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Joseph A. Wolf and Phillip A. Griffiths

INTRODUCTION

We define the notion of completeness for maps of Riemannian manifolds and
prove that a complete differentiable map f: M — N of connected Riemannian n-
manifolds is a covering provided that the Riemannian metric on M is complete. To
apply this result to a differentiable map g: X — Y of connected differentiable n- .
manifolds, one uses a result of Nomizu and Ozeki [3] (stated here as Theorem 2)
which ensures that X has a complete Riemannian metric if it is second countable.
This application can be viewed as the extension to infinite coverings of a theorem of
Nijenhuis and Richardson [2] on proper maps with nonvanishing Jacobians. Another
application of our result consists of giving conditions on f which ensure that the
Riemannian metric on N is complete.

STATEMENT OF RESULTS

Definition. Let f: M — N be a differentiable map of Riemannian manifolds. The
map f is complele if there exists a continuous function X on N with positive values
which bounds shrinking of tangent vectors by f in the following sense: If x € N and
X is tangent to M at a point of £-!(x), then [f,X||> A(x)||X|]. The map f is wuni-
Sformly complete if » can be found with the property above and such that X is
bounded above zero on every bounded subset of N.

Note that » must be defined on all of N, and thus cannot become infinite on the
boundary of f(M) in N.

Observe that a complete map has nonvanishing Jacobian, and that a complete map
is uniformly complete if the image manifold is complete. Recall that a map is proper
if the inverse image of every compact set is compact. If h: U — V is a proper dif-
ferentiable map with nonvanishing Jacobian, then it follows easily from definitions
that h is complete in every choice of Riemannian metrics for U and V. Thus the
following theorems extend [2] in the case of nonvanishing Jacobian:

THEOREM 1. Let f: M — N be a differentiable map of connecled Riemannian
n-manifolds, where both £ and M arve complete. Then (1) f{(M) = N; (2) f: M — N is
a differentiable covering; and (3) N is complete if and only if f is uniformly com-
plete,

THEOREM 2 (Nomizu and Ozeki [3]). Every Riemannian manifold is conform-
ally diffeomorphic to a complete Riemannian manifold. In particular, every para-
compact diffeventiable manifold admits a complete Riemannian metric.

As mentioned above, Theorems 1 and 2 yield this corollary:

COROLLARY 1. Let f: X — Y be a proper differentiable map of connected
paracompact n-manifolds. If the Jacobian of f never vanishes, then f(X) =Y and
f: X — Y is a differentiable covering.
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We next state a useful special case of Theorem 1.

COROLLARY 2. Let f: M — N be a local isometry of connected Riemannian n-
manifolds wherve M is complete. Then f{(M) = N, f: M — N is a Riemannian cover-
ing, and N is complete.

Another useful consequence of Theorem 1 is as follows.

COROLLARY 3. Let f: M — N be a differentiable map of connected Riemannian
n-manifolds, wheve both £ and M are complete. If n1(N) is finite, then { is proper.
If £ is proper, then N is complele.

The first statement follows because the covering f must be finite, and the second
statement is seen by observing that f is uniformly complete if it is proper, for ti.
Jacobian of f never vanishes and the inverse image of a bounded set lies in a com-
pact set.

A LEMMA ON OPEN SUBMANIFOLDS

LEMMA. Let U be a proper open subset of a Riemannian manifold N. Then
theve exists a geodesic arc {at} in N, 0<t< 1, such that a, € U for 0<t<1
and a, is a boundary point of U. In particular, theve exists a Cauchy sequence
{ys} in U that lies on a geodesic avc and convevges to a boundary point of U.

Proof. Choose z in the boundary 9aU. As U is open and cannot be disjoint from
a normal coordinate neighborhood of z, there is a geodesic arc {z;}, 0 < t< 1,
such that z =z and z; € U. Let h(t) be the distance from z; to 9U; h is con-
tinuous, h(1) > 0, h(0) = 0, and h(t) = 0 is equivalent to z; € 9U. The zeros of h
form a closed subset of the segment [0; 1]. Let u be the least upper bound.
Then u<1, z, € 0U, and z; € U for u<t< 1. Now define ag = z;, where
s=({t-1)/(u-1) and 0<t L 1.

For the last remark, assume t is arclength in {at} , and define y, = ag(n)»
where t(n) =1 - 1/n. Q.E.D.

PROOF OF THEOREM 1

To prove f(M) = N, it suffices to prove that f{(M) is closed in N, because f(M) is
a nontrivial open subset of N since the Jacobian of f never vanishes, and because N
is connected. If f(M) is not closed in N, then since f(M) is open in N, there exists
a sequence {y,} in f(M), with {y,} — y € N - f(M), of the type described in the
Lemma above. We can thus choose r > 0 with the properties (a) f(M) N B (y)
has compact closure in N, where B.(y) is the open ball of radius r about y,
(b) if ym, yn € Br(y), then there is a unique shortest geodesic arc @m,n(t),
0<t<1,in N from ym to yn, and am,n(t) € f{(M) N B(y) for 0 <t < 1.
Without loss of generality we now assume that y, € B,.(y) for n> 1, and we define
a, =0 ,. Choose x; € -1 (y1). By pulling back the unit tangent field of o, we lift
a, to an arc B,(t) in M from x; to some point x, € £-1(y,).

Let L be the infimum of the positive numbers A(z) as z ranges over the com-
pact set which is the closure of B.(y) n f(M) and where X is a continuous function
on N whose existence is guaranteed by the definition of completeness of f. Let dy,
and dp denote the distance functions on M and N. Clearly, dn(Ym, Vn) < 2r for
m, n > 1. "Thus
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1 1 1
> | Jos®fae= { e enola>n ( Jao]a> Laye, x,),
0 0 0

SO {xn} lies in the ball of radius 2r/L about x; in M. As M is complete, it fol-

lows that {xn} has an accumulation point x in M. Now passing to a subsequence,

we see that {xn} — X, and continuity of f implies {yn} — f(x) € f(M). This proves
f(M) = N.

Any continuous arc in N can be lifted to M. For if the arc is differentiable, we
lift its tangent vectorfield and then integrate. If the arc is sectionally smooth, we do
the same thing by pieces. In general we approximate by a sectionally smooth arc.
Now f is a local homeomorphism of connected, locally arcwise connected, locally
simply connected spaces, and every arc can be lifted. A theorem of F. Browder [1]
shows that f: M — N is a covering. This proves that f: M — N is a differentiable
covering.

Let f be uniformly complete; we will prove that N is complete. Let {yn} be a
Cauchy sequence in N. Then there is a number r > 0 and smooth arcs a,(t),
0<LtL1, from y; to yn, such that o, has length at most r. The arcs o, lie in
the ball B of radius 2r about y;, and uniform completeness of f implies a number
L > 0 exists such that || f*X” > L||XH whenever X is a tangentvector to M at a
point of £f-1(B). Choose x; € f-1(y;) and lift o, to an arc Bu(t) in M from x to
some x_ € f~1(y,). As before, we calculate:

1 1 1
r> | ferola= | lnea0la>n ( laa®]d> L, xo).
0 : 0 0

Now {x,} lies in a bounded subset of M. Since M is complete, we pass to a sub-
sequence and conclude {xn} — x € M. It follows that {yn} — f(x). Thus N is
complete.

Theorem 1 is now proved.

Added in proof. Corollary 2 was known to W. Ambrose [ Parallel translation of
Riemannian curvature, Ann. of Math. (2) 64 (1956), 337-363]; R. S. Palais later gave
a proof which N. Hicks [A theorem on affine connections, Illinois J. Math. 3 (1959),
242-254] extended to the affine case.
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