A REMARK ON RINGS AND ALGEBRAS
I. N. Herstein

We have recently been concerned with conditions which, when imposed on a ring,
render the commutator ideal of this ring to be a nil ideal [2, 3]. A standard tool for
exhibiting nil ideals is the following result of Amitsur [1]: If A is a finitely-
generated algebra over a field, and A satisfies a polynomial identity, then the
(Jacobson) radical of A is a nil ideal.

This above-cited theorem of Amitsur has one shortcoming in that it has not as
yet been established for rings, while the natural area of its application is to rings.
For this reason we prove the metamathematical theorem, given below, which allows
us to transfer a certain class of results from algebras (in which Amitsur’s theorem
would play a significant role) to arbitrary rings.

As applications of the principal result of this note, we shall give a simplified
proof of a theorem which we have recently proved by more complicated means [3]
and we complete the proof, for rings, of the result proved in [2]. In [2] we applied
Amitsur’s theorem too widely, namely to rings; the proof as given in [2], however,
is valid only for algebras. By the theorem to be proved, it automatically then be-
comes valid for rings as well.

A ring R is said to be of characteristic 0 if whenever mx =0 with x# 0 in R
and m an integer then m = 0. Let R be of characteristic 0, and suppose that
M = {(x, n)| X € R, n# 0 any integer}; in M equality is defined, as usual, component-
wise. Given (x;, ny), (x3, ny) in M we define (x;, n;) ~ (x3, ny) if nyx; =nyx,. It
is immediate that this defines an equivalence relation on M. Let R* be the set of
equivalence classes of M; if [x, n] denotes the equivalence class of (x, n), then,
since R is of characteristic 0, it follows easily that addition and multiplication de-
fined by [x3, n}+ [x,, np] = [npxy + nyxp, nyny] and [x, nj][x;, ny] = [x; %5, nyn, ]
are well defined operations in R* under which R* becomes a ring containing an iso-
morphic copy of R. Moreover, R* is an algebra over the rational field. We call R*
the rationalization of R.

One final bit of notation: for any ring R let C(R) denote the commutator ideal
of R. We proceed to our theorem.

THEOREM. Lelt P be a property defined on vings such that:

(1) if P(R) is true, then so are P(U) and PR/U) for any (two-sided) ideal U
of R.

(2) if R is of characteristic 0 and if P(R) is true, then so is P(R*).

(3) if A is an algebra over a field for which P(A) is true, then C(A) is a nil
ideal.

Then if P(R) is true for any ving R, C(R) wmust be a nil ideal.

Proof. Let R be a ring in which P(R) is true. We claim that, without loss of
generality, we may assume that R has no non-zero nil ideals. For, if N is the
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maximal nil ideal of R, then R/N has no non-zero nil ideals. Since P(R) is true,
by (1), so must P(R/N) be true. If we could prove that C(R/N) = (0), that is, that
R/N were commutative, then it would follow that C(R) ¢ N, whence C(R) would be
nil.

Thus to prove the theorem we may assume that R has no non-zero nil ideals; our
objective becomes to prove that R is commutative.

Let W= {x € Rl mx = 0 for some positive integer m}. Clearly W is an ideal
of R. Moreover, as is well-known, since R has no nil ideals, W also has no nil
ideals. In consequence, if x € W and mx = 0, it follows that we may assume that m
is a square-free integer. Thus W is the direct sum of WP’s where

WP={XER|px=0}

and where p is a prime number.

Now Wy, is an algebra over GF(p); and since, by property (1), P(Wp) is true,
invoking property (3), we see that the commutator ideal of Wp is nil. Since R is
devoid of nil ideals, so is Wy, whence W, is commutative. In consequence, W is a
commutative ideal of R.

If R is any ring having no non-zero nilpotent ideals and if T is a right ideal of
R which is commutative as a ring, we claim that T must be contained in Z, the cen-
ter of R, and that TC(R) = (0). For, suppose that a € T and r € R. Then ar € T,
whence (ar)a = a(ar), that is

(*) a(ar - ra) = 0.
In (*) replace r by rs; we then see that
0 = a(ars - rsa) = a{(ar - ra)s + r(as - sa)} = ar(as - sa).

Thus aR(as - sa) = (0) for any s € R. But then (as - sa)R(as - sa) = (0), and so
(as - sa)R is a nilpotent right ideal. From this we learn that as - sa = 0 for any
s€R, thatis,that a € Z. If r e R and a € T C Z, then ar is in T, and so, in Z.
Thus for any s € R, (ar)s = s(ar) = asr since a and ar are both in Z. Therefore,
a(rs - sr) =0 forany r, s € R. If x € C(R) then,

X = Eui(ri S; - S;TV;,
whence
ax = Eaui(ri S; - S;Ty)V; = Zui a(r;s; - s;r;)v; (since a € Z)=0.

We have shown that T € Z and that TC(R) = (0).

Let us return to our particular situation. Since W is a commutative ideal of R,
by the above discussion, W ¢ Z and WC(R) = (0). Now R = R/W is of characteristic
0, and since P(R) is true, by (1), P(R) is also true. Therefore by (2), P(R*) is true.
However, R* is an algebra over the field of rational numbers; hence, by property (3),
C(R*), and so C(R), must be nil. Let x € C(R); then x, the image of x in R, is in
C(R). Thus x must be nilpotent so that there is an integer n such that x® = 0. This
means x® € W; since x € C(R), x?t1= x"x € WC(R) = (0). We have shown that C(R)
is a nil ideal. Since R has no nil ideals, we conclude that C(R) = (0), which was our

objective. The theorem now has been proved.
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Application 1.

In [2] we studied rings R in which (xy)* = x"y" for some integer n > 1, and
also rings R in which (x + y)? = x0 + y2. For such rings we “proved” that C(R) is
a nil ideal, however there was a gap in the proof in that we applied Amitsur’s theo-
rem which holds for algebras in the wider context of a ring. However, what we did
does prove the results for algebras over a field. It is easy to verify that the condi-
tions used carry over to ideals and homomorphic images and that if R is of charac-
teristic 0 they extend from R to R*., Thus all the requirements of the theorem of
the present note are fulfilled, allowing us to conclude that C(R) is a nil ideal. In
consequence, all the theovems proved in |2] are tvue as stated in that paper.

Application 2,

If R is any ring, we define the sequence of higher commutators of x and y as
follows:

[X, Y]l =Xy - VX, -y [X: Xy oo X, Y]n = X[X’ ey X, Y]n-l - [Xa 00y X, Y]n_]_x'

The ring R is said to satisfy the nth Engel condition if [x, -+, x, y], = 0 for all
X,y in R. In[3] we proved that in a ring R satisfying the nth Engel condition,
C(R) must be a nil ideal.

We give an alternate proof of this result here. Exactly as in [3] we prove that if
R is a semi-simple ring satisfying the nth Engel condition, then it is commutative.
(The proof is easy and does not even require that n be-fixed.) Consequently, if J(R)
denotes the Jacobson radical of R, then C(R) c J(R). To verify that conditions (1)
and (2) of the theorem of this note hold if P(R) means the nth Engel condition on R
is a triviality. We now verify condition (3).

Let A be an algebra over a field F satisfying the nth Engel condition
[x, -+, X, yln= 0 for all x, y in A. Suppose that c € C(A); thus

m
c=2 u.(r.s. - s, r.)v..
i=1 1 1 1 1 1 1

Let Ay be the subalgebra of A generated by the u;, r;, s;, v;; Ay is a finitely gen-
erated algebra and satisfies the polynomial identity [x, x, -+, X, y]n = 0. Thus by
Amitsur’s theorem, J(Ag) is nil. Since Ay/J(Ag) is semi-simple and satisfies the
nth Engel condition, it must be commutative. Therefore, C(A;) C J(A,) and so must
also be nil. Since ¢ € C(Ay), ¢ must be nilpotent. However, ¢ was an arbitrary
element of C(A), which leads us to conclude that C(A) is a nil ideal.

We have seen that the nth Engel condition is a condition on a ring R satisfying
the hypothesis of our theorem; hence we can conclude that, in any ring R which
satisfies the nth Engel condition, the commutator ideal C(R) must be a nil ideal
(and so, since it satisfies a polynomial identity, a locally nilpotent ideal).

The conditions imposed on P(R) are not difficult to check for a concrete P,
especially conditions (1) and (2). If P is a condition given by polynomial identities,
it is generally true that these conditions hold.
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