified form.

THEOREM 1. If S is a compact convex spectval set for an opevator T, then
therve exists a novmal opevator N defined on a lavgev Hilbert space K D H, such
that

(i) o(N) c @S

(ii) ™Mx=PN"x (x€H, n=0,1,2, ),
wheve P is the ovthogonal projection of K onto H.

A (normal) operator N defined on K D H such that Tx = PNx for x € H is called
a (normal) dilation of T. If also (ii) holds, it is called a sfrong dilation. Thus the

theorem states that under the hypothesis on S, there exists a strong normal dilation
of T with spectrum on the boundary of S.

A closed proper subset E of the complex plane is a specitral set for an operator
T if
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la( [ < sup { [ |: » € E}

for every rational function u of z having no poles in E. In order for u(T) to be de-
fined, it must be that o(T) C E, and it is immediate that any closed proper subset of
the plane which contains a spectral set for T is itself spectral for T. See [6] for an
account of spectral sets. We shall also need to know that ¢o(T) c W(T) for any
operator T [11, p. 245]. Thus if o(T) is spectral so is €o(T), and if #o(T) is
spectral so is W(T).

PROPOSITION 1. If €o(T) is spectral for T, then theve exists a strvong novmal
dilation N of T such that

€a(T) = W(T) = W(N).

Proof. By Theorem 1 there exists a normal operator N satisfying (i) and (ii)
above, with S = €0(T). Then

WD) = {(Nx, x): [|x]|= 1, x € H} ¢ W(N) = €a(N)
by the known result for normal operators, and
€o(N) C €0 €o(T) = €o(T) c W(T).

This completes the proof.

PROPOSITION 2. If theve exists a strong novmal dilation N of T such that
W(N) = W(T), then W(T) is a spectral set for T.

Proof. This follows from the converse of Theorem 1 (see [1] and [4]). The fol-
lowing is a simpler version of the argument. For |A| large both resolvents R)(T)
and R, (N) exist and are analytic (R)(A) = (A - A)-1 for any A), and it is immediate
from their Neumann series expansions [6, p. 406] that R, (T)x = PR, (N)x, x € H,
with P and H as in (ii) above. This is equivalent to the statement

R\(DT)x, y) = R \(N)x,y), (x,y€H).
Under the hypothesis W(T) = W(N), this equality is in fact valid for all x £ W(T), be-
cause both resolvents are analytic there, and if u is a rational function with no poles
in WiTi, then
(U(T)X, Y) = (U(N)X, Y), (X, y € H) ’
or, equivalently, u(T)x = Pu(N)x, x € H. Hence
lwm < [u@) ] = sup { |u(@)]: z € o)}

< sup{ lu(z)|: z € WN) = W(T) } Q.E.D.

To summarize, W(T) is spectral for T if and only if theve exists a strvong
novmal dilation N of T with W(N) = W(T), and a sufficient condition for this is that
€a(T) be spectval for T, which also implies W(T) = €o(T).

3. It is not generally true that €o(T) = W(T) of course (for instance, consider
any 2 by 2 non-zero nilpotent matrix), but it is true for a large class of non-normal
operators, as we shall now show. Let L%, L™ refer to that unit circle {|z|=1}
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with Lebesgue measure (1/27)df, let H? denote the closed subspace of L% con-
sisting of those functions whose Fourler coefﬁments vanish for negative index, and
let P be the orthogonal projection of L2 onto H?. We shall consider the o erators

: L% — L% of multiplication by ¢ € L™, and their “compressions” T¢ — H2
defined by the relation

Tsf= PMyf=Pof, (fe H).
In the terminology of Section 2 above, My is a dilation of T¢, but in general not a
strong dilation.
PROPOSITION 3. “€G(T¢) = W(Ty).
Proof. If f € H?, then

27
(Tyf, ) = (Po1, §) = (o1, ) = zlﬂ SO ¢|£]% as.

Choose a simple function s = Zﬁﬂ ¢y X0, (here Xo is the characteristic function of
the set o) which is uniformly close to ¢. Note that the numbers c; belong to the
essential range of ¢. We see that

__i s|£]* a6 = > ¢ ) 167 a0,

k=1 Or

a convex linear combination of the numbers ci. Now it is well known (and clear)
that 0(Mgy) is the closure of the essential range of ¢, and by a theorem of Hartman

2w

and Wintner [3] o(M¢) - o(qu,). Hence El?r' ‘S‘ slf Iz dé is a convex linear combina-
0

27
tion of points in o(Ty). But 2%15 s|£|?de is close to
0

1 27
5}50 6|52 do = (T4, 1),

so that W(T¢) c ??0(T¢), and always ,%O'(Tq,) C W(T¢5. This completes the proof.

An attempt to characterize those operators T for which €o(T) = W(T) was made
by Wintner [11]. He called T normaloid if

IT| = sup {|(Tx, 2|; x| = 1},
and he presents an argument to prove that if T is normaloid, then €o(T) = W(T).
That this argument is faulty is shown by the following example due to P. R. Halmos.

Let

0 1

A=1p o

let I be the one-dimensional identity operator, and let T = A ® I. An elementary
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calculation, first performed by Toeplitz [9], shows that W(A) = { {z| < 1/2}, and it
is easy to show that W(T) is the convex hull of this set and the point {1}. Hence

sup { [ (Tx, ¥)[: ||x] =1} > 1= [[T];

and, of course, |(Tx, x)| < ||T| for ||x||=1. Thus T is normaloid, but
%o (T) = [0, 1] # W(T).

Notwithstanding the result of Section 2, it is difficult to tell whether W(T) is
spectral for a given T. For instance, we do not know whether it is the case for the
operator in the example above, or for the operators Tg. We can, however, show
W(T¢) to be spectral for a special class of functions ¢, namely, those which are the
boundary values on { Izl = 1} of functions that are analytic and bounded for |z| <1
(such analytic functions are known to have non-tangential L™ boundary values de-
fined a.e. on { |z| = 1}; see, for instance, [5]).

PROPOSITION 4. If ¢ is the boundary value of a function that is analytic and
bounded for ]z[ < 1, then o(T¢,) is a spectral set for Ty.

(Remark. With this hypothesis T¢ is in fact a subnormal operator, and it is
known that the spectra of subnormal operators are spectral sets. See [4]. In the
present circumstances it is trivial to give an independent proof, and we shall there-
fore do so.)

Proof. We consider the related operator Mg on L% and note that M¢(H2) C HZ,
so that My is in fact an extension of Ty. Since 0(M¢) C 0(T¢) [3],

(RA(Md,)f, g) = (RA(T¢)f, g)

for f, g € H% and all X in the complement of o(T4). Hence u(Ty)f = Pu(My)f, f € H?,
for any rational function u having no poles in O'(T¢). The proof is completed by the
same estimation of norms as in the proof of Proposition 2.

For these operators W(Ty) is therefore spectral, and of course equal to €o(T).
One is led by this discussion to the question whether the equality W(T) = €o(T) and
the spectrality of W(T) always occur together. There is also the following open
question. Is W(T¢) spectral for general ¢ € L*? We conjecture the affirmative.

In this connection, we are able to show, by an operator of the form T¢, that
(@) mneither the spectrality of W(T) novr the equality W(T) = €o(T) implies the
spectrality of o(T), and

(B) the spectrality of €o(T) does not imply that of o(T). The example is the
following. Let

% (o<o<m,

$(0) = { :
e m<o<om,

and consider the operator Ty. By a theorem of Widom [10], o(Ty) = {z: |z]| = 1}.
By a theorem of Von Neumann [6, p. 434], this set cannot be a spectral set for Ty.
But

€o(Ty) = W(Ty) = {z: |2]| < || Ty = 1}

is spectral for T, because the circle of radius ”A” is spectral for every A (von
Neumann [6, p. 431]).
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4. In conclusion we exhibit a peculiar fact about W(T) for certain T. For nor-
mal T the convexity of W(T) can be shown as follows. Suppose first that T can be
represented as multiplication by z on L,(X, u), where X is a subset of the com-
plex plane and p is a finite positive measure on X. For unit vectors £, g in L,
and a given t on [0, 1], there exists an h € L, such that for almost all z € X,

(1) t|£(z)[%+ (1 - ©|g@|? = |h(=z)|?

and ”h” =t+1-t=1. Now if we multiply both members of (1) by z and integrate,
we get the equality t(Tf, f) + (1 - t)(Tg, g) = (Th, h), which is the desired convexity
relation. If we multiply both numbers of (1) by z® (n=1, 2, ---) and integrate, we
get our peculiar fact, which is that given unit vectors f, g € L, and a t on [0, 1],
there exists a unit vector h € L, such that

(2) t(T™f, £) + (1 - t)(T"g, g) = (T"h, h)

Jor all positive integers n. Since every normal operator is the direct sum of oper-
ators of the special type considered, (2) is true for all normal operators. It is also
true for all the non-normal operators Ty of Section 3. Here the crucial fact is a
theorem of F and M. Riesz [5], which is that for f € L;, £> 0, there exists a

g € H® with |g|% = f a.e. if and only if

27
j log £d6 > -
0

Suppose we now choose unit vectors f, g in H® anda t on [0, 1]. Then
t|f|‘2 + (1 -1 Iglz is a non-negative L function whose logarithm is integrable be-
cause the same is true of t|f|2. Hence, by the Riesz theorem, there exists an
h € H? such that

t|ff + (1 - t)]gl?= |n|? a.e.
and, as before, ”h” = 1. If we now multiply both members of this relation by ¢™ and
integrate, we get the equation (2) for Ty because

27
S o™ |£]2do = (o7, f) = (Tgf, ) forany fe HZ .
0
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